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Abstract

In this article we present a Lagrangian representation for evolutionary systems with
a Hamiltonian structure determined by a differential-geometric Poisson bracket of the
first order associated with metrics of constant curvature. Kaup-Boussinesq system has
three local Hamiltonian structures and one nonlocal Hamiltonian structure associated
with metric of constant curvature. Darboux theorem (reducing Hamiltonian structures
to canonical form ”d/dx” by differential substitutions and reciprocal transformations)
for these Hamiltonian structures is proved.

1 Introduction

In this article we describe nonlocal Hamiltonian structure associated with differential-
geometric Poisson bracket of the first order with metric of constant curvature and its
Lagrangian representation for evolutionary systems

uf = fF(u,uy, ..). (1.1)
It means that (1.1) can be re-written as

Aik
where A is a Hamiltonian operator, H = [ h(u, u,,...)dz is a functional of conservation

law density h(u,u,,...) and {u’(z),u’ (')} is a Poisson bracket. Then we can introduce
new variables a®(u) = 0,¢%, where the system (1.1) is determined by action

5=/L(wt,wz,wm,%m---)dwdt, (1.3)

where L(¢t, 00, Prws Poaas ) 18 @ Lagrangian.
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The modern theory of Hamiltonian and Symplectic structures, Poisson brackets and
Lagrangian representations is developed in [1] by L.D.Faddeev and V.E.Zakharov in 1971,
where they showed that the Korteweg-de Vries equation has Poisson bracket

{a(z),a(2")} = 0xd(z — 2') (1.4)
determining the first Hamiltonian structure
0H
= 0pr—, 1.5
ag Sa (1.5)

where (in general case) the Hamiltonian is H = [ h(a,a,,...)dz. N-component general-
ization of this formula on arbitrary dependence u = u(a(z)) was established in the article
[2] by B.A.Dubrovin and S.P.Novikov in 1983

{w'(2), 4 ()} = [¢" (u(2))0s — ¢TI uk]o(z — o), (1.6)

where g%/ (u) is nondegenerated symmetric flat metric, Fé ;. are the coefficients of the corre-

sponding Levi-Civita connection, Fik = Fi s and Vg = 0. If we choose the Hamiltonian
depended on functions u’ only, H = [ h(u)dz, then the Poisson bracket (1.6) determines
Hydrodynamic type system u} = wi(u)u¥, where wi(u) = VVih (see [3]). Moreover,
we can find ”flat coordinates” a” (annihilators of the Poisson bracket (1.6), or Casimirs),

where all F%v =0 and g_]aﬁ is constant symmetric nondegenerated metric

)
ait = 0x[g ﬁm]- (1.7)

This Hamiltonian structure allows (N 4 2) conservation laws, where first N of them are
(1.7), the conservation law of Energy is

oh 0Oh
hi = Oy _O"g——, 1.8
t [g aaa aalg] ( )
and conservation law of Momentum P = [ pdx is
oh
= Uy @ - ha L.

pt = Oz[a Dac ] (1.9)
where (§a5§67 =52)
1 o3

p= Lgogaad (110

2

In more general case H = [ h(a,a,, ..., ay;)dz the conservation law of the Momentum is

6H
pr = gla® 5= — Fl, (1.11)
where
o, = 2 4o (1.12)

Jax "
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and thus
oh
b n ﬁ k: k—n
F=nh E E 0, 8aﬁ.
n=1 k

In this case formula (1.8) are transformed into more general

M m—1

o0H 16H 6H
o aﬁ k k m—k """ -
- z:uczo %l m)az (5a7) 2500 5050

It is easily to check that if evolutionary system (1.1) has (N +1) conservation law densities
connected by constraint (1.10), then this system has local Hamiltonian structure (1.7).
Also, the evolutionary system (1.7) has the Lagrangian representation

1 p (87
5= /Egaﬁ%@f W By )|, (1.13)

where a® = ¢f.
A more complicated case was studied by E.V.Ferapontov and O.I.Mokhov in the article
[4] in 1990:

{u'(2), v ()} = [¢Y (u(2))0. — Zsfjku +eul o7 ul)6(2 — 2, (1.14)

where ¢/ (u) is nondegenerated symmetric metric with constant curvature ¢ (see (1.6)).
However, some problems have been unsolved. In this article we present:

1. Canonical coordinates for evolutionary systems with nonlocal Hamiltonian structure
determined by the Poisson bracket (1.6). Thus, Hamiltonian structure will be written
in compact form (see for comparison (1.7)).

2. The Metric and the Momentum in canonical coordinates (see for comparison (1.9)
and (1.10)).

3. The Lagrangian representation (see for comparison (1.13)).
4. Reciprocal transformations connecting Poisson brackets (1.6) and (1.14).

5. The fourth (nonlocal) Hamiltonian structure associated with metric of constant cur-
vature for the Kaup-Boussinesq system.

Local linear-degenerated Lagrangians (Lagrangians are linear with respect to deriva-
tives of t) were studied in [8]. It means that symplectic structure is local (determined by
differential operator of arbitrary order), of course, corresponding Hamiltonian structure is
nonlocal, but not invertible in compact form (it means that in general case corresponding
differential operator has infinite set of elements). Arbitrary nonlocal Hamiltonian struc-
ture has corresponding nonlocal symplectic structure. Moreover this symplectic structure
has infinite set of elements too. It is astonish that namely in case of constant curva-
ture metric nonlocal Hamiltonian structure has local corresponding symplectic structure.
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By another words, not every nonlocal Hamiltonian structure has inverse local symplectic
structure. At first the general reciprocal transformation connecting Poisson brackets (1.6)
and (1.14) was presented by E.V.Ferapontov (see below). However, here we present one
very special case: one-parametric family of constant curvature metrics e—intimated to flat
case. It means that if in below presented reciprocal transformation anyone put € = 0, then
it will be identical transformation (Moreover in general case recalculation of all attributes
for Poisson bracket associated with metric of constant curvature (annihilators, momen-
tum and Hamiltonian) is very complicated problem not solved now. Just in our particular
case it was solved and presented below). The metric of constant curvature is well known,
however annihilators and momentum for corresponding Poisson brackets were not known
as well as Lagrangian representations. Our major aim is construction of Lagrangian rep-
resentations without constraints for nonlocal Hamiltonian structures. Here we establish a
Lagrangian representation for nonlocal Hamiltonian structure associated with differential-
geometric Poisson bracket of the first order with metric of constant curvature. This is
the first nontrivial example of nonlocal Hamiltonian structures generalizing the local one.
Lagrangian representations for Poisson brackets associated with metrics of constant curva-
ture have been obtained by application of special reciprocal transformation (see below) for
Lagrangian representations of Poisson brackets associated with metrics of zero curvature.
It is amazing, that it is possible. Usually it is not valid. If anyone try to apply arbitrary re-
ciprocal transformation for arbitrary Lagrangian density (which is 2-form), then obtained
new Lagrangian representation will not create system connected by abovementioned recip-
rocal transformation with initial system determined by initial Lagrangian representation.
It means that we do not know all Lagrangian representations convertible under reciprocal
transformation into others. However, namely in case of constant curvature metric this
problem is successfully solved in this article. Moreover, we would like to emphasize that
in case of constant curvature knowledge of annihilators and momentum is not enough for
direct reconstruction of Lagrangian representation with respect to Hamiltonian structures
associated with metrics of zero curvature. This is nontrivial problem are solved by specific
choice of annihilators (special N from all N + 1, see below). This article contains several
Sections. In Section II we formulate a theorem about canonical coordinates (Casimirs or
annihilators of Poisson brackets), where this nonlocal Hamiltonian structure will be com-
pactly presented. In Section III we present two theorems about relationship between this
nonlocal and local Hamiltonian structures. In the Section IV we present two remarkable
examples, which allow this nonlocal Hamiltonian structure. One of them is the Calogero
KdV equation related to the KdV equation by the combination of differential substitu-
tions, another is the Thrice-Modified Kaup-Boussinesq system which is related to the
Kaup-Boussinesq system by a combination of differential substitutions. In Section V we
establish a Lagrangian representation for an arbitrary evolutionary system with this non-
local Hamiltonian structure. And we show that canonical coordinates presented in Section
IT determine potential functions in this Lagrangian representation. Moreover, we show re-
lationship between this Lagrangian representation (for evolutionary system with nonlocal
Hamiltonian structure) and with Lagrangian representation for evolutionary system deter-
mined by local Hamiltonian structure. In Section VI we describe a very important example
of the first four Hamiltonian structures of the Kaup-Boussinesq system. We demonstrate
validity of infinite-dimensional analog of Darboux theorem for this Hamiltonian structures
by straightforward calculations, where every Hamiltonian structure can be presented in



Integrable systems and metrics of constant curvature 177

their canonical form ”d/dx”. In all cases we present Lagrangian representations, describe
relationships between all formulas, and present a new integrable evolutionary system con-
nected with Thrice-Modified Kaup-Boussinesq system by reciprocal transformation, which
has local Hamiltonian structure reduced from nonlocal Hamiltonian structure of aforemen-
tioned type.

To this moment we know many integrable systems possessing this nonlocal Hamilto-
nian structure. We mention here just some famous of them. These are Korteweg-de Vries
equation, Kaup-Boussinesq system, Multi-component Long-Short Wave Resonance (see
articles of Najima & Oikawa and Melnikov), Coupled KdV (see articles of Antonowicz &
Fordy) and so on. Moreover, averaged integrable systems are hydrodynamic type systems
(see articles of Dubrovin & Novikov), which possess the same type of Hamiltonian struc-
tures. The modern level of development of Hamiltonian structures (see below) needs for
introducing them into other areas of scientific creation like fields theory, theory of insta-
bility in fluid mechanics and ets. We hope that presented results can be interesting for
specialists not working in theory of integrable systems or in differential geometry as well.

2 Canonical Coordinates for the Metrics of Constant Cur-
vature

Theorem 1. The evolutionary system (1.1) (see (1.14))

0H

uy = [970: — " Tl + euld; 'ul]

has

1. Casimir functionals Hy, = [ ¢*(u)dz, where « = 1,2...N (annihilators of the Poisson
bracket (1.14)), which are determined by (see (2.1))
0H,

(990 — gl + eulo; ul] =2 =0, (2:2)

or by
Oikc™ — I'}},0nc” + €gic® = 0. (2.3)

(the system (2.3) has (N + 1) solutions. Any N of them are functionally indepen-
dent.)

2. The metric g*® in Casimirs c®(u) (see (2.3)) is

g% =g —ec*c?, (2.4)

where §O‘ﬁz’5 nondegenerated symmetric constant matriz. The metric gog (see (2.4),
where gogg®’ = 0%) is

gayc’ygﬁycy

= ; 2.5
1—eg,crc” (25)

galﬁ :gaﬁ +€

where gaﬁgﬁ” = 64. The Christoffel symbols are Fgw = £gp,C”.
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3. The first N conservation laws (see (1.12) and (2.4)) are

H
= 0,[g” g—ﬂ—i—ec F], a=1,2,..N (2.6)

4. The conservation law of the momentum

0H

py = 0:[(1 —ep)(c® 52 — F)], (2.7)

where the Momentum P = [ p(c)dz is

1 _
p= g[l —4/1— Egaﬁcacﬁ], (2.8)
which is determined by (2.6)
gaﬁﬁgp +ecp = . (2.9)
5. The conservation law of the Energy is

ap Oh Oh Oh
2 e dcP

for hydrodynamic type systems (H = [ h(c)dz) or in more general case (see (2.6))

hy = 0.(<g + %hz) (2.10)

M m—1
Oh v wgSH o 1 ,6HOH ¢
hy =0:() (—1)k8§(—3ca )M (g 6@ +ec®F) + 59 ﬁ@ﬁ+§ %),

M M
Cy)dz and F = h—>" (_1)nc§ S (—1)kgh—n o

n=1 k=n ack

where H = [ h(c,

Z7 ..

Remark I: If H = [ h(c)dz, then evolutionary system (2.1) transforms into Hydrody-
namic type system u!, = wi (w)uf, where wi(u) = ViVih + ehdl (see [4]).

Remark II: If ¢ — 0, all formulas (2.1-10) transform into the "flat” case (1.6-11).

Proof: can be obtained by straightforward calculation.

Example: Hydrodynamic type systems possessing nonlocal Hamiltonian structure
(2.1) associated with elliptic coordinates were described in [5], where all exact formulas
(Casimirs, metrics, conservation law densities) were presented too.

Theorem 2. If evolutionary system (1.1) has (N+1) conservation law densities connected
by constraint (2.8), then this system has nonlocal Hamiltonian structure associated with
metric of constant curvature.

= 0,b%(c,c,,c,,,...),

Proof: We take evolutionary system (1.1) in divergent form ¢ /Cor Cas -

y
then additional conservation law p, = 0,b(c) yields relationship 0.b(c) = gaﬁl be. It s
valid if and only if g,5b” = §5/0¢*, where ¢ = ¢*/(1 —ep) and S = [ s(q,q.,q.., ...)dz.

It means that p, = 2.[¢° (?q—% — R] and ¢ = 8Z[§O"6 c?q_%]’ where 0,R = 56(}2« q¢. Since

fq—% =(1- 5p)[5ca 507%%4505], anyone can immediately obtain (2.6) and (2.7), where
h = (1—ep)s.
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3 Reciprocal Transformation and nonlocal Hamiltonian struc-
tures.

In this Section we establish canonical reciprocal transformation between local Hamiltonian
structure (1.7) and nonlocal Hamiltonian structure (2.6).

The general reciprocal transformation between Hamiltonian structures (1.7) and (2.6)
was constructed in [6] by E.Ferapontov in 1995 for Hydrodynamic type systems

Fooand  ul = wi(u)uf (3.1)

u; = U;c(u)ua: Y z

If the first system in (3.1) has local Hamiltonian structure (see (1.7-10)), then we can
introduce the reciprocal transformation
dy = A(u)dx + B(u)dt, dz= C(u)dz+ D(u)dt, (3.2)
where

A(u) =ah+ fBp+yad” +(, B(u) = %g“”huhy + B(a"hy — h) + g hy + 1
C(u) = ah+ Bp+74,a” +¢, D(u) = %g‘“’huhy + B(a”hy, — h) + 7,5 h, + 0,

and «a, G, v, (, 1, &, B, Yo Q_“, 7 are arbitrary constants.

Theorem 3. (/6]) The Hydrodynamic type system (v,t) with local Hamiltonian struc-
ture (1.7) transforms into the Hydrodynamic type system (y, z) with nonlocal Hamiltonian
structure (2.6) if

gwj')//f}/u —2an —2B(¢ =&, (3-3)

9" = 200 + 260, §" Y, = o)+ an + B¢+ B¢
By choosing special constants in (3.3) we present particular, but more simple and more

clear

Theorem 4. The evolutionary system (z,t) with local Hamiltonian structure (1.7) trans-
forms itself into the evolutionary system (y,z) with nonlocal Hamiltonian structure (2.6)
by the reciprocal transformation

dy=dt, dz=(1+ %p)daz + %th, (3.4)

where Oyp = 0zq and q¢ = ao‘ga—Ha — F (see (1.11) and (1.12)). Then

1. h(c,c,,...) :h(a,ax,...)/(l—kip),

2
_ €

2. p=p/1+5p),
3. ¢ =a®/(1+Sp),
4. g = g“ﬁ —ecP,

6H _

_ B

5. cy = 0:[g” W—I—ECQFL

where Oy = (1 + %p)az’ ﬁ = ff_L(C,CZ, )dZ and 8ZF = %Cg
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Remark I: if ¢ — 0, then all this formulas transform into local case (see Section I).
E.V.Ferapontov have studied another particular case too

dy=dt, dz=(p+ %)dl’ + (aa% — h)dt.
However, just in our case we describe one-parameter (¢— parameter) family of metrics
of constant curvature, where if ¢ = 0 (3.4) is identical. In our case we present by above
theorem recalculation for annihilators, momentum and Hamiltonian — all that was absent
in earlier articles.

Remark II: The conditions 2. and 3. yield relationship between (2.8) and (1.10). The
inverse formulas are p = p/(1 — 5p), h = h/(1— sp), a® =c*/(1—5p).

Proof: An arbitrary conservation law for the evolutionary system (1.7) can be pre-
sented in its divergent form d§ = hdx + fdt. If we apply the reciprocal transformation
(3.4) for all (N +2) conservation laws (1.7-9) and (1.11), then we at once obtain conditions
of this theorem.

4 Remarkable examples

1. It is well-known fact (see for instance [7]) that the Calogero Korteweg-de Vries
equation (CKdV)

Uy = 0;[us + %(1 —u?)] (4.1)

has the nonlocal Hamiltonian structure (1.14) (see (2.1))

0H
wy = [0, + uu, — u,0; uy]— (4.2)
ou
where H = —% 123 : dz. However, here g” = 0. Thus, the CKdV equation has extraor-

dinary momentum P = [ 1-dz and two Casimirs Q; = [udz and Q2 = [ dz/u. Here we
introduce other particular reciprocal transformation (see (3.2), (3.3) and (4.1))

dt =dy, dr=udz+ [u,, + 23(1 —u?)]dy. (4.3)
u

Then inverse reciprocal transformation is

Wag Bw% 3 4
dy = dt, dz=wdzx+ [W ~5pt " 3Y |dt. (4.4)

2
wy = Op[— — —= — —w”| (4.5)
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This equation (4.5) has local Hamiltonian structure

6H

o (4.6)

wy = O
where (H = [ h(w,w,)dz = [h(1/u,(1/u),/u)udz = [ h(u,u,)dz) the Hamiltonian is
H= —% [Z—% + w?]dz, the Momentum is P = %Qz = %fdz/u = %fwzdx, the Casimir is
Q=P = [1-dz = [wdz and other Casimir for the nonlocal Hamiltonian structure (4.2)
transforms into trivial Casimir Q1 = [udz = [1-dx.

Here we introduce potential function z (see (1.13) and (4.4)), then the equation (4.5)
has the Lagrangian representation

1 Z:%x 3

xX
where w = z,. We can apply the reciprocal transformation (4.4) for the 2-form
2

z
Q= [zp2t + % + 23)dx A dt.

x

Then this 2-form

.
Q=lwe+ =+ w3)dz A dt,
w

where e = z; transforms into

e 1+ u?
Q=[-+—3"
U U

Judz A dy,

where dz A dt = udz A\ dy and 0, = w0, (see (4.3) and (4.4)). Thus, this 2-form

1 2
Q= [—ﬂ + #}dz/\ dy,
T, z?

where u = z, and e = —z,/z, (see (4.3)) yields the Lagrangian representation for the
CKdV equation

1 1+ a?
S == /[—@ + %]dzdy, (4.8)

2 T, 2

Thus, we have described a relationship between a Lagrangian representation for evolu-
tionary equation with local Hamiltonian structure (4.6) and a Lagrangian representation
for evolutionary equation with nonlocal Hamiltonian structure (4.2). This action (4.8)
have been established in article [8] for the Krichever-Novikov equation. However, here
we will give a generalization of this Lagrangian representation on N-component case for
evolutionary systems with nonlocal Hamiltonian structure (2.6).

2. The Thrice-Modified Kaup-Boussinesq system (see [9])
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1 1-b%)2 1-b2
Cy = 82[—§b(1+b2)+e(cbz —be.)], by = 82[—u+e(bbz+7cz)] (4.9)

Cc

(e is arbitrary constant, not curvature here!) has nonlocal Hamiltonian structure

1. 6H  ,6H
Cy = iaz[bCE + C @ — CF] (410)
1., o OH . 0H

where the Hamiltonian is H = 2 [[b(1 — b?) — 2ebc,]dz/c and O, F = %—isz + ‘%—ijcz. This
bracket is determined by the differential-geometric Poisson bracket with metric of constant
curvature (1.14)

{b(),b(=')} = i[(zﬁ —1)0, + bbs — b0 b, 6(z — ) (4.11)
(b(2), (')} = %[cb@z b, — b0 0] 5(z — )
{e(2),b(z)} = %[bc@z +bes — .07 0,82 — )
e(2), ()} = 110 + e — .07 ex] (= — ).
Since, just g'' = =1 (g2 = ¢*' = §*> = 0, e.g. det §® = 0) the system (4.13)

has extraordinary momentum P = [1-dz (compare with (2.4-2.6) and (2.8)), but three
Casimirs

Q1=/1Cb2dz, ng/bdz, ng/cdz.

These conservation law densities determine the constraint

Qa3+ =1 (4.12)

where Qo = [ ¢adz, @ = 1,2,3. The Poisson bracket (4.11) can be reduced into canonical
form (1.7) by multi-parameter reciprocal transformation (3.2) (see (3.3)). Here we can for
instance use simplest particular reciprocal transformation

1
dt=dy, dv=cdz+[- b1+ b?) + &(cb, — be,)]dy (4.13)

(see the first equation in (4.9)).Then, the inverse reciprocal transformation is

1 w3 Wy
dy =dt, dz=udr+ §[w + e 26$}dt, (4.14)
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where uc =1, b= wc and 9, = ¢d, or 9, = ud,. And we at once obtain other integrable
system

3 2
Wy 1 w

w

1
up = 581[@0—1—? — 2¢

which has local Hamiltonian structure

1. 6H 1. 6H

19,22 S 4.1
47 u W (4.16)

= 47 sw
with (H = [h(b,c,c.)dz = [ h(w/u,1/u,(1/u),/u)udzr = [ h(u,w,w,)dz) the Hamilto-
nian H = 2f[uw—%]dm, also with Momentum P = 2Q; = 2 [ q1dz = 2 [ (u?—w?)dx
(see (4.12)), two Casimirs Qy = Q2 = [bdz = [wdz, Q3 = P = [1-dz = [udx
and other Casimir for the nonlocal Hamiltonians structure (4.10) transforms into trivial
Casimir Q3 = [cdz = [1-dx.

The evolutionary system (4.16) with the Poisson bracket

{u(z),u(@)} =—{w(=),w(@)}= l5'(ac —a') (4.17)

4
has the Lagrangian representation (see (1.13) and (4.14))
1 2 — 3
S=3 /[chzt — pupr — 2P o dadt, (4.18)
Zyx
where w = .. We can apply the reciprocal transformation (4.14) for the 2-form
9 .3
Q= [222t — Paipt — 76%2 Pr _ Zppzldx A dt.
X
Then this 2-form
9 a3
Q= [ue —wv — e — uwldz A dt,
U

where e = z; and v = ¢y, transforms itself into

3
Y L L W

p . - i C—2]cdz A dy,

where dx A dt = cdz A dy (see (4.13)). Since dp = wdx + vdt = bdz + (v — be)dy, then this
2-form

3
xy - (PZQOy - 251'2’(%)7; + & - &]

xZ z xz xZ

1— 2
QO=[-— %= dz A dy,

wherec =x2,, e = —xy /2., b= ¢, and v = p,—p,x,/x, (see (4.13)), yields the Lagrangian
representation for the Thrice-Modified Kaup-Boussinesq system

1 [.1—¢? 1— 2
S = _/[ x(pzxy_'_()pzsoy_ngzz@z"i' (pz( - (Pz)]dzdy (419)
z

z z
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Remark: The Kaup-Boussinesq system has nonlocal Hamiltonian structure with de-
generated constant ¢*’matrix (see (2.4)) in coordinates (ga, q3) (see (4.12)). However, this
Poisson bracket (4.11) easily can be transformed into canonical form (2.6) with canonical
metrics (2.4), if we change variable go — 1 — ¢. Then (4.12) at once yields a Momentum
(see (2.8))

g=1—+/1—-qg3

expressed in its canonical variables Casimirs ¢; and g3 (it is easy to see, that the Momentum
P = [qdz (where ¢ = 1 — ¢2) is a linear combination of two Casimirs Q3 and Q3.).
Immediately we obtain (see (2.8)) all non-zero components of constant matrix g, g19 =
go1 = 1/2 and curvature € = 1. Thus, le = §21 = 2 and the Thrice-Modified Kaup-
Boussinesq system (4.9) can be re-written in variables (r,¢) (see (2.4) and (2.6)), where
rc+b% =1 (see (4.12))

1 r2 r2c,+(2-re)r,

Ty = = €
v =3 A T T

3 2
|, ey = —%82[(2—7“0)\/1—7“0—1—5(2TC— ici_tccrz]

This system has nonlocal Hamiltonian structure (2.6)

1 2 0H 0H 1 0H 0H
Ty = 48 [—r? 5 +(2 - 0)6_ +rF], ¢, = 1@[(2 —r¢)— — c*— +cF),
where H = 2 [ /1 —rc(r — 2ec,/c)dz and 0,F = 5 Hp. 4 %ch (see (4.10)). Thus, the
Poisson bracket (4.11) determined by Lagrangian representation (4.19) for the evolutionary
system (4.9) yields the canonical Poisson bracket (2.4)

—r20, —rr, + rzé?;lrz] 5z — 2,

[(2—=7rc)0, —cry + TZOZ_ICZ] §(z—2'),

[(2=7c)0, —re, + czﬁz_lrz] 5z —2"),

NN N

—c0, — cc, +¢,07 ') 8(2 — 2).

5 Lagrangian Representation
Major result:

Theorem 5. The evolutionary system (1.1) with nonlocal Hamiltonian structure (see
(2.1)) determined by differential-geometric Poisson bracket of the first order associated
with metrics of constant curvature (1.14) has the Lagrangian representation

v 1 v
S = / gcx A Y. Iyt §gay(70?90y — W2, 0z, Tzzs P2z, )| ddy (5-1)
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Proof: From variational derivatives 6S/dp® = 0, 6S/dx = 0 and compatibility
condition (z.), = (xy). , respectively, we obtain evolutionary system on (/N +2) equations

vy 40, (pv® — g™ dH/6v") = 0, wy+0.(pw — 6H/éu) = 0, uy+0.(pu) = 0, (5.2)
where u = x,, p=—xy/z;, v*=¢2, H= [h(u,v,u,,v,,..)dz and constraint
1 = 2uw + g, v*". (5.3)

The system (5.2) is over-determined system. Thus, from the obvious condition 9y (2uw +
o V0”) = 0 (see (5.3)) we obtain an explicit expression of the function p

— g a’” _F 5.4
10 U (5U/ + v 5va ) ( )
where 0, F = g)—Havg + %—i]uz (see (1.12)).

At first we introduce new variables (p, ¢, v) by

u=1l-p—q, 2w=1-p+gq, ¢*=0", (5.5)
then all partial derivatives are

(9_h__ 1—p @ ﬂ_@_ Jord” 6_h (5.6)
ou  1—p—qdqg O 0¢¢ 1—p—qdq '

For simplicity and without loss of generality it is sufficient, if we will study just the
hydrodynamic type case, where H = [ h(u,v)dz. Then (see (5.4))

1
oh . Oh oh

@y on 5.7
P (361 q* ) 1-p—qdq 5-1)
and system (5.2) transforms itself into
oh oh oh oh oh oh
0= L 2y =0 (L Oy 5.8
qy=0] 94 q(q 94 +q 9 ) 4y =0:[g og ¢ (g 94 +q 90 )l (5.8)
This system has the momentum (see (5.3) and (5.5))
p=1—14+¢ —g,,0°¢ (5.9)
(thus, curvature € = 1, see (2.8)) and conservation law of momentum is
Oh oh
=9.[(1 - il a7 ). 5.10
b= 010 P)ag + g — ) (5.10)

Here we introduce new variables ¢ = ¢, ¢® = ¢% « = 1,2...N. Then the system (5.8)
is exactly the system (2.6) with constant matrices

-av -1 0 - -1 0
= o |y Gy = ) . 5.11
g < 0 g > g < 0 gay> (5:11)
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Remark: If we introduce the reciprocal transformation (see (5.2))
dt =dy, dr=udz— pudy (5.12)
we can apply (5.12) for 2-form (see (5.1) and Section IV)
1—g,v%" 1
% + §§al,v°‘e” — h(u,v,uy,v,,...)|dz A dy,
where e® = ¢f. Then this 2-form (where dx A dt = udz A dy, see (5.12))

Q=[-p

2 P o, v
2y — 1 _
0= [ Il 4 — 5 002 — @) — 2ehlda A dt,
22, 22,
where z, = 1/u, z =p, vV =%z, e* =@ — 2,0 /z,, determines the action (see
(1.13))
S = / —2g2t + ga,/goxcpt — W2z, P Zaw Py -.)|dadt (5.12)

for the evolutionary system (1.1) with local Hamiltonian structure (1.7) and constant
metrics (5.11), where (see (1.7)) a® = 2, a® = ¢2 (a = 1,2...N) and h = a’h (H =
[hdz = [ hdz = [ a®hdz).

6 Kaup-Boussinesq system and its nonlocal Hamiltonian
structure
Many different integrable systems have different local and nonlocal Hamiltonian structures.

For example the Korteweg-de Vries equation has two local Hamiltonian structures and all
others are nonlocal. The Kaup-Boussinesq system (see for instance [9])

1
Uy = 82[57)2 + 7, Ny = Oz[vn + 52Uzz]> (6.1)
has the three local Hamiltonian structures determined by following Poisson brackets
{U777}1 = {ﬁaU}l = 6/(’2 - Zl)? (62)
! / 1 /
{U>U}2 =0 (Z -z )7 {U777}2 = 5(“82 + UZ)(S(Z -z )7 (63)

1 1
{n,v}e = Ju0'(z=2), (e =€0"(2 = &) + (n0: + 5n2)0(2 = ),

(v, v}s = (V0. + %Uz)a(z _ ), (6.4)
{v,n}s =€28" (2 — ) + i[(v2 +4n)0; + (v* 4 20).0(z — 2),
[0 v)s = 26" (2 — )+ 117 + 402 + 216z — 2),

2 1
{n,n}z= %[21}32—}—31},23?—}—31)“32+UZZZ]5(Z - Z')+[v773z+§(v77)z]5(2 - Z/)
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and nonlocal Hamiltonian structures, where the first of them is

{v,0}4 = 26" (2 — 2')+ [(3U +4n)0,+= (3U +4n), — 0.0, 0.]6(2 — 2),

1
{v,n}s = %[31}83 + 41;282 +30,,0, + v,.,]0(2 — ') + Z[(Gvn + 503)83 +
+ (;U v, + 4nu, + 3un,) — 0,0, 'n.]8(2 — 2), (6.5)
2 1 1
{n,v}s = —[31}33 + 50,07 4+ 40,.0, + v...]0(z — 2') + Z[(Gvn + 51)3)@ +

+ (20, + 3vn,) — 0.0, 0.]6(2 — 2),
2
3
{m,mba = 16" (2 = ) + = [(8n + 30%)0% + 5 (80 + 30%),02 +
1
(87 + 3v%).. + 300,90, + [(217 + v?) .. + VUL, — §vg]z]5(2 -2+

4[(4?7 +302)0, + = (4% + 30%n), — 1,07 'n.]6(2 — ).

2(
The first Miura transformation
n=(v?—d®)/4—ca, (6.6)
connects the Kaup-Boussinesq system (6.1) and the Modified Kaup-Boussinesq system
ay = 82[%1)@ —evy], vy =0, [ (302 — a?) — ea.], (6.7)
which has two local Hamiltonian structures determined by the Poisson brackets

{a,a}1 = =8 (z = 2), {v,0}1 =8§(z—2"), (6.8)

{a,a}s =0, {a,v}s = —cd"(z— ') + %(a@z +a)d(z — ), (6.9)
{v,alg =ed"(z = 2') + %aé’(z —2), {v,v}s = (v0, + %Uz)é(z -2

and nonlocal Hamiltonian structures, where the first of them is
{a,al3 — 26" (2 — 2') + %[aﬂaz + aa, — a,0; a,]0(z — 2'), (6.10)
{a,v}3 = [f%(2v8§+3vzaz+vzz)+i(2av8z+avz+2vaz — a,0;'v,)]6(2-2"),
{v,a}3 =¢(vo, + %Uz)é’(z -2+ i[2av8 +av, —v,0; 'a,)6(z — 2),
{v,0v}3 = %" (2 — 2')+ [(SU +4n)0,+= (3U +4n), — 0,0, v,])6(2 — 7).
The second Miura transformation

v=ab+ 2eb, (6.11)
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connects the Modified Kaup-Boussinesq system (6.7) and the Twice-Modified Kaup-Boussinesq
system

by = %(%[a(b2 — 1) + 2ebb,], ay= %QZ[QQI) — 2¢ba, — 4¢%b..], (6.12)
which has one local Hamiltonian structure determined by the Poisson bracket

{bya} = %5’(,2 _ 2, {abh = %5%2 _ (6.13)
and nonlocal Hamiltonian structures, where the first of them is

{b,b}s = %[(52 _1)0, + b, — b0 b.]8(z — ), (6.14)

(b,a}s = %(b@z ) (2 — ) + i[ab@z +ab, — b0 a,)8(z — 2'),

{a, b} = — 5 (00 +5.)0'(= — ) + i[ab@z +ba, — a,07'b)5(2 — ),

{a,a}s = —€%6" (2 — 2/) + i[cﬂ@z + aa, — a,0; a,]0(z — 2'),
The third Miura transformation (see for comparison (4.12))

ac+b* +2ec, =1 (6.15)

connects the Twice-Modified Kaup-Boussinesq system (6.12) and the Thrice-Modified
Kaup-Boussinesq system (4.9) which has just nonlocal Hamiltonian structures, where the
first of them is determined by the Poisson bracket (4.11).

Thus, the second local Hamiltonian structure (see (6.3)) of the Kaup-Boussinesq system
(6.1) is the first local Hamiltonian structure (see (6.8)) of the Modified Kaup-Boussinesq
system (6.7). The third local Hamiltonian structure (see (6.4)) of Kaup-Boussinesq sys-
tem (6.1) is the second local Hamiltonian structure (see (6.9)) of the Modified Kaup-
Boussinesq system (6.7), which is the first local Hamiltonian structure (see (6.13)) of the
Twice-Modified Kaup-Boussinesq system (6.12). Moreover, the Kaup-Boussinesq system
(6.1) has fourth nonlocal Hamiltonian structure (see (6.5)), which is the third nonlocal
Hamiltonian structure (see (6.10)) of the Modified Kaup-Boussinesq system (6.7), also
which is the second nonlocal Hamiltonian structure (see (6.14)) of the Twice-Modified
Kaup-Boussinesq system (6.12), as well which is the first nonlocal Hamiltonian structure
(4.10) (see (4.11)) of the Thrice-Modified Kaup-Boussinesq system (4.9) (see [9]). Thus,
the Kaup-Boussinesq system (6.1) has four different Lagrangian representations

1
S1= [0 + 92uf) — ha (0, 02, 92 dzdy, (6.15)
1 1
S [1-50@ 0P + GO0 — ha(w®, 600, v D)dzdy (6.16)
1
S = [15 00 + v6f9) — ha(u®, 0, 9] dzdy, (6.17)

(4)2
1—1, 1
Si= / [Tlﬁ)w;@ + 5 — b (1, 90, 9D dzdy, (6.18)

z
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where 1 = ngl), v = 1/122), a = ¢§3), b= ¢£4), c= ¢£5) and Hy = [ hydz. Moreover, we
have very interesting hierarchy:

1. The first Hamiltonian structure (see (6 2)) of the Kaup-Boussinesq system (6.1) has
the Hamiltonian Hy = 5 f —e20? 4+ v + 1? dz, the momentum Hz = J vndz and
two flat coordinates (Casimirs) Hy = 2 [ ndz, Hy =2 [vdz.

2. The first Hamiltonian structure (see (6. 8)) of the Modiﬁed Kaup-Boussinesq system
(6.7) has the Hamlltoman Hs = [vndz = 1 [[v(v? —a?) —4eva.]dz, the momentum
Hy =2 [ndz = 1 f a*]dz and two flat coordinates Hy = 2 [vdz, H_1 = [ adz.

3. The first Hamiltonian structure (see (6.13)) of the Twice-Modified Kaup-Boussinesq
system (6.12) has the Hamiltonian Hy = § [[v? —a?|dz = [[—3a?(1—b?) + 2cabb, +
2e2b%]dz, the momentum

Hy =2 [vdz =2 [ abdz and two flat coordinates H_1 = [ adz, H_o = [ bdz.

4. The first Hamiltonian structure (4.10) of the Thrice-Modified Kaup-Boussinesq sys-
tem (4.9) has the Hamiltonian Hy = 2 [abdz = 2 [[b(1 — b?) — 2ebc,]dz/c, the
momentum Hy = [ 1-dz and two ”geodesic” coordinates H_y = f bdz, H_3 = [ cdz.

The generalization of the Darboux theorem on infinite-dimensional case signifies
that every (local or nonlocal) Hamiltonian structure of integrable system can be
reduced into canonical form ”d/dx”. For instance, it means that every Hamiltonian
structure of the Kaup-Boussinesq system possesses a Lagrangian representation (see
(6.15-18)).

Thus, here we present canonical representation for the first four Hamiltonian structures
of the Kaup-Boussinesq system (6.1) (see above)

v — 9.0 _ 5 0H
Yy 25777 77y_ 261}7

§Hs S Hs

ay = =055 o= O
1. 6H, 1. 6H,
by=3%7%5, w=3% g5
_ g 0H Ly 0
U= %5 T T % sy

which are determined by the Poisson brackets (6.2), (6.8), (6.13) and (4.16), respectively.

Conclusion.

In this article we established the Lagrangian representation for an evolutionary system,
where a nonlocal Hamiltonian structure is determined by the differential-geometric Poisson
bracket of the first order with metric of constant curvature. Also, we presented canonical
coordinates for the first four Hamiltonian structures of the Kaup-Boussinesq system, where
every of them is in canonical form ”d/dx” with a Lagrangian representation. In theory
of Hamiltonian structures for dispersive systems just two differential-geometric Poisson
brackets of first order allow special coordinates (annihilators), where they are the exactly
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the same as for hydrodynamic type systems. It means that: if anyone start from Poisson
bracket

(i (@), ub (@)} = [aif o + a0~ + .. + aflo(x — o), (c.1)

where all functions (aék) are functions with respect to field variables u’ and their deriva-
tives, then in some cases by special differential substitutions this expression may be trans-
form into canonical (see (1.7) and above first three local Hamiltonian structures for Kaup-
Boussinesq system, first two local Hamiltonian structures for Modified Kaup-Boussinesq
system, first local Hamiltonian structure for Twice-Modified Kaup-Boussinesq system)

{a%(z),a’(2')} = §°P8' (x — o). (c.1a)

It means that Poisson bracket determine Hamiltonian structure for dispersive system re-
ducible to canonical form ”d/dx”. If anyone start from Poisson bracket

{ul(z),u* (2} = [adFON + a*ON 1 + .. + i + cul 0 k)6 (x — o), (c.2)
where all functions (aé.k) are functions with respect to field variables u’ and their deriva-
tives, then in some cases by special differential substitutions this expression may be
transform into canonical Poisson bracket associated with metric of constant curvature
(see (1.14), fourth Hamiltonian structure for Kaup-Boussinesq system, third Hamiltonian
structure for Modified Kaup-Boussinesq system, second Hamiltonian structure for the
Twice-Modified Kaup-Boussinesq system and first Hamiltonian structure for the Thrice-
Modified Kaup-Boussinesq system)

{c*(x), P (@)} = [(§° — ec®c®)D, — ec®c + 0 D)o (x — o). (c.2a)
If anyone start from Poisson bracket

{u'(2),u" (@)} = [0 0y + aO) ™" + .. + a + capuw™' 0, WMo (x — o),
where all functions (aék, w®?) are functions with respect to field variables u’ and their
derivatives, then not exist any differential substitutions possessing reduction to
differential-geometric nonlocal Poisson bracket of the first order (see [10]). Thus,
two Poisson brackets of arbitrary order (see (c.1 and c.2) may be reduced into differen-
tial geometric Poisson brackets of the first order arising in theory of hydrodynamic type
systems (see [2], [4] and [10]). In next article, we will describe the infinite-dimensional
analogue of Darboux theorem for all other nonlocal Hamiltonian structures for the Kaup-
Boussinesq system and we will construct their Lagrangian representations. In this case we
shall describe all types of nonlocal Hamiltonian structures where corresponding symplectic
structures are local. Theory of more complicated nonlocal Hamiltonian structures were
established in [10] and [11]. Our statement is that every nonlocal Hamiltonian structure
determined by the differential-geometric Poisson bracket of the first order (see [10]) has a

Lagrangian representation. It means that every integrable system like Kaup-Boussinesq
system has an infinite set of Lagrangian representations (see for instance [12]).
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