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Abstract

We demonstrate, through the fourth Painlevé and the modified KdV equations, that
the attempt at linearizing the mirror systems (more precisely, the equation satisfied
by the new variable θ introduced in the indicial normalization) near movable poles can
naturally lead to the Schlesinger transformations of ordinary differential equations or
to the Bäcklund transformations of partial differential equations.

1 Introduction

It is widely believed that a differential system being integrable is due to some sort of
underlying linear structure(s). However, it has never been clear what this really means. A
linear system is naturally considered as integrable. Integrability for nonlinear systems is
quite ambiguous. Various properties are counted as indicators of integrability: solitons, the
Lax pair, the Bäcklund transformation, the underlying Hamiltonian formulation, Hirota’s
bilinear representation, the Painlevé property, etc. The relations between these properties
have yet to be understood.

It was recently proved [6] that for any principal balance, it is possible to introduce a
variable θ through “indicial normalization” and more variables ξ, η, etc., through “trunca-
tion at resonances”, so that the movable pole singularities are regularized, and the system
for the new variables (called the mirror system) is a regular one. In this paper, with
more flexible kind of indicial normalization, we attempt to make the equation satisfied
by θ linearizable. As a result, the other new variables ξ, η, etc., are solved through al-
gebraic equations. Moreover, the linearization leads to the Schlesinger transformation [2]
of ordinary differential equations (ODEs) and to the Bäcklund transformation of partial
differential equations (PDEs).

For a long time, people have been trying to derive the Bäcklund transformations and
Lax pair from the Painlevé analysis with the techniques of “truncation method” or “sin-
gular manifold method” (See, for examples [7, 8, 9, 11] or [1, 3] for ODEs). The examples
in this paper do not yet provide a comparable algorithm. Instead, our purpose here is to
investigate the relation between the integrability properties, the linearizability, and the
Painlevé test through the combination of the ingredients of the singular manifold method
and the mirror system. Indeed, our calculation can be carried out with θ only and without

Copyright c© 2002 by T L Yee



Linearization of mirror systems 235

using mirror systems. However, we feel the exclusion of the other variables misses impor-
tant information on integrability. After all, it is the mirror system, consisting of equations
for θ, ξ, η, etc., that is equivalent to principal balances.

In this paper, we demonstrate by examples that the Schlesinger (resp. Bäcklund)
transformations are linearizable reductions of the mirror systems for ODEs (resp. PDEs).

We present the following two equations in this paper to demonstrate our idea: the
fourth Painlevé equation and the modified Korteweg-de Vries equation. The same idea
works for other integrable equations, including the second Painlevé equation, and the
potential Korteweg-de Vries equation [12].

2 The fourth Painlevé equation

Consider the fourth Painlevé equation (P4)

PIV(u, t;α, β) ≡ u′′ − u′2

2u
− 3

2
u3 − 4tu2 − 2(t2 − α)u − β

u
= 0,

where α and β are two constant parameters.
We will first find the mirror transformation (see [4, 5] for more details), which regularizes

the movable pole singularities. We rewrite (P4) as the system of Cauchy’s canonical form:
u′ = v, v′ = v2/(2u) + (3/2)u3 + 4tu2 + 2(t2 − α)u + β/u. Since u has first order movable
pole singularities, we introduce the change of dependent variables u ↔ θ:

u = u0θ
−1 + u1, (2.1)

where uj = uj(t) are to be determined. We would have introduced θ by u = θ−1 according
to [4, 5]. However, the inclusion of u0 and u1 here adds flexibility that will become useful
in subsequent linearization. We call this change of variables as an indicial normalization.
Then we expect the following expansions

θ′ = θ0 + θ1θ + θ2θ
2 + · · · ,

v = θ−2(v0 + v1θ + v2θ
2 + · · ·).

As in the Painlevé test, the coefficients θi and vi can be determined by a recursive relation
obtained by formally substituting these expansions into the differential system. It results
in the existence of an arbitrary constant (called resonance parameter), namely r, in the
coefficients in v. We then truncate the θ-series of v at the (first) location of r by introducing
the new dependent variable ξ : v = θ−2 (v0 + v1θ + v2θ

2 + ξθ3). Accompany the truncated
θ-series of v with the indicial normalization (2.1), we therefore obtain a specific change of
variables (u, v) ↔ (θ, ξ):

u =
u0

θ
+ u1,

v = −εu2
0

θ2
− 2εu0(u1 + t)

θ
− 2 + 2αε − εu1(u1 + 2t) + ξθ,

where ε2 = 1. We call this transformation as a mirror transformation. Now, the original
system for (u, v) is readily converted into a system for (θ, ξ). This is called a mirror system
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which is shown to be regular (see [4, 5, 6] for regularity). Particularly, the equation for θ′

is

θ′ = εu0 +
(
2ε(u1 + t) +

u′
0

u0

)
θ +

(
2 − 2αε + εu1(u1 + 2t) + u′

1

u0

)
θ2 − ξ

u0
θ3. (2.2)

Next, we try to linearize the mirror system. Specifically, we will choose u0 and u1 so
that (2.2) becomes a linearizable equation and ξ satisfies an algebraic equation. Naturally
we postulate that (2.2) should be a Riccati equation:

θ′ = εu0 +
(
2ε(u1 + t) +

u′
0

u0

)
θ +

(
2 − 2αε + εu1(u1 + 2t) + u′

1

u0
+ h

)
θ2, (2.3)

where h(t) is a function to be determined. By comparing (2.2) and (2.3), we may compute
ξ(t). Substituting the formula for ξ into the equation for ξ′ in the mirror system, we obtain
an equation

E0 + E1θ + E2θ
2 = 0, (2.4)

where

E0 ≡ εu3
0h,

E1 ≡ 2εu2
0u1h − u0(u0h)′,

E2 ≡ −2(α − ε)2 − β + u0h
(−2 + ε(2α + u2

1)
) − (u0h)2/2 − u1(u0h)′.

Previous attempts could not overcome the major difficulty caused by assuming that
each coefficient of the expansion in powers of the singularity function should vanish. The
results for ODEs in that case invariably led to special solutions (parabolic cylinder function
equation here, for example), rather than transformations. To overcome this difficulty,
we relax the constraints Ej = 0 by treating the equation (2.4) as a whole and need
to make sure that this algebraic equation (2.4) for θ is compatible with the differential
equation (2.3) (or (2.2)). The compatibility condition is obtained by eliminating θ from
the two equations. If we take u0 = ε, as suggested by the Painlevé test, take u1 to
be a solution of (P4) with parameters A, B, and define a function s(t) by h = s −
(2(ε − α) + u1(u1 + 2t) + εu′

1), then the compatibility equation has the form

12∑
j=0

Pju
j
1 = 0,

where Pj = Pj(u′
1, t, s, s

′, s′′, s′′′, α, β, A, B) are polynomials.
By only assuming that the coefficient function P12 of the expansion in powers of u1

(not singularity function) should vanish, we obtain the following in a descending order

O(u12
1 ) : s = 2(A − α)/3,

O(u11
1 ) : identity,

O(u10
1 ) : 3(B − β) = 2(A − α)(A + α − 2ε),

O(u9
1) : identity,

O(u8
1) : identity,

O(u7
1) : 9β + 2(α + 2A − 3ε)2 = 0,

O(uj
1) : identity, for j ≤ 6.
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Then the equation (2.3) becomes

θ′ = 1 + 2ε(u1 + t)θ +
2
3
(A − α)θ2, (2.5)

and the equation (2.4) becomes

Ê0 + Ê1θ + Ê2θ
2 = 0, (2.6)

where

Ê0 ≡
[
2
3
(A + 2α − 3ε) − 2tu1 − u2

1 − εu′
1

]
u1,

Ê1 ≡ −2ε
9

(A + 2α − 3ε)2 +
2ε
3

(A + 2α − 3ε)u2
1

−4
3
(A − α)u2

1 + 2εt2u2
1 −

ε

2
u4

1 + 2tu1u
′
1 +

ε

2
u′

1
2
,

Ê2 ≡ 2
9
(A − α)

[
2 (A + 2α − 3ε)2 u1 + 3εu1u

′
1 + 6tu2

1 − 3u3
1

]
.

Substituting the indicial normalization u = εθ−1 + u1 into (2.6), we obtain a quadratic
equation for u, with the non-trivial solution being the well-known Schlesinger transforma-
tion

u − u1 =
4(α − A)u1

ε(3u′
1 + 6) + 3u2

1 + 6tu1 − 2A − 4α
, (2.7)

where A, B are in terms of α, β by

9β + 2(α + 2A − 3ε)2 = 0, 9B + 2(A + 2α − 3ε)2 = 0

(the trivial solution is u = u1 and α = A). The inverse transformation

u − u1 =
4(α − A)u

ε(3u′ + 6) + 3u2 + 6tu − 2α − 4A
(2.8)

follows from the elimination of u′
1 between (2.7) and

ε(u − u1)′ + u2 − u2
1 + 2t(u − u1) + 2(A − α)/3 = 0,

which is obtained from (2.5) by the elimination of θ from the indicial normalization. The
Schlesinger transformation is therefore given by (2.7) and (2.8), for which u and u1 satisfy
(P4) with parameters (α, β) and (A, B), respectively.

Another interesting transformation is worth mentioning here.
By using the indicial normalization u = εθ−1+u1 to eliminate u in (2.7) and then using

(2.5) to eliminate u1, we have a second equation for θ:

θ′′ =
θ′2

2θ
+

2
3
(A − α)2 θ3 +

8εt
3

(A − α)θ2 + 2
(
t2 − ε + A + α

)
θ − 1

2θ
.

This equation is actually (P4) for (θ̄, t, ᾱ, β̄), where

θ̄ =
2ε
3

(A − α)θ,

ᾱ = ε − A − α, β̄ = −2
9
(A − α)2.
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The transformation between the two copies of (P4) is obtained by eliminating u1 be-
tween the indicial normalization and (2.5), which reads u =

(
2(A − α) + 3εθ̄′

)
/(6θ̄) −

θ̄/2 − t. The inverse transformation follows immediately from (2.8). In other words, we
have the following Schlesinger transformation between two copies of (P4):

u =
2(ε − ᾱ − 2α) + 3εθ̄′

6θ̄
− θ̄

2
− t, θ̄ =

2(−ε − α − 2ᾱ) − 3εu′

6u
− u

2
− t,

where u and θ̄ satisfy PIV(u, t;α, β) = 0 and PIV(θ̄, t; ᾱ, β̄) = 0, respectively. The param-
eters are related by

9β + 2(α + 2ᾱ + ε)2 = 0, 9β̄ + 2(ᾱ + 2α − ε)2 = 0.

This transformation was obtained by Fokas and Ablowitz [2].

3 The modified Korteweg-de Vries equation

The idea of linearizing mirror systems can be used equally well for PDEs in finding the
Bäcklund transformations. In this section, we demonstrate this through the modified
Korteweg-de Vries equation (m-KdV)

mKdV(u) ≡ ut +
(
uxx − 2α−2u3

)
x
= 0.

Similar to the (P4), we rewrite it as the system ux = v, vx = w, wx = 6α−2u2v −
ut, introduce the indicial normalization u = u0θ

−1 + u1 + u2θ, and deduce the mirror
transformation (u, v, w) ↔ (θ, ξ, η):

u =
u0

θ
+ u1 + u2θ,

v = −εu2
0

α
θ−2 − 2εu0u1

α
θ−1 +

(
α2θt

2u0
− 2εu0u2

α
− εu2

1

α

)
+ ξθ,

w =
2u3

0

α2
θ−3 +

6u2
0u1

α2
θ−2 +

(
6u0u

2
1

α2
+

6u2
0u2

α2
− εαθt

)
θ−1

+
(

2u3
1

α2
+

10u0u1u2

α2
− εu0ξ

α
+

εαu0t

2u0

)
+ ηθ,

where ε2 = 1. The sign parameter ε characterizes two principal balances of Laurent series
for θx, v and w. The mirror transformation converts the m-KdV equation into a regular
system, in which the equation for θx is

θx = (u0 − u2θ
2)−1

[
εu2

0

α
+

(
2εu0u1

α
+ u0x

)
θ (3.1)

+
(

εu2
1

α
+

2εu0u2

α
− α2θt

2u0
+ u1x

)
θ2 + (u2x − ξ) θ3

]
.

For small θ, the right-hand side of the last equation has the following expansion

εu0

α
+

(
2εu1

α
+

u0x

u0

)
θ +

(
εu2

1

αu0
+

3εu2

α
− α2θt

2u2
0

+
u1x

u0

)
θ2 + · · · .
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Thus we postulate θ to satisfy a Riccati equation of the following form

θx =
εu0

α
+

(
2εu1

α
+

u0x

u0

)
θ +

(
εu2

1

αu0
+

3εu2

α
+

u1x

u0
+ h

)
θ2, (3.2)

where h is a function to be determined. By comparing the difference between (3.1) and
(3.2), we may compute the θ-series for ξ. Substituting this θ-series into the equation for ξx

in the mirror system, we may compute the θ-series for η. Further substituting the θ-series
for ξ and η into the equation for η in the mirror system, we may compute the θ-series for
θt:

θt = −2u2
0h

α2
+

(−4u0u1h

α2
+

u0t

u0
+

2ε(u0h)x
α

)
θ

+
(−2εu0h

2

α
− 2u2

1h

α2
− 6u0u2h

α2
+

u1t

u0
+

2εu1(u0h)x
αu0

− (u0h)xx

u0

)
θ2 + · · · .

Motivated by what happened generally for the behaviour of same order derivatives for
PDEs, we would like to have θt also satisfying a linearizable equation. Thus we postulate

θt = −2u2
0h

α2
+

(−4u0u1h

α2
+

u0t

u0
+

2ε(u0h)x
α

)
θ (3.3)

+
(−2εu0h

2

α
− 2u2

1h

α2
− 6u0u2h

α2
+

u1t

u0
+

2εu1(u0h)x
αu0

− (u0h)xx

u0
+ g

)
θ2,

by introducing a function g(t). In order for (3.2) and (3.3) to be compatible, we need the
following to vanish

(θx)t − (θt)x ≡ −2εu0g

α
θ +

(
(u0h)t

u0
+

3ε(u0u2)t
αu0

− 2εu1g

α
− (u0g)x

u0

+
6εh(u0h)x

α
+

12u2(u0h)x
α2

+
6h(u0u2)x

α2
+

(u0h)xxx

u0

)
θ2.

Now we try to choose appropriate u0, u1, g, h so that the compatibility condition is
satisfied. As suggested by the Painlevé test, we choose u0 = εα. Then we simply choose
g = 0, introduce s(x, t) by h = s − εu−1

0 u2
1/α − 3εu2/α − u−1

0 u1x and obtain

(θx)t − (θt)x = θ2

[
−2u1

α2
mKdV(u1) − ε

α
(mKdV(u1))x

+ 6 (u2 − εαs)
(

u1xx

α2
+

2εu1u1x

α3

)
+ st + sxxx − 3εu2xxx

α

+ 6 sx

(
s − u2

1

α2
− εu2

α
− εu1x

α

)
+ 12u2x

(
u1x

α2
− εs

α
+

εu2
1

α3

)]
.

A simple choice for the above to vanish is

mKdV(u1) = 0, u2 − εαs = 0, st = 0, sx = 0.

In summary, with the following choices

(i) u0 = εα;
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(ii) u1 is a solution of the m-KdV equation;

(iii) u2 = −εαλ2, with λ a constant;

(iv) g = 0;

(v) h = 2λ2 − u2/α2 − εu1x/α,

we have the following compatible system


θx = 1 +
2εu1

α
θ − λ2θ2,

θt = −4λ2 +
2u2

1

α2
+

2εu1x

α

+
(
−8ελ2u1

α
+

4εu3
1

α3
− 2εu1xx

α

)
θ +

(
4λ4 − 2λ2u2

1

α2
+

2ελ2u1x

α

)
θ2.

(3.4)

Now, in contrast to the treatment of ODEs, in the last system, we relax the condition
on the function u1 to allow it arbitrary instead of a solution of the modified KdV equation.
Then the system is naturally not compatible in general. In fact, we have

(θx)t − (θt)x =
2ε
α

θ · mKdV(u1).

This indicates that we can obtain the auto-Bäcklund transformation. Indeed, the indicial
normalization u = εαθ−1 + u1 − εαλ2θ and the first equation in (3.4) imply

u + u1 =
εαθx

θ
.

Write u = Ux and u1 = U1x. We can solve θ from the last equation. A particular solution
is given by

θ = λ−1 exp
[
εα−1(U + U1)

]
.

Substituting this into system (3.4) and simplifying, we have the Bäcklund transformation



(U − U1)x = −2αλ sinh
[
α−1(U + U1)

]
,

(U − U1)t = −8λ2U1x + 4λU1xx cosh
[
α−1(U + U1)

]
+

(
8αλ3 − 4α−1λU2

1x

)
sinh

[
α−1(U + U1)

]
,

(3.5)

where U and U1 are two solutions of the potential m-KdV equation Ut+Uxxx−2α−2U3
x = 0.

The symmetric form of (3.5) was given by [10]. In terms of a new dependent variable
f = tanh

[
(2α)−1(U + U1)

]
, the x-derivative equation of (3.5) takes the form

fx −
(u1

α

)
(1 − f2) = −2λf.

Substituting f = v2/v1, we obtain the coupled pair of linear differential equations:

v1x − λv1 = α−1u1v2,

v2x + λv2 = α−1u1v1.
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Similarly we obtain from the t-derivative equation of (3.5)

v1t = Av1 + Bv2,

v2t = Cv1 − Av2,

where

A = −4λ3 + 2α−2λu2
1,

B = −4α−1λ2u1 − 2α−1λu1x + 2α−3u3
1 − α−1u1xx,

C = −4α−1λ2u1 + 2α−1λu1x + 2α−3u3
1 − α−1u1xx.

4 Conclusions

The recent discovery of the mirror systems for integrable equations has provided a new
tool to study integrability. It has been proved rigorously the equivalence between passing
the Painlevé test and being regular for the mirror systems. The regularity indicates that
integrable equations are linear near their movable poles. Extension of this local result to
the global region is the key technical step to understand integrability.

In this paper, we use classical integrable equations to demonstrate that the Bäcklund
transformations as well as the Schlesinger transformations are natural consequences of the
linearizable mirror systems. The crucial observation here for these examples is that the θ
function, defined explicitly by the indicial normalization, satisfies a linearizable equation.

Although it is not clear how many terms needed a priori for recovering the transforma-
tions, our investigations reveal that the θ functions through different indicial normaliza-
tions always yield some interesting results. The function could play an important role in
understanding the global structures of integrability through the local Painlevé analysis.
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