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Abstract

It is shown here that the possibility of the existence of new (2 + 1) dimensional inte-
grable equations of the modified KdV equation using the Painlevé test.

1 Introduction

A central and active topic in the theory of integrable systems is to study as many higher
dimensional integrable systems as possible. In this paper we will give (2 + 1) dimensional
integrable equations of the modified KdV(mKdV) equation via the Painlevé test. Let us
first recall here that the mKdV equation in (1 + 1) dimensions reads

vt + vxxx +
3
2
v2vx = 0, (1)

where v = v(x, t) and a subscript denotes partial differentiation, e.g., vx = ∂v
∂x , vxx = ∂2v

∂x2

etc. Higher dimensional integrable equations are not usually unique, in the sense that
there exist several equations that reduce to a given one under dimensional reduction. It
is known, for instance, that

vt + vxxz + v2vz + vx

(
∂−1

x vvz

)
= 0 (2)

and

vt + vxxx +
3
4
vx∂

−1
z

{
v

(
∂−1

z vx

)
x

}
+
3
4

(
∂−1

z vx

)(
v∂−1

z vx

)
x

− 3
4
vx

(
∂−1

z vx

)2

= 0 (3)
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are the higher-dimensional mKdV equations[1, 2, 3], where v = v(x, z, t) and ∂−1
x v ≡∫

vdx. It is easy to check equation (2) and (3) are reduced to equation (1), setting z = x.
Equation (2) has a generalized form given by

vt + vxxz +Av2vz +Bvx

(
∂−1

x vvz

)
+Cvvx

(
∂−1

x vz

)
= 0, (4)

where A, B and C are numerical parameters. Only if

A+B/2 + C �= 0, (5)

one can check setting z = x reduces equation (4) to the mKdV equation, which is different
from the coefficients of equation (1). However nobody knows whether equation(4) is
integrable or not.
In [4], Ablowitz, Ramani and Segur presented the following conjecture: every nonlinear

ordinary differential equation (NODE) obtained by an exact reduction of a completely
integrable nonlinear partial differential equation (NPDE) possesses the Painlevé property,
namely its general solution can have no movable singular points other than poles. They
propose to exploit it as a test (the Painlevé test) whether a given NPDE is completely
integrable. In [5] Weiss, Tabor and Carnevale proposed a more direct approach without
recourse to the reduction to an NODE. Their test is to construct solutions to the NPDE
having poles and sufficient number of arbitrary functions. It is an interesting problem to
apply this integrability test to higher- dimensional equations. Our goal in this paper is to
show equation (4) with (5) satisfies the Painlevé property possibly under some conditions
on the numerical parameters A, B and C.
This paper organized as follows. In Section 2 we investigate the conditions on the

numerical parameters using so-called the WTC method. As a result, we will obtain 3
conditions or Case (i)-Case (iii). In Section 3 we briefly introduce the Soliton solution for
Case (i). Section 4 is devoted to summary.

2 A Search for integrability– The Painlevé Approach

In this section we perform the Painlevé test as formulated by Weiss, Tabor and Carneval
(so-called the WTC method) [5] for finding the conditions for three numerical parameters
of equation (4). For that we need to rewrite equation (4) for taking away the term of ∂−1

x

of it. A suitable system to be analyzed is

ux −Bvvz = 0, (6)
wx − Cvz = 0, (7)
vt + vxxz +Av2vz +Buvx + Cvvxw = 0, (8)

with the condition

A+B/2 + C �= 0, (9)

where u = u(x, z, t), v = v(x, z, t) and w = w(x, z, t). The Painlevé test essentially
amounts to find solutions to equations (6), (7) and (8) having the forms

u =
∑
j=0

ujφ
j+α, v =

∑
j=0

vjφ
j+β, w =

∑
j=0

wjφ
j+γ (10)
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with the movable singularity manifold determined by

φ = φ(x, z, t) = 0, φx �= 0, (11)

where uj = uj(x, z, t), vj = vj(x, z, t), wj = wj(x, z, t), u0 �= 0, v0 �= 0, w0 �= 0 and α-γ are
negative integers (so-called leading order). Here φ and uj(x, z, t)-wj(x, z, t) are analytic
functions of (x, z, t) in a neighborhood of the manifold (11). Note that the solutions (10)
contain a sufficient number of arbitrary functions. By the leading order analysis, namely
requiring

u ∼ u0φ
α, v ∼ v0φ

β , w ∼ w0φ
γ , (12)

we obtain

α = −2, β = γ = −1, (13)

as leading orders with

u0 =
B

2
φz

φx
v2
0, w0 = C

φz

φx
v0 and v2

0 = − 6φ2
x

A+B/2 + C
. (14)

Thus the substitution of the solutions (10) with (13) into equations (6)-(8) leads to three
recursion formula. And then collecting terms of the formula involving uj-wj , it is found
that

(j − 2)φxuj −B(j − 2)vj = f1, (15)
(j − 1)φxwj − C(j − 1)φzvj = f2, (16)
v0φxuj −G(j)vj + v2

0φxwj = f3, (17)

where

G(j) =
12A+ 6C + j(A+B/2 + C)(j − 1)(j − 5)

A+B/2 + C
(18)

and fi (i = 1, 2, 3) is each a function of uj−1, · · · , u0, vj−1, · · · , v0, wj−1, · · · , w0 and φ. In
matrix form, equations (15)-(17) are written as

 (j − 2)φx −B(j − 2) 0
0 − C(j − 1)φz (j − 1)φx

v0φx −G(j) v2
0φx





 uj

vj

wj


 =


f1

f2

f3


 . (19)

Resonances, which are values of j for which the recursion formula is not defined, occurs
when

det

∣∣∣∣∣∣
(j − 2)φx −B(j − 2) 0

0 − C(j − 1)φz (j − 1)φx

v0φx −G(j) v2
0φx

∣∣∣∣∣∣ = 0. (20)

Trivial algebra yields the resonances

j = ±1, 2, 3, 4. (21)

The resonance j = −1 in (21) corresponds to the arbitrary singularity manifold φ =
0. To complete the Painlevé test one must verify the compatibility conditions at the
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resonances. Explicitly this means that equations (15)-(17) must vanish identically with no
constraints on the arbitrary functions φ and one of {uj , vj , wj} associated with j = 1, 2, 3, 4
respectively . To simplify the calculations, we used the reduced manifold ansatz of Kruskal
(see [6] for details);

φ = x+ ρ(z, t), uj = uj(z, t), vj = vj(z, t) and wj = wj(z, t). (22)

At this point, we have narrowed down our investigation of possible the Painlevé property
to the following:

Case (i) A = B �= 0: The resonance conditions at j = 1, 2, 3, 4 require that one of
{u1, v1, w1}, one of {u2, v2, w2}, one of {u3, v3, w3} and one of {u4, v4, w4} should be
arbitrary respectively. This case corresponds to equation (2), which is different from
the coefficients.

Case (ii) A = B + C and 3B + 4C �= 0: The resonance conditions at j = 1, 2, 4
require that one of {u1, v1, w1}, one of {u2, v2, w2} and one of {u4, v4, w4} should be
arbitrary respectively. And v3 can be chosen an arbitrary function corresponding to
j = 3.

Case (iii) A = B + C/2 and B + C �= 0: The resonance conditions at j = 1, 3, 4
require that one of {u1, v1, w1}, one of {u3, v3, w3} and one of {u4, v4, w4} should be
arbitrary respectively. And v2 can be chosen an arbitrary function corresponding to
j = 2.

We usedMATHEMATICA to handle the calculation for the existence of arbitrary func-
tions. Therefore equation (4) has the Painlevé property only for above parametric restric-
tion Case (i)-Case (iii).

3 Soliton solution of Case (i)

For Case (i) or A = B, equation (4) is written as

vt + vxxz +Av2vz +Avx

(
∂−1

x vvz

)
= 0, (23)

with A being a non-zero numerical parameter.
This equation has Soliton solution [2]. Let us in this section mention briefly them.
For that we describe this equation in terms of the coupled system,

ρx +Av2 = 0, (24)

vt + vxxz − ρxvz − 1
2
vxρz. (25)

By the transformation of the dependent variables

v =
[
log

(
F

G

)]
x

(26)

and

ρ =
[
log(FG)

]
x

, (27)
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then equations (24) and (25) are reduced to the bilinear forms [2],

D2
xF ·G = 0 (28)
and
(Dt −D2

xDz)F ·G = 0, (29)

where Hirota’s derivative D operating on F ·G is defined by

Dn
xF (x) ·G(x) ≡ (∂x1 − ∂x2)

nF (x1)G(x2) |x1=x2=x . (30)

N soliton solution to equations (28) and (29) are speculated from the conventional Hirota’s
direct method,

F = 1 +
N∑

n=1

∑
NCn

ηi1···in exp(λi1 + · · ·+ λin), (31)

G = 1 +
N∑

n=1

∑
NCn

(−1)nηi1···in exp(λi1 + · · ·+ λin), (32)

λj = pjx+ qjz + rjt+ sj , (33)
qj = p2

jqj , (34)

ηj,k =
(pj − pk)2

(pj + pk)2
, (35)

ηi1···in = ηi1,i2 · · · ηi1,in · · · ηin−1,in . (36)

where pj , qj , rj and sj are arbitrary constants. In [1, 7, 8], it was shown that equation (23)
has also the Lax pair.

4 Summary

The present analysis shows that equation (4) passes the Painlevé test in the sense of WTC
method with Kruskal’s ansatz only under Case (i)-Case (iii). Case (i) corresponds to
equation (2). Except for Case (i), the Lax pair, Hirota’s bilinear form and Soliton solution
for equations of Case (ii) and Case (iii) have not been constructed yet. Further study on
this topic continues.
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