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Abstract

We give a hierarchy of many-parameter families of maps of the interval [0, 1] with an
invariant measure and using the measure, we calculate Kolmogorov–Sinai entropy of
these maps analytically. In contrary to the usual one-dimensional maps these maps
do not possess period doubling or period-n-tupling cascade bifurcation to chaos, but
they have single fixed point attractor at certain region of parameters space, where
they bifurcate directly to chaos without having period-n-tupling scenario exactly at
certain values of the parameters.

1 Introduction

In the past twenty years dynamical systems, particularly one dimensional iterative maps
have attracted much attention and have become an important area of research activity.
One of the landmarks in it was introduction of the concept of Sinai–Ruelle–Bowen (SRB)
measure or natural invariant measure [1, 2]. This is, roughly speaking, a measure that
is supported on an attractor and also describes statistics of long time behavior of the
orbits for almost every initial condition in corresponding basin of attractor. This measure
can be obtained by computing the fixed points of the so called Frobenius–Perron (FP)
operator which can be viewed as a differential-integral operator.The exact determination
of invariant measure of dynamical systems is rather a nontrivial task taking into account
that the invariant measure of few dynamical systems such as one-parameter family of one-
dimensional piecewise linear maps [3, 4, 5] including Baker and tent maps or unimodal
maps such as logistic map for certain values of its parameter can be derived analytically.
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In most cases only numerical algorithms, as an example Ulam’s method [6, 7, 8], are used
for computation of fixed points of FP-operator.

Here in this paper we give a new hierarchy of many-parameter families of maps of the
interval [0, 1] with an invariant measure. These maps are defined as ratios of polynomials
where we have derived analytically their invariant measure for arbitrary values of the
parameters. Using this measure, we have calculated analytically Kolomogorov–Sinai (KS)
entropy of these maps. It is shown that they possess very peculiar property, that is,
contrary to the usual maps, these do not possess period doubling or period-n-tupling
cascade bifurcation to chaos, but instead they have single fixed point attractor at certain
region of parameters space where they bifurcate directly to chaos without having period-
n-tupling scenario.

The paper is organized as follows: In Section 2 we introduce the hierarchy of many-
parameter families of chaotic maps. In Section 3 we show that the invariant measure is
actually the eigenstate of the FP-operator corresponding to largest eigenvalue 1. Then
in section IV using this measure we calculate KS-entropy of these maps for an arbitrary
values of the parameters. Paper ends with a brief conclusion.

2 Hierarchy of chaotic maps with an invariant measure
and their compositions

Let us first consider the one-parameter families of chaotic maps of the interval [0, 1] defined
as the ratios of polynomials of degree N :

ΦN (x, α) =
α2
(
1 + (−1)N 2F1

(−N,N, 1
2 , x
))

(α2 + 1) + (α2 − 1)(−1)N 2F1

(−N,N, 1
2 , x
)

=
α2(TN (

√
x))2

1 + (α2 − 1)(TN (
√
x)2)

, (2.1)

where N is an integer greater than 1. Also

2F1

(
−N,N,

1
2
, x

)
= (−1)N cos

(
2N arccos

√
x
)

= (−1)NT2N (
√
x)

are hypergeometric polynomials of degree N and TN (x) are Chebyshev polynomials of
type I [9] respectively. Obviously these maps unit interval [0, 1] into itself. ΦN (x, α) is
(N − 1)-nodal map, that is it has (N − 1) critical points in unit interval [0, 1], since its
derivative is proportional to derivative of hypergeometric polynomial 2F1

(−N,N, 1
2 , x
)

which is itself a hypergeometric polynomial of degree (N − 1), hence it has (N − 1) real
roots in unit interval [0, 1]. Defining Shwarzian derivative [10] SΦN (x, α) as:

S (ΦN (x, α)) =
Φ′′′

N (x, α)
Φ′

N (x, α)
− 3

2

(
Φ′′

N (x, α)
Φ′

N (x, α)

)2

=
(

Φ′′
N (x, α)

Φ′
N (x, α)

)′
− 1

2

(
Φ′′

N (x, α)
Φ′

N (x, α)

)2

,

with a prime denoting differentiation with respect to variable x, one can show that (see
Appendix A):

S (ΦN (x, α)) = S

(
2F1

(
−N,N,

1
2
, x

))
≤ 0.
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Therefore, the maps Φα
N (x) have at most N + 1 attracting periodic orbits [10]. Using the

above hierarchy of family of one-parameter chaotic maps, we can generate new hierarchy
of families of many-parameter chaotic maps with an invariant measure simply from the
composition of these maps. Hence considering the functions ΦNk

(x, αk), k = 1, 2, . . . , n
we denote their composition by: Φα1,α2,... ,αn

N1,N2,... ,Nn
(x) which can be written in terms of them in

the following form:

Φα1,α2,... ,αn

N1,N2,... ,Nn
(x) =

n︷ ︸︸ ︷
(ΦN1 ◦ ΦN2 ◦ . . . ◦ ΦNn(x))

= ΦN1

(
ΦN2(. . . (ΦNn(x, αn), α(n−1)) . . . , α2), α1

)
. (2.2)

Since these maps consist of composition of (Nk − 1)-nodals (k = 1, 2, . . . , n) maps with
negative Shwarzian derivative, they are (N1N2 · · ·Nn−1)-nodals maps and their Shwarzian
derivative is negative, too [10]. Therefore these maps have at most N1N2 · · ·Nn + 1
attracting periodic orbits [10]. As it is shown below in this section, these maps have only a
single period one stable fixed points. Denoting m-composition of these functions by Φ(m),
it is straightforward to show that the derivative of Φ(m) at its possible m × n periodic
points of an m-cycle can be defined as: xµ,k+1 = ΦNk

(xµ,k, αk), x1,µ+1 = ΦNn(xn,µ, αN ),
and x1,1 = ΦNn(xm,n, αn), µ = 1, 2 . . . ,m, k = 1, 2, . . . , n is

∣∣∣∣ ddxΦ(m)

∣∣∣∣ = m∏
µ=1

n∏
k=1

∣∣∣∣Nk

αk

(
α2

k +
(
1 − α2

k

)
xµ,k

)∣∣∣∣ , (2.3)

since for xµ,k ∈ [0, 1] we have:

min
(
α2

k +
(
1 − α2

kxµ,k

))
= min

(
1, α2

k

)
,

therefore:

min
∣∣∣∣ ddxΦ(m)

∣∣∣∣ = n∏
k=1

(
Nk

αk
min
(
1, α2

k

))m

.

Hence, the above expression is definitely greater than 1 for
n∏

k=1

1
Nk

<
n∏

k=1

αk <
n∏

k=1

Nk,

that is, these maps do not have any kind of m-cycle or periodic orbits in the region of

the parameters space defined by
n∏

k=1

1
Nk

<
n∏

k=1

αk <
n∏

k=1

Nk, actually they are chaotic

in this region of the parameters space. From (2.3) it follows that
∣∣ d
dxΦ(m)

∣∣ at m × n

periodic points of m-cycle belonging to interval [0, 1], vary between
n∏

k=1

(Nkαk)
m and

n∏
k=1

(
Nk
αk

)m
for

n∏
k=1

αk <
n∏

k=1

1
Nk

and between
n∏

k=1

(
Nk
αk

)m
and

n∏
k=1

(Nkαk)
m for

n∏
k=1

αk >

n∏
k=1

Nk, respectively.

Definitely from the definition of these maps, we see that x = 1 and x = 0 (in special
case of odd integer values of N − 1, N2, . . . , Nn ) belong to one of m-cycles.
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For
n∏

k=1

αk <
∏n

k=1
1

Nk

(
n∏

k=1

αk >
n∏

k=1

Nk

)
, the formula (2.3) implies that for those

cases in which x = 1 (x = 0) belongs to one of m-cycles, we have
∣∣ d
dxΦ(m)

∣∣ < 1, hence
the curve of Φ(m) starts at x = 1 (x = 0) beneath the bisector and then crosses it at the
previous (next) periodic point with slope greater than one, since the formula (2.3) implies
that the slope of fixed points increases with the decreasing (increasing) of |xµ,k|, therefore
at all periodic points of n-cycles except for x = 1 (x = 0) the slope is greater than one
that is they are unstable, this is possible only if x = 1 (x = 0) is the only period one fixed
point of these maps.

Hence, all m-cycles except for possible period one fixed points x = 1 and x = 0 are
unstable.

Actually, the fixed point x = 0 is the stable fixed point of these maps in the regions

of the parameters spaces defined by αk > 0, k = 1, 2, . . . , n and
n∏

k=1

αk <
n∏

k=1

1
Nk

only for

odd integer values of N1, N2, . . . , Nn, however, if one of the integers Nk, k = 1, 2, . . . , n
happens to be even, then the x = 0 will not be a stable fixed point anymore. But the
fixed point x = 1 is stable fixed point of these maps in the regions of the parameters

spaces defined by
n∏

k=1

αk >
n∏

k=1

Nk and αk < ∞, k = 1, 2, . . . , n for all integer values of

N1, N2, . . . , Nn.
As an example we give below some of these maps:

Φα
2 (x) =

α2(2x− 1)2

4x(1 − x) + α2(2x− 1)2
, (2.4)

Φα
3 (x) =

α2x(4x− 3)2

α2x(4x− 3)2 + (1 − x)(4x− 1)2
, (2.5)

Φα
4 (x) =

α2 (1 − 8x(1 − x))2

α2(1 − 8x(1 − x))2 + 16x(1 − x)(1 − 2x)2
, (2.6)

Φα
5 (x) =

α2x
(
16x2 − 20x + 5

)2
α2x(16x2 − 20x + 5)2 + (1 − x)(16x2 − (2x− 1))

, (2.7)

Φα1,α2
2,2 (x) =

α1
2
(
4x (x− 1) + (2x− 1)2 α2

2
)2

α1
2
(
4x (x− 1) + (2x− 1)2 α2

2
)2 − 16xα2

2(2x− 1)2(x− 1)
, (2.8)

Φα1,α2
2,3 (x) = α1

2
(
(x− 1) (4x− 1)2 + x (4x− 3)2 α2

2
)2

×
(
α1

2
(
(x− 1) (4x− 1)2 + x (4x− 3)2 α2

2
)2

− 4xα2
2(x− 1)(4x− 1)2(4x− 3)2

)−1
, (2.9)

Φα1,α2
3,2 (x) = α2

2
(
(x− 1) (4x− 1)2 + x (4x− 3)2 α1

2
)2

×
(
α2

2
(
(x− 1) (4x− 1)2 + x (4x− 3)2 α1

2
)2

+ 4xα2
1(x− 1)(4x− 1)2(4x− 3)2

)−1
, (2.10)
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Φα1,α2
3,3 (x) = α1

2α2
2x (4x− 3)2

(
3 (x− 1) (4x− 1)2 + x (4x− 3)2 α2

2
)

×
(
− (x− 1)3 (4x− 1)6 + 3x

(
3α1

2 − 2
)
(4x− 3)2

× (x− 1)2 (4x− 1)4 α2
2 + h

)−1
, (2.11)

where

h = 3x2α4
2

(−3 + 2α2
1

)
(x− 1)(4x− 1)2(4x− 3)4 + α2

1α
6
2x

3(4x− 3)6.

Below we also introduce their conjugate or isomorphic maps which will be very useful
in derivation of their invariant measure and calculation of their KS-entropy in the next
section. Conjugacy means that the invertible map h(x) = 1−x

x maps I = [0, 1] into [0,∞)
and transforms maps ΦNk

(x, αk) into Φ̃Nk
(x, αk) defined as:

Φ̃Nk
(x, αk) = h ◦ ΦNk

(x, αk) ◦ h(−1) =
1
α2

k

tan2
(
Nk arctan

√
x
)
,

Hence, this transforms the maps Φα1,α2,... ,αn

N1,N2,... ,Nn
(x) into Φ̃α1,α2,... ,αn

N1,N2,... ,Nn
(x) defined as:

Φ̃α1,α2,... ,αn

N1,N2,... ,Nn
(x)

=
1
α2

1

tan2

(
N1 arctan

√◦ 1
α2

2

tan2

(
N2 arctan

√◦ · · · ◦ 1
α2

n

tan2
(
Nn arctan

√
x
)))

=
1
α2

1

tan2


N1 arctan

√√√√ 1
α2

2

tan2

(
N2 arctan

√
· · · 1

α2
n

tan2
(
Nn arctan

√
x
) · · ·
) . (2.12)

3 Invariant measure

Dynamical systems, even apparently simple dynamical systems such as maps of an inter-
val, can display a rich variety of different asymptotic behaviors. On measure theoretical
level these types of behavior are described by SRB [1, 11] or invariant measure describ-
ing statistically stationary states of the system. The probability measure µ on [0, 1] is
called an SRB or invariant measure of the maps Φα1,α2,... ,αn

N1,N2,... ,Nn
(x) given in (2.2), if it is

Φα1,α2,... ,αn

N1,N2,... ,Nn
(x)-invariant and absolutely continuous with respect to Lebesgue measure.

For deterministic system such as these composed maps, the Φα1,α2,... ,αn

N1,N2,... ,Nn
(x)-invariance

means that its invariant measure µΦ
α1,α2,... ,αn
N1,N2,... ,Nn

(x) fulfills the following formal FP-integral
equation:

µΦ
α1,α2,... ,αn
N1,N2,... ,Nn

(y) =
∫ 1

0
δ
(
y − Φα1,α2,... ,αn

N1,N2,... ,Nn
(x)
)
µΦ

α1,α2,... ,αn
N1,N2,... ,Nn

(x)dx.

This is equivalent to:

µΦ
α1,α2,... ,αn
N1,N2,... ,Nn

(y) =
∑

x∈ Φ
α1,α2,... ,αn
N1,N2,... ,Nn

(y)

µΦ
α1,α2,... ,αn
N1,N2,... ,Nn

(x)
dx

dy
, (3.1)
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defining the action of standard FP-operator for the map Φ(x) over a function as:

PΦ
α1,α2,... ,αn
N1,N2,... ,Nn

f(y) =
∑

x∈Φ
α1,α2,... ,αn
N1,N2,... ,Nn

(y)

f(x)
dx

dy
. (3.2)

We see that, the invariant measure µΦ
α1,α2,... ,αn
N1,N2,... ,Nn

(x) is the eigenstate of the FP-operator
PΦ

α1,α2,... ,αn
N1,N2,... ,Nn

corresponding to the largest eigenvalue 1.

As we will prove below, the measure µΦ
α1,α2,... ,αn
N1,N2,... ,Nn

(x, β) defined as:

1
π

√
β√

x(1 − x)(β + (1 − β)x)
, (3.3)

is the invariant measure of the maps Φα1,α2,... ,αn

N1,N2,... ,Nn
(x) provided that the parameter β is

positive and fulfills the following relation:

n∏
k=1

αk ×
ANn

(
1
β

)
BNn

(
1
β

) ×
ANn−1

( 1

ηαn
Nn

(
1
β

))
BNn−1

( 1

ηαn
Nn

(
1
β

))

×
ANn−2

( 1

η
αn−1,αn
Nn−1,Nn

(
1
β

))
BNn−2

( 1

η
αn−1,αn
Nn−1,Nn

(
1
β

)) × · ×
AN1

( 1

η
α2,α3,... ,an
N2,N3,... ,Nn

(
1
β

))
BN1

( 1

η
α2,α3,... ,αn
N2,N3,... ,Nn

(
1
β

)) = 1, (3.4)

where the polynomials ANk
(x) and BNk

(x) (k = 1, 2, . . . , n) are defined as:

ANk
(x) =

[
Nk
2

]∑
l=0

CNk
2l xl, (3.5)

BNk
(x) =

[
Nk−1

2

]∑
l=0

CNk
2l+1x

l, (3.6)

where the symbol [ ] means greatest integer part. Also the functions ηαn
Nn

(
1
β

)
,ηαn−1,αn

Nn−1,Nn

(
1
β

)
,

. . . and ηα2,α3,... ,αn

N2,N3,... ,Nn

(
1
β

)
are defined in the following forms:

ηαn
Nn

(
1
β

)
= β


αnANn

(
1
β

)
BNn

(
1
β

)



2

, η
αn−1,αn

Nn−1,Nn

(
1
β

)
= β


αn−1ANn−1

( 1

ηαn
Nn

(
1
β

))
BNn−1

( 1

ηαn
Nn

(
1
β

))



2

,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ηα2,α3,... ,αn

N2,N3,... ,Nn

(
1
β

)
= β


α2AN2

( 1

η
α3,α4,... ,αn
N3,N4,... ,Nn

(
1
β

))
BN2

( 1

η
α3,α4,... ,αn
N3,N4,... ,Nn

(
1
β

))



2

.
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As we see the above measure is defined only for β > 0, hence from the relations (3.4), it
follows that these maps are chaotic in the region of the parameters space which lead to
positive solution of β. Taking the limits of β −→ 0+ and β −→ ∞ in the relation (3.4)

respectively one can show that the chaotic regions is:
n∏

k=1

1
Nk

<
n∏

k=1

αk <
n∏

k=1

Nk for odd

integer values of N1, N2, . . . , Nn and if one of the integers happens to become even, then
the chaotic region in the parameter space is defined by αk > 0, for k = 1, 2, . . . , n and
n∏

k=1

αk <
n∏

k=1

Nk if one of the integers happens to become even, respectively. Out of these

regions they have only period one stable fixed points.
In order to prove that measure (3.3) satisfies equation (3.1), with β given by rela-

tion (3.4), it is rather convenient to consider the conjugate map Φ̃α1,α2,... ,αn

N1,N2,... ,Nn
(x), with

measure µ̃Φ̃
α1,α2... ,αn
N1,N2... ,Nn

denoted by µ̃Φ̃ related to the measure µΦ
α1,α2... ,αn
N1,N2... ,Nn

denoted by µΦ

through the following relation:

µ̃Φ̃(x) =
1

(1 + x)2
µΦ

(
1

1 + x

)
.

Denoting Φ̃α1,α2,... ,αn

N1,N2,... ,Nn
(x) by y and inverting it, we get:

xk1 = tan2

(
1
N1

arctan
√

yα2
1 +

k1π

N1

)
,

xk1,k2 = tan2

(
1
N2

arctan
√

xk1α
2
2 +

k2π

N2

)
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xk1,k2,... ,kn = tan2

(
1
Nn

arctan
√

xk1,k2,... ,kn−1α
2
n +

knπ

Nn

)
,

for kj = 1, . . . , Nj and j = 1, . . . , n.
Then by taking the derivative of xk1,k2,... ,kn with respect to y, we obtain:

∣∣∣∣dxk1,k2,... ,kn

dy

∣∣∣∣ =
(

n∏
k=1

αk

Nk

)√
xk1,k2,... ,kn

y

× (1 + xk1,k2,... ,kn)(1 + xk2,k3,... ,kn) · · · (1 + xkn−1,kn)(1 + xkn)
(1 + α2

nxk2,k3,... ,kn)(1 + α2
n−1xk3,k4,... ,kn) · · · (1 + α2

3xkn−1,kn)(1 + α2
2xkn)(1 + α2

1y)
(3.7)

to be substituted in equation (3.1). In derivation of above formula we have used chain
rule property of the derivative of composite functions.

Substituting the above result in equation (3.1), we have:

µ̃Φ̃(y)
√
y
(
1 + α2

1y
)

=

(
n∏

k=1

αk

Nk

)∑
k1

∑
k2

· · ·
∑
kn

√
xk1,k2,... ,kn

× (1 + xk1,k2,... ,kn)(1 + xk2,k3,... ,kn) · · · (1 + xkn−1,kn)(1 + xkn)
(1 + α2

nxk2,k3,... ,kn)(1 + α2
n−1xk3,k4,... ,kn) · · · (1 + α2

3xkn−1,kn)(1 + α2
2xkn)

µ̃Φ̃(xk1,k2,... ,kn).
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Now considering the following equation for the invariant measure µ̃Φ̃(y):

µ̃Φ̃(y) =
1√

y(1 + βy)
, (3.8)

then the FP-equation reduced to:

1 + α2
1y

1 + βy
=

(
n∏

k=1

αk

Nk

)

×
N1∑

k1=1

n2∑
k2=1

· · ·
Nn∑

kn=1

(
(1 + xk1,k2,... ,kn)(1 + xk2,k3,... ,kn) · · · (1 + xkn−1,kn)(1 + xkn)

(1 + α2
nxk2,k3,... ,kn)(1 + α2

n−1xk3,k4,... ,kn) · · · (1 + α2
3xkn−1,kn)(1 + α2

2xkn)

)
.

Now using the follow identity:

α

N

N∑
k=0

1 + α2xk

1 + βxk
=

1 + α2y(
B
(

1
β

)
αA
(

1
β

) + β

(
αA
(

1
β

)
B
(

1
β

)
)
y

) , (3.9)

for a one-parameter chaotic map y = Φα
N (x) (Its proof is given in Appendix B), we obtain:

αn

Nn

Nn∑
kn=1

1 + xk1,k2,... ,kn

1 + βxk1,k2,... ,kn

=
αnANn

(
1
β

)
BNn

(
1
β

) 1 + α2
nxk1,k2,... ,kn−1

1 + ηαn
Nn

(
1
β

)
xk1,k2,... ,kn−1

,

αn−1αn

Nn−1Nn

Nn−1∑
kn−1=1

Nn∑
kn=1

(1 + xk1,k2,... ,kn−1)(1 + xk1,k2,... ,kn)
(1 + αn−1xk1,k2,... ,kn−1)(1 + βxk1,k2,... ,kn)

=
αnαn−1ANn

(
1
β

)
ANn−1

( 1

ηαn
Nn

(
1
β

))
BNn

(
1
β

)
BNn−1

( 1

ηαn
Nn

(
1
β

)) × 1 + α2
n−1xk1,k2,... ,kn−2

1 + η
αn−1,αn

Nn−1,Nn

(
1
β

)
xk1,k2,... ,kn−2

,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(
n∏

k=1

αk

Nk

)
N1∑

k1=1

n2∑
k2=1

· · ·

×
Nn∑

kn=1

(
(1 + xk1,k2,... ,kn)(1 + xk2,k3,... ,kn) · · · (1 + xkn−1,kn)(1 + xkn)

(1 + α2
nxk2,k3,... ,kn)(1 + α2

n−1xk3,k4,... ,kn) · · · (1 + α2
3xkn−1,kn)(1 + α2

2xkn)

)

=
n∏

k=1

αk ×
ANn

(
1
β

)
BNn

(
1
β

) ×
ANn−1

( 1

ηαn
Nn

(
1
β

))
BNn−1

( 1

ηαn
Nn

(
1
β

))

×
ANn−2

( 1

η
αn−1,αn
Nn−1,Nn

(
1
β

))
BNn−2

( 1

η
αn−1,αn
Nn−1,Nn

(
1
β

)) × · ×
AN1

( 1

η
α2,α3,... ,an
N2,N3,... ,Nn

(
1
β

))
BN1

( 1

η
α2,α3,... ,αn
N2,N3,... ,Nn

(
1
β

)) 1 + α2
1y

1 + ηα1,α2,... ,αn

N1,N2,... ,Nn

(
1
β

)
y
.
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Now by inserting the right side of last relation in (3.5), we get:

1 + α2
1y

1 + βy
=

n∏
k=1

αk

ANn

(
1
β

)
BNn

(
1
β

) ×
ANn−1

( 1

ηαn
Nn

(
1
β

))
BNn−1

( 1

ηαn
Nn

(
1
β

))

×
ANn−2

( 1

η
αn−1,αn
Nn−1,Nn

(
1
β

))
BNn−2

( 1

η
αn−1,αn
Nn−1,Nn

(
1
β

)) × · ×
AN1

( 1

η
α2,α3,... ,an
N2,N3,... ,Nn

(
1
β

))
BN1

( 1

η
α2,α3,... ,αn
N2,N3,... ,Nn

(
1
β

)) 1 + α2
1y

1 + ηα1,α2,... ,αn

N1,N2,... ,Nn

(
1
β

)
y
.

We see that the above relation holds true provided that the parameter β fulfills the rela-
tion (3.4).

4 Kolmogrov–Sinai entropy

KS-entropy or metric entropy [1, 11] measures how chaotic a dynamical system is and it
is proportional to the rate at which information about the state of dynamical system is
lost in the course of time or iteration. Therefore, it can also be defined as the average rate
of information loss for a discrete measurable dynamical system (Φα1,α2,... ,αn

N1,N2,... ,Nn
(x), µ). By

introducing a partition α = Ac(n1, . . . , nγ) of the interval [0, 1] into individual laps Ai,
one can define the usual entropy associated with the partition by:

H(µ, γ) = −
n(γ)∑
i=1

m(Ac) lnm(Ac),

where m(Ac) =
∫
n∈Ai

µ(x)dx is the invariant measure of Ai. By defining n-th refining
γ(n) of γ as:

γn =
n−1⋃
k=0

(
Φα1,α2,... ,αn

N1,N2,... ,Nn
(x)
)−(k)

(γ),

then entropy per unit step of refining is defined by:

h
(
µ,Φα1,α2,... ,αn

N1,N2,... ,Nn
(x), γ

)
= lim

n→∞

(
1
n
H(µ, γ)

)
.

Now, if the size of individual laps of γ(N) tends to zero as n increases, then the above
entropy is known as KS-entropy, that is:

h
(
µ,Φα1,α2,... ,αn

N1,N2,... ,Nn
(x)
)

= h
(
µ,Φα1,α2,... ,αn

N1,N2,... ,Nn
(x), γ

)
.

KS-entropy, which is a quantitative measure of the rate of information loss with the refin-
ing, may also be written as:

h
(
µ,Φα1,α2,... ,αn

N1,N2,... ,Nn
(x)
)

=
∫

µ(x)dx ln
∣∣∣∣ ddxΦα1,α2,... ,αn

N1,N2,... ,Nn
(x)
∣∣∣∣ , (4.1)
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which is also a statistical mechanical expression for the Lyapunov characteristic exponent,
that is the mean divergence rate of two nearby orbits. The measurable dynamical system
(Φα1,α2,... ,αn

N1,N2,... ,Nn
(x), µ) is chaotic for h > 0 and predictive for h = 0.

In order to calculate the KS-entropy of the maps Φα1,α2,... ,αn

N1,N2,... ,Nn
(x), it is rather convenient

to consider their conjugate maps given by (2.12), since it can be shown that KS-entropy
is a kind of topological invariant, that is, it is preserved under conjugacy map. Hence, we
have:

h
(
µ,Φα1,α2,... ,αn

N1,N2,... ,Nn
(x)
)

= h
(
µ̃, Φ̃α1,α2,... ,αn

N1,N2,... ,Nn
(x)
)
.

Using the integral (4.1), the KS-entropy of Φα1,α2,... ,αn

N1,N2,... ,Nn
(x) can be written as:

h
(
µ,Φα1,α2,... ,αn

N1,N2,... ,Nn
(x)
)

=
1
φ

∫ ∞

0

√
βdx√

x(1 + βx)
ln
∣∣∣∣ d

dyN2,N3,·,Nn

(
1
α2

1

tan2
(
N1 arctan

√
yN2,N3,·,Nn

)
× d

dyN3,N4,·,Nn

(
1
α2

2

tan2
(
N2 arctan

√
yN3,N4,·,Nn

) · · · d

dx

1
α2

n

tan2(Nn arctan
√
x)
))∣∣∣∣

or

h
(
µ,Φα1,α2,... ,αn

N1,N2,... ,Nn
(x)
)

=
1
π

∫ ∞

0

√
βdx√

x(1 + βx)
ln
∣∣∣∣ d

dyN2,N3,·,Nn

(
1
α2

1

tan2
(
N1 arctan

√
yN2,N3,·,Nn

))∣∣∣∣
+

1
π

∫ ∞

0

√
βdx√

x(1 + βx)
ln
∣∣∣∣ d

dyN3,N4,·,Nn

(
1
α2

2

tan2
(
N2 arctan

√
yN3,N4,·,Nn

))∣∣∣∣
+ · · · + 1

π

∫ ∞

0

√
βdx√

x(1 + βx)
ln
∣∣∣∣ d

dyNn

(
1

α2
n−1

tan2
(
Nn−1 arctan

√
yNn

))∣∣∣∣
+

1
π

∫ ∞

0

√
βdx√

x(1 + βx)
ln
∣∣∣∣ ddx
(

1
α2

n

tan2
(
Nn arctan

(√
x
)))∣∣∣∣ , (4.2)

where

yNn =
1
α2

n

tan2
(
Nn arctan(

√
x)
)
, (4.3)

yNn−1,Nn =
1

αn−1
tan2

(
Nn−1 arctan(

√
yNn))

)
, (4.4)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

yN2,N3,·,Nn =
1
α2

1

tan2
(
N1 arctan(

√
yN3,N4,·,Nn)

)
. (4.5)

Now, we calculate the integrals appearing above in the expression for the entropy sepa-
rately. The last integral is calculated in appendix C which reads:

1
π

∫ ∞

0

√
βdx√

x(1 + βx)
ln
∣∣∣∣ ddx
(

1
α2

n

tan2
(
Nn arctan

(√
x
)))∣∣∣∣

= ln


Nn

(
1 + β + 2

√
β
)Nn−1

ANn

(
1
β

)
BNn

(
1
β

)

 . (4.6)
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In order to calculate the integral before the last one in (4.2), that is the following integral,

1
π

∫ ∞

0

√
βdx√

x(1 + βx)
ln
∣∣∣∣ d

dyNn

(
1

α2
n−1

tan2
(
Nn−1 arctan

√
yNn

))∣∣∣∣ , (4.7)

first we make the following change of variable by inverting the relation (4.3)

xkn−1 = tan2

(
1

Nn−1
arctan

(√
yNnα

2
n−1

)
+

kn−1π

Nn−1

)
, kn−1 = 1, . . . , Nn−1.

Then the integral (4.7) is reduced to:

Nn−1∑
kn−1=1

1
π

∫ xf
kn−1

xi
kn−1

√
βdxkn−1√

xkn−1(1 + βxkn−1)
ln
∣∣∣∣ d

dyNn

(
1

α2
n−1

tan2
(
Nn−1 arctan

√
yNn

))∣∣∣∣ ,
where xi

kn−1
and xf

kn−1
(kn−1 = 1, 2, . . . , Nn−1) denote the initial and end points of k-th

branch of the inversion of function yNn =
(

1
α2

n
tan2 (Nn arctan

√
x)
)

respectively. Now, by
inserting the derivative of xkn−1 with respect to yNn in the above relation and changing
the order of sum and integration, we get:

1
π

∫ ∞

0

Nn−1∑
kn−1=1

√
βdyNn

αn−1
√
xkn−1(1 + xkn−1)

Nn−1
√
ynn

(
1 + α2

n−1yNn

)√
xkn−1(1 + βxkn−1)

× ln
∣∣∣∣ d

dyNn

(
1

α2
n−1

tan2(Nn−1 arctan
√
yNn)

)∣∣∣∣ .
By using the formula (B.6) of Appendix B, we get:

1
π

∫ ∞

0

√
βdyn√
yn


 BNn

(
1
β

)
αnANn

(
1
β

) + β
αnANn

(
1
β

)
BNn

(
1
β

) yNn




× ln
∣∣∣∣ d

dyNn

(
1

α2
n−1

tan2
(
Nn−1 arctan

√
yNn

))∣∣∣∣ .
Finally, through calculating the above integral with the prescription of Appendix C, we
obtain:

ln


Nn−1

(
1 + ηαn

Nn
+ 2
√

ηαn
Nn

)Nn−1−1

ANn−1

(
ηαn

Nn

)
BNn−1

(
ηαn

Nn

)

 .

Similarly, we can calculate the other integrals appearing in the expression for the entropy
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of the composed maps given in (4.2):

h
(
µ,Φα1,α2,... ,αn

N1,N2,... ,Nn
(x)
)

=
1
π

∫ ∞

0

√
βdx√

x(1 + βx)
ln

∣∣∣∣∣ d

dyNk,Nk+1,·,Nn

(
1

α2
k−1

tan2
(
Nk−1 arctan√

yNk,Nk+1,·,Nn

))∣∣∣∣∣
= ln



Nk−1

(
1 + η

αk,αk+1,... ,αn

Nk,Nk−1,... ,Nn

(
1
β

)
+ 2
√

η
αk,αk+1,... ,αn

Nk,Nk−1,... ,Nn

(
1
β

))(Nk−1)−1

ANk−1

(
η

αk,αk+1,... ,αn

Nk,Nk−1,... ,Nn

(
1
β

))
BNk−1

(
η

αk,αk+1,... ,αn

Nk,Nk−1,... ,Nn

)(
1
β

)



for k = 1, 2, . . . , n.
Finally, summing the above integral, we get the following expression for the entropy of

these maps:

h
(
µ,Φα1,α2,... ,αn

N1,N2,... ,Nn
(x)
)

= ln

{[
(N1N2 · · ·Nn)

(
1 +
√

β
)2(Nn−1)

×
(

1 +

√
ηαn

Nn

(
1
β

))2(Nn−1−1)

· · ·
(

1 +

√
ηα2,α3,... ,αn

N2,N3,... ,Nn

(
1
β

))2(N1−1) ]/[
ANn(β)

×BNn(β)ANn−1

(
ηαn

Nn

(
1
β

))
BNn−1

(
ηαn

Nn

(
1
β

))
· · ·

×AN1

(
ηα2,α3,... ,αn

N2,N3,... ,Nn

(
1
β

))
BN1

(
ηα2,α3,... ,αn

N2,N3,... ,Nn

(
1
β

))]}
. (4.8)

Using the formulas (4.8), one can show that KS-entropy of one parameter families has the
following asymptotic behavior:

h
(
µ,ΦN

(
x, α = N + 0−

)) ∼ (N − α)
1
2 ,

h

(
µ,ΦN

(
x, α =

1
N

+ 0+

))
∼
(
α− 1

N

) 1
2

,

near the bifurcation points, that is β −→ 0 as β −→ ∞. The above asymptotic behaviors
indicate that one-parameter maps Φα

N (x) belong to the same universality class which are
different from the universality class of pitch fork bifurcating maps, but their asymptotic
behavior is similar to class of intermittent maps [12]. Even though, intermittency can
not occur in these maps for any values of parameter α, the maps Φα

N (x) and their n-
composition Φ(n) do not have minimum values other than zero and maximum values other
than 1 in the interval [0, 1].

Also by imposing the relations between the parameters αk, k = 1, 2, . . . , n which are
consistent with the relation (3.4), we can reduce these maps to other many-parameter
families of maps with the number of the parameters less than n. Particularly by imposing
enough relations, we can reduce them to one-parameter families of chaotic maps with an
arbitrary asymptotic behavior as the parameter takes the limiting values. Hence we can
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construct chaotic maps with arbitrary universality class. As an illustration, we consider
the chaotic map Φα1,α2

2,2 (x). Using the formula (4.8), we have:

h
(
µ,Φα1,α2

2,2 (x)
)

= ln
(1 +

√
β)2
(
2
√
β + α2(1 + β)

)2
(1 + β)

(
4β + α2

2(1 + β)2
)

with the following relation among the parameters α1, α2 and β:

α1

(
4β + α2

2(1 + β)2
)

= 4α2β(1 + β)

which is obtained from the relation (3.4). Now choosing β = αν
2 , 0 < ν < 2, the above

relation reduces to:

α1 =
4α1+ν

2 (1 + αν
2)

α2
2(1 + αν

2)2 + 4αν
2

and entropy given by (4.8) reads:

h
(
µ,Φα2

2,2(x)
)

= ln

(
1 + α

ν
2
2

)2 (
2α

ν
2
2 + α2(1 + αν

2)
)2

(1 + αν
2)
(
4αν

2 + α2
2(1 + αν

2)2
)

which has the following asymptotic behavior near α2 −→ 0 and α2 −→ ∞:

h
(
µ,Φα2

2,2(x)
)
∼ α

ν
2
2 as α2 −→ 0,

h
(
µ,Φα2

2,2(x)
)
∼
(

1
α2

) ν
2

as α2 −→ ∞.

The above asymptotic behaviours indicate that for an arbitrary value of 0 < ν < 2
the maps Φα2

2,2(x) belong to the universality class which is different from the universality
class of one-parameter chaotic maps of ΦN (x) (2.1) or the universality class of pitch fork
bifurcating maps.

5 Conclusion

We have given hierarchy of exactly solvable many-parameter families of one-dimensional
chaotic maps with an invariant measure, that is measurable dynamical system with an
interesting property of being either chaotic or having stable fixed point, and they bifurcate
from a stable single periodic state to chaotic one and vice-versa without having usual period
doubling or period-n-tupling scenario.

Again this interesting property is due to the existence of invariant measure for a region
of the parameters space of these maps. Hence, to support this conjecture, it would be
interesting to find the other measurable one-parameter maps, specially coupled or higher
dimensional maps, which are under investigation.
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Appendix

A Shwartzian derivative

The Shwarzian derivative SΦN (x) [10] is defined as:

S (ΦN (x)) =
Φ′′′

N (x)
Φ′

N (x)
− 3

2

(
Φ′′

N (x)
Φ′

N (x)

)2

=
(

Φ′′
N (x)

Φ′
N (x)

)′
− 1

2

(
Φ′′

N (x)
Φ′

N (x)

)2

,

with a prime denoting a single differential. One can show that:

S (ΦN (x)) = S

(
2F1

(
−N,N,

1
2
, x

))
≤ 0,

since d
dx

(
2F1

(−N,N, 1
2 , x
))

can be written as:

d

dx

(
2F1

(
−N,N,

1
2
, x

))
= A

N−1∏
i=1

(x− xi)

with 0 ≤ x1 < x2 < x3 < · · · < xN−1 ≤ 1, then we have:

S

(
2F1

(
−N,N,

1
2
, x

))
=

−1
2

N−1∑
J=1

1
(x− xj)2

−
(

N−1∑
J=1

1
(x− xj)

)2

< 0.

Also, one can show the shwartzian derivative of composition of function with negative
shwartzian derivatives is negative too.

B Derivation of the formula (3.9)

In order to drive formula (3.9), we write the summation in its left side as:

α

N

N∑
k=0

1 + α2xk

1 + βxk
=

α

β
+
(
β − 1
β2

)
∂

∂β−1

(
ln

(
N∏

k=1

(β−1 + xk)

))
. (B.1)

To evaluate the second term in the right side of (B.1), we denote Φ̃α
N (x) by y therefore,

the map Φ̃(1)
N (x, α) = 1

α2 tan2(N arctan
√
x) can be written as:

0 = α2y cos2(N arctan
√
x) − sin2(N arctan

√
x). (B.2)

Now, we can write the equation (B.1) in the following form:

α

N

N∑
k=0

1 + α2xk

1 + βxk
=

(−1)N

(1 + x)N


α2y


[N

2 ]∑
k=0

CN
2k(−1)Nxk




2

− x


[N−1

2 ]∑
k=0

CN
2k+1(−1)Nxk




2 =
constant
(1 + x)N

N∏
k=1

(x− xk),
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where xk are the roots of equation (B.2) and they are given by

xk = tan2

(
1
N

arctan
√

yα2 +
kπ

N

)
, k = 1, . . . , N. (B.3)

Therefore, we have:

∂

∂β−1
ln

(
N∏

k=1

(β−1 + xk)

)

=
∂

∂β−1
ln
[(

1 − β−1
)N (

α2y cos2
(
N arctan

√
−β−1

)
− sin2

(
N arctan

√
−β−1

))]

= − Nβ

β − 1
+

βN
(
1 + α2y

)
A
(

1
β

)
(
A
(

1
β

))2
β2y +

(
B
(

1
β

))2 , (B.4)

with polynomials A(x) and B(x) given in (3.5) and (3.6) where in derivation of above
formulas we have used the following identities:

cos
(
N arctan

√
x
)

=
A(−x)

(1 + x)
N
2

, sin
(
N arctan

√
x
)

=
√
x

B(−x)

(1 + x)
N
2

. (B.5)

By inserting the results (B.4) in (B.1), we get:

α

N

N∑
k=0

1 + α2xk

1 + βxk
=

1 + α2y(
B
(

1
β

)
αA
(

1
β

) + β

(
αA
(

1
β

)
B
(

1
β

)
)
y

) . (B.6)

C Derivation of the last integral of (4.2)

Using the relations (3.5) and (3.6) the last integral of (4.2) can be written as:

h(µ,Φα
N (x)) =

1
π

∫ ∞

0

√
βdx√

x(1 + βx)
ln
(
N

α2

∣∣∣∣(1 + x)N−1B(−x)
(A(−x))3

∣∣∣∣
)
. (C.1)

We see that polynomials appearing in the numerator (denominator) of integrand appearing
on the right side of equation (C.1) have [N−1]

2

(
[N ]
2

)
simple roots denoted by xB

k , k =

1, . . . ,
[

N−1
2

] (
xA

k , k = 1, . . . ,
[

N
2

])
in the interval [0,∞). Hence, we can write the above

formula in the following form:

h
(
µ,Φ(α)

N (x)
)

=
1
π

∫ ∞

0

√
βdx√

x(1 + βx)
ln




N

α2
×

(1 + x)N−1
[N−1

2 ]∏
k=1

∣∣x− xB
k

∣∣
[N

2 ]∏
k=1

∣∣x− xA
k

∣∣3


 .
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Now, making the following change of variable x = 1
β tan2 Θ

2 , and taking into account that
degree of numerators and denominator are equal for both even and odd values of N, we
get:

h(µ,Φ(α)
N (x)) =

1
π

∫ ∞

0
dθ

{
ln
(
N

α2

)
+ (N − 1) ln |β + 1 + (β − 1) cos θ|

+
[N−1

2 ]∑
k=1

ln
∣∣1 − xB

k β +
(
1 + xB

k β
)
cos θ

∣∣− 3
[N

2 ]∑
k=1

ln
∣∣1 − xA

k β +
(
1 + xA

k β
)
cos θ

∣∣}.
Using the following integrals:

1
π

∫ π

0
ln |a + b cos θ| =




ln

∣∣∣∣∣a +
√
a2 − b2

2

∣∣∣∣∣ , |a| > |b|,

ln
∣∣∣∣ b2
∣∣∣∣ , |a| ≤ |b|,

we get:

h
(
µ,Φ(α)

N (x)
)

= ln




N
(
1 + β + 2

√
β
)N−1

[N
2 ]∑

k=0

CN
2kβ

k




[N−1

2 ]∑
k=0

CN
2k+1β

k





 . (C.2)
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