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Abstract

A birational transformation is one which leaves invariant an ordinary differential equa-
tion, only changing its parameters. We first recall the consistent truncation which has
allowed us to obtain the first degree birational transformation of Okamoto for the mas-
ter Painlevé equation P6. Then we improve it by adding a preliminary step, which
is to find all the Riccati subequations of the considered Pn before performing the
truncation. We discuss in some detail the main novelties of our method, taking as an
example the simplest Painlevé equation for that purpose, P2. Finally, we apply the
method to P5 and obtain its two inequivalent first degree birational transformations.

1 Introduction

A birational transformation is by definition a set of two relations,

u = f(U ′, U,X), U = F (u′, u, x), (1.1)

with f and F rational functions, which maps an algebraic ordinary differential equation
(ODE), for instance a Painlevé equation,

E(u) ≡ Pn(u, x,α) = 0, α = (α, β, γ, δ), (1.2)

into the same equation with different parameters

E(U) ≡ Pn(U,X,A) = 0, A = (A,B,Γ,∆), (1.3)

with some homography (usually the identity) between x and X. The parameters (α,A)
must obey as many algebraic relations as elements in α. The degree of a birational
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transformation is defined as the highest degree in U ′ or u′ (or more generally in the
(N − 1)th derivative of U and u) of the numerator and the denominator of (1.1).
A method allowing one to derive such birational transformations was recently intro-

duced [1, 2], and later improved [3, 4] so as to provide birational transformations which
have a degree equal to one for any first degree N -th order ODE. Its application to the
master Painlevé equation P6,

P6 : u′′ =
1
2

[
1
u
+

1
u− 1

+
1

u− x

]
u′2 −

[
1
x
+

1
x− 1

+
1

u− x

]
u′

+
u(u− 1)(u− x)

x2(x− 1)2

[
α+ β

x

u2
+ γ

x− 1
(u− 1)2

+ δ
x(x− 1)
(u− x)2

]
,

provided the birational transformation [5], already found by Okamoto [6, p. 356],

N

u− U
=

x(x− 1)U ′

U(U − 1)(U − x)
+
Θ0

U
+

Θ1

U − 1
+
Θx − 1
U − x

(1.4)

=
x(x− 1)u′

u(u− 1)(u− x)
+

θ0

u
+

θ1

u− 1
+

θx − 1
u− x

, (1.5)

θj = Θj − 1
2

(∑
Θk

)
+
1
2
, j, k =∞, 0, 1, x, (1.6)

Θj = θj − 1
2

(∑
θk

)
+
1
2
· (1.7)

The transformation is clearly birational since the l.h.s. is homographic in both u and U .
In the above, the monodromy exponents θ = (θ∞, θ0, θ1, θx) are defined as

θ2
∞ = 2α, θ2

0 = −2β, θ2
1 = 2γ, θ2

x = 1− 2δ, (1.8)

and similarly for their uppercase counterparts, while the odd-parity constant N takes the
equivalent expressions

N =
∑

(θ2
k −Θ2

k) (1.9)

= 1−
∑

Θk = −1 +
∑

θk (1.10)

= 2(θj −Θj), j =∞, 0, 1, x. (1.11)

The choice of the eight signs of θ and Θ is such that the square of this transformation is
the identity. We will adopt such a convention (choice of signs so as to have involutions)
throughout the present paper. This will dispense us from writing the second half, e.g. (1.5),
of a birational transformation. Indeed, if the l.h.s. of the first half is chosen invariant
under the permutation of (u,θ) and (U,Θ), which is the case in (1.5), the second half is
deduced from the first half by just permuting the lowercase and uppercase notation.
The method is an extension to ODEs of the powerful singular manifold method intro-

duced by Weiss et al. [7]. This method in turn mainly assumes the existence of a trun-
cation, i.e. a representation of the solution u of the considered ODE (1.2) by a Laurent
series which terminates (“truncates”). Its current achievements are detailed in summer
school proceedings, see Refs. [8, 9].
The purpose of this article is threefold. Firstly, we present a significant improvement

to that method, only based on the consideration of Riccati equations. This improvement
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reduces the obtaining of the above birational transformation of P6 to computations which
are easily feasible by hand. Secondly, using the simplest equation P2 as an example,
we point out the main differences between our method and the one previously introduced
[1, 2]. Thirdly, on the specific example of P5, we show that the straightforward application
of our method yields the two first degree birational transformations of this ODE.
The organization of the paper is as follows. In Section 2, we recall the main difference

between the truncation of an ODE and that of a partial differential equation (PDE), which
is a fundamental homography between the ODE and the truncation variable, without any
counterpart for a PDE.
In Section 3, we define the consistent truncation which implements this homography

and we present the improvement.
The next Section 4 is devoted to a parallel processing of the simplest Painlevé equation

P2, so as to clearly point out the differences between the previous method and ours.
Finally, in Section 5, we process P5 with our method, and find its two inequivalent first

degree birational transformations.
Throughout this article, we discard the nongeneric cases in which the components of

α are constrained. One such case is the well known birational transformation between P5
with δ = 0 and P3.

2 The fundamental homography, a difference with PDEs

Consider a Painlevé ODE (1.3) which admits a birational transformation, i.e. n =
2, 3, 4, 5, 6. There exist two Riccati equations associated to this Pn. The first one is
the Painlevé equation (1.3) itself. Indeed, any N -th order, first degree ODE with the
Painlevé property is necessarily [10, pp. 396–409] a Riccati equation for U (N−1), with
coefficients depending on x and the lower derivatives of U , in our case

U ′′ = A2(U, x)U ′2 +A1(U, x)U ′ +A0(U, x). (2.1)

The second Riccati equation is the algebraic transform for Z = ψ/ψ′ of the linear second
order ODE for ψ which has been built by Richard Fuchs [11] for P6, and by confluence to
any other Pn,

Z ′ = 1 + z1Z + z2Z
2. (2.2)

Since the group of invariance of a Riccati equation is the homographic group, the
variables U ′ and Z are linked by a homography. Let us define it as

(U ′ + g2)(Z−1 − g1)− g0 = 0, g0 �= 0, (2.3)

or, in the affine case, as

(U ′ +G2)−G0Z
−1 = 0, G0 �= 0. (2.4)

The coefficients gj or Gj are rational in (U, x). We will not consider (2.4) in the present
paper.
This homography allows us to compute the two coefficients zj of the Riccati pseudopo-

tential equation (2.2) as explicit expressions of (gj , ∂Ugj , ∂xgj , A2, A1, A0, U
′). Indeed,
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eliminating U ′ between (2.1) and (2.3) defines a first order ODE for Z, whose identifica-
tion with (2.2) modulo (2.3) provides three relations,

g0 = g2
2A2 − g2A1 +A0 + ∂xg2 − g2∂Ug2, (2.5)

z1 = A1 − 2g1 + ∂Ug2 − ∂x Log g0 + (2A2 − ∂U Log g0)U ′, (2.6)
z2 = −g1z1 − g2

1 − g0A2 − ∂xg1 − (∂Ug1)U ′. (2.7)

Since A2, A1, A0 are given, there only remains to determine the two coefficients g1, g2 of the
homography, which are functions of the two variables U, x. In particular, the two functions
z1, z2 of the three variables U ′, U, x are not the elementary quantities to determine.
For a PDE, the homography (2.3) does not exist any more since at least (2.1) does

not survive. For searching the Bäcklund transformation (see summer schools lecture notes
[8, 9] and references therein), this makes the situation much easier since one does not have
to assume a dependence between Z and some derivative of U . On the contrary, for ODEs,
if one handles Z and U ′ as independent variables, this creates many difficulties.

3 The improvement to the truncation

Each Pn equation which admits a birational transformation has one or several (four for P6)
couples of families of movable simple poles with opposite residues ±u0, and the assumption
for the one-family truncation is

u = u0Z
−1 + U, u0 �= 0, x = X, (3.1)

in which u and U satisfy (1.2) and (1.3), and Z satisfies (2.2). After determination of the
rational functions g1(U, x) and g2(U, x), the first half of the birational transformation is

u = U + u0

(
g1(U, x) +

g0(U, x)
U ′ + g2(U, x)

)
, (3.2)

with the restriction that its denominator should not vanish. We recently conjectured [3]
that the ODE defined by this denominator,

U ′ + g2(U, x) = 0, (3.3)

has the Painlevé property, which restricts g2 to an arbitrary second degree polynomial of
U with coefficients depending on x.
Let us prove this conjecture and completely determine g2 for P6, and therefore for any

Pn equation thanks to the confluence.

Proof. The equation (3.2) is equivalently written
u0g0

u− U − u0g1
= U ′ + g2, (3.4)

and the nonvanishing condition u − U − u0g1 �= 0 does not restrict U any more since
the restriction concerns u. Therefore the equation (3.4) still holds when, simultaneously,
g0(U, x) vanishes and U satisfies the equation (3.3). In the case of P6, the corresponding
values g̃2 and g̃0 are defined by the Riccati subequation,

g̃2 =
U(U − 1)(U − x)

x(x− 1)

(
Θ0

U
+

Θ1

U − 1
+
Θx − 1
U − x

)
, (3.5)
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and by the formula (2.5) applied to g̃2,

g̃0 = (1−Θ∞ −Θ0 −Θ1 −Θx)(1 + Θ∞ −Θ0 −Θ1 −Θx)
U(U − 1)(U − x)
8x2(x− 1)2

, (3.6)

which indeed defines the constraint on Θ. The couple (g0, g2) in (3.4) cannot be different
(modulo the homographies on U which preserve x and P6) from this couple (g̃0, g̃2), since
this Riccati subequation is unique. �

Denoting R (like Riccati) the quantity

R =
x(x− 1)U ′

U(U − 1)(U − x)
+
Θ0

U
+

Θ1

U − 1
+

Θx

U − x
, (3.7)

one has the identity, whatever be Θ,

x(x− 1)R′ +
1
2
(1−Θ∞ −Θ0 −Θ1 −Θx)(1 + Θ∞ −Θ0 −Θ1 −Θx)

− ((Θ1 +Θx − 1)U + (Θ0 +Θx − 1)(U − 1) + (Θ0 +Θ1)(U − x))R

+
1
2
((U − 1)(U − x) + U(U − 1) + U(U − x))R2

+
x2(x− 1)2

U(U − 1)(U − x)
P6(U) ≡ 0, (3.8)

To summarize, the information is twofold.

1. The coefficient g2 is determined by the fact that equation (3.3) must be a subequation
of (1.3).

2. The coefficient g0 factorizes as g0(U, x,A,B,Γ,∆) = f0(A,B,Γ,∆)h0(U, x), defining
the condition f0(A,B,Γ,∆) = 0 for the existence of the subequation.

The improved method is now the following. Before performing the truncation, one
computes all the identities like (3.8) involving Riccati subequations. Each identity defines
an explicit value for g2. For each such g2, the coefficient g0 is explicitly given as a factorized
expression by the formula (2.5). Finally, one performs the truncation to find g1 and the
algebraic relations between α, β, γ, δ and A,B,Γ,∆. Let us now describe this truncation.
The field u is represented, see (3.1), by a Laurent series in Z which terminates (“trun-

cated series”). The l.h.s. E(u) of the equation can similarly be written as a truncated
series in Z. This is achieved by the elimination of u, Z ′, U ′′, U ′ between (1.2), (1.3), (3.1),
(2.2) and (2.3), followed by the elimination of (g0, z1, z2) from (2.5)–(2.7) (q denotes the
singularity order of Pn written as a differential polynomial in u, it is −6 for P6),

E(u) =
−q+2∑
j=0

Ej(U, x, u0, g1,α,A)Zj+q−2 = 0, (3.9)

∀j : Ej(U, x, u0, g1,α,A) = 0. (3.10)

The nonlinear determining equations Ej = 0 are independent of U ′, and this is the main
difference with previous work [2]. Another difference is the greater number (−q+3 instead
of −q+1) of equations Ej = 0, which is due to the additional elimination of U ′ with (2.3).
The −q + 3 determining equations (3.10) in the unknown function g1(U, x) and the

unknown algebraic relations between α, β, γ, δ and A,B,Γ,∆ must be solved, as usual, by
increasing values of their index j.
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4 An elementary example: the second Painlevé equation

P2 : u′′ = δ(2u3 + xu) + α.

The data for the two opposite families of movable singularities of P2 are

p = −1, q = −3, u0 = d−1, δ = d2, Fuchs index 4, (4.1)

in which d is any square root of d2. The unique monodromy exponent θ∞ is defined as

α = −dθ∞. (4.2)

Let us compare the truncation of the previous section with the truncation introduced
by [1] and applied by [2]. For brevity, the former will be qualified “full” and the latter
“semi” for reasons to become clear soon.

4.1 Processing of P2 with the full truncation

One first computes all the identities like (3.8) involving first order first degree subequations
of P2. As well as for any Pn, such a subequation can only be a Riccati equation, which is
the unique such ODE with the Painlevé property,

R ≡ U ′ + a2U
2 + a1U + a0 = 0. (4.3)

Eliminating U ′ with P2(U), one obtains

∀U : 2(a2
2 −D2)U3 + (3a1a2 − a′2)U

2

+(2a2a0 + a2
1 − a′1 −D2x)U + (a1a0 − a′0 −A) = 0, (4.4)

a system admitting the unique solution (D denotes any square root of D2)

R ≡ U ′ +D
(
U2 +

x

2

)
= 0, 2A+D = 0, (4.5)

i.e. the well known algebraic transform of an Airy equation. The indeterminacy on R
(which, up to now, is only defined up to an additive term containing the factor 2A +D)
is removed by the explicit form of the identity between P2 and its subequation,

∀(A,D) R′ −
(
A+

D

2

)
− (2DU)R+ P2(U, x,A,D) ≡ 0, (4.6)

a relation valid for any A and D. By identification with (3.3) according to the proof
presented in section 3, one obtains

g2 = D
(
U2 +

x

2

)
· (4.7)

Given the coefficients of the three terms of P2

A2 = 0, A1 = 0, A0 = D2(2U3 + xU) +A, (4.8)

equation (2.5) then provides the value of g0, which only depends on (A2, A1, A0, g2),

g0 = A+
D

2
· (4.9)
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Therefore, before undertaking the truncation properly said, there only remains to find g1

and the two relations between (d, α,D,A).
The assumption for the truncation is

u = U + u0Z
−1, u0 = d−1, (4.10)

u′′ = d2(2u3 + xu) + α, U ′′ = D2(2U3 + xU) +A, (4.11)

U ′ = −g2 +
g0

Z−1 − g1

, g2 = D
(
U2 +

x

2

)
, g0 = A+

D

2
, (4.12)

Z ′ = 1 + z1Z + z2Z
2, (4.13)

z1 = −2g1 + 2DU, z2 = −g1z1 − g2
1 − ∂xg1 − (∂Ug1)U ′. (4.14)

The elimination of u, Z ′, U ′′, U ′, g2, g0, z1, z2 generates the truncated Laurent series

E(u) =
−q+2∑
j=0

Ej(U, x, g1, d, α,D,A)Zj+q−2 = 0, (4.15)

independent of U ′, and one requires its identical vanishing in Z,

∀j : Ej(U, x, g1, d, α,D,A) = 0. (4.16)

Since these six determining equations must be solved by ascending values of j, let us write
each of them after insertion of the solution of the previous ones. Introducing the notation

α = −dθ∞, A = −DΘ∞. (4.17)

these are

E0 ≡ 0, (4.18)
E1 ≡ (d−D)U + g1 = 0, (4.19)
E2 ≡ (d2 −D2)x = 0, (4.20)
E3 ≡ 1−Θ∞ − θ∞ = 0, (4.21)
Ej ≡ 0, j = 4, 5. (4.22)

One notices that the equation E4 = 0, corresponding to the Fuchs index, is identically
satisfied, and that there is no need to consider j ≥ 4 (just like for P6, see Ref. [4]). These
determining equations are solved as

g1 = (D − d)U, D2 = d2, θ∞ = 1−Θ∞, (4.23)

and the first half of the birational transformation is

D(1/2−Θ∞)
du−DU

= U ′ +D
(
U2 +

x

2

)
. (4.24)

Since, whatever be the choice of sign D = ±d, the relation between the parameters
(d, θ∞, D,Θ∞) is an involution, the second half is obtained by just permuting the uppercase
and lowercase notation,

d(1/2− θ∞)
DU − du

= u′ + d
(
u2 +

x

2

)
. (4.25)
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Although the two choices d = ±D are equally acceptable (the unique homography
which conserves x, namely (u, x) 
→ (−u, x), allows one to freely reverse the sign of D),
the choice d = D is better because this is the one which is inherited from P6 by the
confluence [4], so the final result is the involution

(θ∞ −Θ∞)/2
u− U

= U ′ +D
(
U2 +

x

2

)
= u′ + d

(
u2 +

x

2

)
, (4.26)

d = D, θ∞ = 1−Θ∞. (4.27)

Remark. When compared to the Riccati equation (2.2) for Z, the identity (4.6) shows
that the values

Z =
U ′ +D(U2 + x/2)

A+D/2
, z1 = 2DU, z2 = 0, (4.28)

i.e.

g0 = A+
D

2
, g1 = 0, g2 = D

(
U2 +

x

2

)
, (4.29)

define a priori a particular solution of the truncation. The computation has shown that,
modulo the homography (u, x, α)→ (−u, x,−α), this solution is unique.

4.2 Comparison with the semi-truncation

As already explained in summer school lecture notes [9], the method proposed in Ref. [2]
is in fact not distinct from a truncation. Therefore we will adopt the truncation language
to clarify its presentation and perform the comparison.
The assumption for the semi-truncation is

u = U + u0Z
−1, u0 = d−1, (4.30)

u′′ = d2(2u3 + xu) + α, U ′′ = D2(2U3 + xU) +A, (4.31)
Z ′ = 1 + z1Z + z2Z

2. (4.32)

The elimination of u, Z ′, U ′′ generates the truncated Laurent series

E(u) =
−q∑
j=0

Ej(U ′, U, z1, z2,α,A, x)Zj+q = 0, α = (α, d), A = (A,D), (4.33)

in which the dependence on U ′ has been emphasized, and one does not require its identical
vanishing in Z. Indeed, the four coefficients of this Laurent series in Z are

E0 ≡ 0, (4.34)
E1 ≡ 3(2dU − z1), (4.35)
E2 ≡ z′1 − z2

1 − 2z2 + d2(6U2 + x), (4.36)
E3 ≡ z′2 − z1z2 + d(d2 −D2)(2U3 + xU) + d(α−A). (4.37)

The first two coefficients Ej , j = 0, 1, even for cases other than P2, are independent of
U ′ and the same in the two truncations if one remembers the correspondence (2.6) between
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z1 and (gj , Aj). Therefore, defining the two equations Ej = 0, j = 0, 1 and solving them
makes no difference betwen the two methods and provides

z1 = 2dU. (4.38)

As soon as j ≥ 2, the coefficients Ej are essentially different in the two truncations,
and this is because the remaining truncated Laurent series depends on both U ′ and Z,

−q∑
j=2

Ej(U ′, U, z2,α,A, x)Zj+q = 0, (4.39)

while they are not independent but linked by the unused relation (to be found in fine)
(2.3).
Solving the system Ej = 0, j = 0, . . . , 3, would indeed yield [12]

z1 = 2dU, z2 = dU ′ + (dU)2 +
1
2
d2x, α+

d

2
= 0, (4.40)

which cannot define a birational transformation.
To overcome this first difficulty, after solving E1 = 0, E2 = 0 (hence the name semi-

truncation), one eliminates Z between (2.2) and (4.39), which amounts to compute the
resultant of two polynomials of Z and generically results in

F (U ′, U ; z2,α,A, x) = 0, (4.41)
Z = z(U ′, U ; z2,α,A, x), (4.42)

in which F is a differential polynomial and z a rational function of their arguments. The
two equations (4.30) and (4.42) will define the first half of a birational transformation, not
necessarily of degree one, after the first equation (4.41) has been solved for z2.
Solving (4.41) for z2 is the second difficulty of the method. Indeed, the method is to en-

force the irreducibility of Pn by requiring the identical vanishing of (4.41) as a polynomial
of U ′, U . But (4.41) depends on z2, z

′
2, z

′′
2 and this procedure first requires an additional

assumption on the explicit dependence of z2 on (U ′, U). The assumption [2]

z2 = f0(x) + f1(x)U (4.43)

is sufficient for P2 and it leads to the expected result (4.26)–(4.27).
Finally, there exists a third difficulty, which only occurs for P6, this is the value 1 of

the Fuchs index of P6, a value which cannot be changed by homography on u. In this
case, the coefficient E1 is identically zero and does not determine z1, so one must make
two assumptions for the dependence of (z1, z2) on (U ′, U). This is why, to our knowledge,
the semi-truncation method has not been applied to P6 yet.

5 Processing of P5 with the present truncation

P6 has already been processed with our method [3, 4] before the present improvement,
and the solution to the truncation is unique. The first reason for choosing P5 here is that,
as opposed to P6, one expects at least two inequivalent solutions, a situation which only
occurs for P5 and P4. The second reason is to show how the difficulty arising from the
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index 1 is overcome. These two inequivalent first degree birational transformations for P5
were first found by Gromak [13, Eq. (13)] and by Okamoto [14].
The definition of P5 is

P5 : u′′ =
[
1
2u

+
1

u− 1

]
u′2 − u′

x
+
(u− 1)2

x2

[
αu+

β

u

]
+ γ

u

x
+ δ

u(u+ 1)
u− 1

,

and the data for the two opposite families of movable singularities of u are

p = −1, q = −5, u2
0 = θ−2

∞ x2, α = θ2
∞/2, Fuchs index 1, (5.1)

with the definition of the monodromy exponents [15],

θ2
∞ = 2α, θ2

0 = −2β, dθ1 = −γ, d2 = −2δ. (5.2)

The search for the Riccati subequations as explained in Section 4.1 (f∞, f0, f1 denote
the three functions of x to be found)

R =
xU ′

U(U − 1)2
+

f0

U
+

f∞ − f0

U − 1
+

f1x

(U − 1)2
, (5.3)

leads to the unique algebraic solution

f2
0 = Θ2

0, f
2
∞ = Θ2

∞, f2
1 = D2, (1 + f∞ − f0)f1 = DΘ1. (5.4)

After choosing the square roots, there are two distinct identities of the type

R′ + F2(U, x)R2 + F1(U, x)R+ F0(U, x) + P5(U) ≡ 0, (5.5)

namely

R =
xU ′

U(U − 1)2
+
Θ0

U
+
Θ1 − 1
U − 1

+
Dx

(U − 1)2
, (5.6)

xR′ +
1
2
(1−Θ∞ −Θ0 −Θ1)(1 + Θ∞ −Θ0 −Θ1) +

1
2

(
(U − 1)2 + 2U(U − 1)

)
R2

− ((Θ1 − 1)U + (2Θ0 +Θ1 − 1)(U − 1) + dx)R+
x2

U2(U − 1)2
P5(U) ≡ 0, (5.7)

and

R =
xU ′

U(U − 1)2
+
Θ0

U
+
Θ∞ −Θ0

U − 1
+

Dx

(U − 1)2
, (5.8)

xR′ − D(1 + Θ∞ −Θ0 −Θ1)x
(U − 1)2

+
1
2

(
(U − 1)2 + 2U(U − 1)

)
R2

− ((Θ∞ −Θ0)U + (Θ∞ +Θ0)(U − 1) + dx)R+
x2

U2(U − 1)2
P5(U) ≡ 0. (5.9)

The reason why they are essentially distinct is the two different factorizations of the
condition on (Θ∞,Θ0,Θ1, D). As shown in Ref. [4], these two cases are inherited from
the first degree birational transformation of Okamoto for P6 by two different confluences,
which have been called respectively normal or unbiased, and biased in Ref. [4].
Each choice will correspond to a different solution to the truncation, defining two

distinct first degree birational transformations, respectively denoted T5,u and T5,b (like
unbiased, biased). We now follow exactly the steps of Section 4.1.
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5.1 The normal (or unbiased) birational transformation of P5

The first possibility (5.6),

g2 =
U(U − 1)2

x

(
Θ0

U
+
Θ1 − 1
U − 1

+
Dx

(U − 1)2

)
, (5.10)

provides the factorization (compare with the identity (5.7))

g0 = −(1−Θ∞ −Θ0 −Θ1)(1 + Θ∞ −Θ0 −Θ1)
U(U − 1)2

2x2
· (5.11)

Denoting the residue u0 as

u0 = −θ−1
∞ x, (5.12)

the first determining equations are

Ej ≡ 0, j = 0, 1, (5.13)
E2 ≡ x2(∂xg1 − g2

1)− xg2∂Ug1

+x
(
2(θ∞ − 1 + Θ0 +Θ1)U + 2− 2Θ0 −Θ1 − 4

3
θ∞ +Dx

)
g1

+K0U
2 +K1U +

d2 −D2

6
x2 +K2x+K3 = 0, (5.14)

in which the Km’s are constants. The reason for the identical vanishing of E1 is the Fuchs
index 1, but this does not harm the computation. Indeed, the only possibility for g1 to be
rational in U is that it be a first degree polynomial of U , which the singularities of P5 in
U suggest to define as

g1 =
f0(x)U + (f1(x)− f0(x))(U − 1)

x
· (5.15)

Equation E2 = 0 then splits into

E2 ≡
2∑

k=0

E
(k)
2 Uk, ∀k E

(k)
2 (f0, f1, x,θ,Θ) = 0, (5.16)

E
(2)
2 ≡ Θ2

∞ − (2f1 − 2θ∞ + 1−Θ0 −Θ1)
2 = 0. (5.17)

This system (5.16) of three equations is equivalent to

g1 = (2θ∞ − 1−Θ∞ +Θ0 +Θ1)
3U − 2
6x

, d2 = D2, (5.18)

6θ2
0 − 2θ2

∞ = (2−Θ∞ +Θ0 − 2Θ1)
2 − 3(Θ1 − 1)2, (5.19)

and there only remains to find one algebraic relation between the monodromy exponents.
Since all the dependence on U is now found, the next determining equation splits even

more, according to both powers of U and x,

E3 ≡ (2θ∞ − 1−Θ∞ +Θ0 +Θ1)
[
E

(1,0)
3 U +

(
D2x2 + E

(0,1)
3 x+ E

(0,0)
3

)]
= 0, (5.20)
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a system which admits as only solution the vanishing of the first factor. Therefore, the
coefficient g1 vanishes, like in the whole normal sequence [4]. This ends the resolution,
therefore achieved at j = 3, just like in the trunction for P6 [3].
This first solution T5,u has the affine representation

P5 :


 θ∞

θ0

θ1


 =

1
2


 1 −1 −1

−1 1 −1
−2 −2 0





Θ∞
Θ0

Θ1


+

1
2


 1
1
2


 , d = D, (5.21)

in which the six arbitrary signs of θ and Θ are chosen in such a way that the square of
this transformation is the identity. The birational representation is

P5 :
1−Θ∞ −Θ0 −Θ1

u− U
=

xU ′

U(U − 1)2
+
Θ0

U
+
Θ1 − 1
U − 1

+
Dx

(U − 1)2
· (5.22)

This transformation for P5 was first found by Okamoto [14].
For completion, the values of z1, z2 are

z1 =
Θ1U + (2Θ0 +Θ1 − 2)(U − 1)

x
, (5.23)

z2 = (−Θ∞ +Θ0 +Θ1 − 1)(Θ∞ +Θ0 +Θ1 − 1)
2U(U − 1) + (U − 1)2

4x2
· (5.24)

5.2 The biased birational transformation of P5

With the second possibility (5.8),

g2 =
U(U − 1)2

x

(
Θ0

U
+
Θ∞ −Θ0

U − 1
+

Dx

(U − 1)2

)
, (5.25)

one similarly obtains

g0 = (1 + Θ∞ −Θ0 −Θ1)
DU

x
· (5.26)

In order to later make easier our involution convention, it is convenient this time to denote
the residue u0 as

u0 = θ−1
∞ x. (5.27)

The first three determining equations are

Ej ≡ 0, j = 0, 1, (5.28)
E2 ≡ −x2(U − 1)(∂xg1 − g2

1) + x(U − 1)g2∂Ug1

+x
(
2
3
θ∞(U − 1)(3U + 2) + (Θ∞ −Θ0)(U − 1) +Dx(U + 1)

)
g1

+θ∞(θ∞ −Θ∞)U3

+K0U
2 − d2 −D2

6
x2(U − 1) + (K1x+K2)U +K3x+K4 = 0. (5.29)
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Again, the only possibility for g1 to be rational is to be a first degree polynomial of U ,
defined as in (5.15), and equation E2 = 0 is equivalent to

g1 = −θ∞
3U − 2
2x

− Θ∞ −Θ0 −Θ1 + 1
6x

, d2 = D2, (5.30)

6θ2
0 − 2θ2

∞ = (−Θ∞ +Θ0 − 2Θ1 − 1)2 − 3Θ2
1. (5.31)

Last, equation E3 = 0 yields

θ∞ =
−Θ∞ +Θ0 +Θ1 − 1

2
· (5.32)

This second solution T5,b is represented by the involution

P5 :


 θ∞

θ0

θ1


 = −1

2


 1 −1 −1

−1 1 −1
−2 −2 0





Θ∞
Θ0

Θ1


+

1
2


−1

1
0


 , d = −D, (5.33)

and

P5 :
−2Dx

(u− 1)(U − 1)
= (U − 1)

(
xU ′

U(U − 1)2
+
Θ0

U
+
Θ∞ −Θ0

U − 1
+

Dx

(U − 1)2

)
, (5.34)

with

z1 =
(Θ∞ −Θ0)U + (2Θ0 +Θ1 − 1)(U − 1)

x
+

2U ′

U − 1
, (5.35)

2x2

θ∞
z2 = 6xU ′ + 2Dx

(
2

U − 1
+ U + 2

)

+2(Θ∞ −Θ0 − 1)U(U − 1) + (Θ∞ + 3Θ0 +Θ1 + 1)(U − 1)2. (5.36)

This second transformation has first been obtained by Gromak [13, Eq. (13)].
Let us denote H the unique homography of P5 which conserves x,

P5 : H(x, u, θ∞, θ0, θ1) = (x, u−1, θ0, θ∞, θ1), (5.37)

and Sa,Sb,Sc the operators which reverse the sign of, respectively, θ∞, θ0, θ1. One has the
relation

T5,u = SaT5,bSaScT5,bSaH, (5.38)

but we could not find an inverse relation expressing the biased transformation as powers
of the unbiased one. Therefore, T5,b is more elementary than T5,u.
Let us compare again with the semi-truncation. In [16], to avoid the third difficulty

mentioned in Section 4.2, the authors first change the Fuchs index to 2 by performing a ho-
mography on P5. The second difficulty is handled with the extra assumption that z2 (their
τ) should be independent of U ′. This then allows them to obtain the unbiased transforma-
tion T5,u. The reason why they fail to find the biased one T5,b with the semi-truncation
is the restricting assumption on z2, since in this case z2 explicitly depends on U ′, see
expression (5.36). By looking at the ODE satisfied by Z (evidently an algebraic transform
of P5), they finally obtain this second missing first degree birational transformation.
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6 Conclusion

The improvement which we have presented to the truncation drastically reduces the
amount of computation, and the search for first degree birational transformations of higher
order ODEs by this method becomes much easier. This will be addressed in future work.

Acknowledgments

The authors are grateful to the organizers for their financial support to attend the con-
ference. They acknowledge the financial support of the Tournesol grant T99/040. MM
acknowledges the financial support of the IUAP Contract No. P4/08 funded by the Belgian
government and the support of CEA. This work was also performed in the framework of
the INTAS project 99-1782.

References

[1] P. A. Clarkson, N. Joshi, and A. Pickering, Bäcklund transformations for the second Painlevé
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