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Abstract

Adjoint symmetry constraints are presented to manipulate binary nonlinearization,
and shown to be a slight weaker condition than symmetry constraints in the case of
Hamiltonian systems. Applications to the multicomponent AKNS system of nonlinear
Schrödinger equations and the multi-wave interaction equations, associated with 3×3
matrix spectral problems, are made for establishing their integrable decompositions.

1 Introduction

Symmetry constraints are of particular significance in the theory of binary nonlineariza-
tion [1, 2]. It is due to symmetry constraints that the so-called constrained flows, both
spatial [3] and temporal [4], possess beautiful properties such as separated variables [5, 6]
and the Liouville integrability [7]. Therefore, a pair of spatial and temporal constrained
flows provides a good example of integrable decompositions [8] and the resulting potential
constraints offer the Bäcklund transformations [9] for the system of evolution equations
under consideration. Applications of symmetry constraints have been successfully made
for various soliton hierarchies [7]-[12].

A non-Lie type symmetry, generated from the variational derivative of the spectral
parameter, is essential in making symmetry constraints for systems of evolution equations
associated with spectral problems [11, 12]. However, for non-Hamiltonian systems of
evolution equations, it is not natural or even impossible to generate such a symmetry
from the associated spectral problems. Therefore, we need to put forward a good theory
for exposing intrinsic characteristics of binary nonlinearization.

In this article, we will present an exceptional explanation for binary nonlinearization
from the adjoint symmetry point of view. The variational derivative of the spectral pa-
rameter will be shown to be an adjoint symmetry of the underlying system of evolution
equations in the isospectral case. Moreover, we will show that all we need in the process of
nonlinearization is just a kind of adjoint symmetry constraints. This allows us to manip-
ulate nonlinearization without having to compute any non-Lie type symmetry. Therefore,
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adjoint symmetry constraints provide a good basis of the theory of binary nonlineariza-
tion for both Hamiltonian and non-Hamiltonian systems of evolution equations. Moreover,
for a Hamiltonian system of evolution equations, adjoint symmetries automatically yield
symmetries of the same system under the Hamiltonian transformation, and thus, adjoint
symmetry constraints generate symmetry constraints which lead to the same potential de-
composition. In this sense, adjoint symmetry constraints have broader applicability than
symmetry constraints.

More specifically, we are going to present a general scheme to carry out adjoint symme-
try constraints for soliton equations associated with square matrix spectral problems. Two
applications will be made for the multicomponent AKNS system of nonlinear Schrödinger
equations and the multi-wave interaction equations associated with two 3×3 matrix spec-
tral problems, along with their integrable decompositions. Some concluding remarks are
given in the last section.

2 Adjoint symmetry constraints

2.1 Preliminaries

Let us assume that we have a system of evolution equations

ut = K(t, x, u), u = (u1, · · · , uq)T . (2.1)

For the sake of simplicity of exposition, we restrict our discussion to the 1+1 dimensional
case, i.e., the case of the time and space variables t and x being scalar. Moreover, the
inner product for r-dimensional vector functions is assumed to be taken as

〈Y, Z〉r =
∫

Ω

r∑
i=1

YiZi dx, Y = (Y1, · · · , Yr)T , Z = (Z1, · · · , Zr)T , (2.2)

where Ω = (0, T ) if u is supposed to be periodic with period T , or Ω = (−∞,∞) if u is
supposed to belong to the Schwartz space. For convenience, we often use the notation

〈Y, Z〉 = 〈Y, Z〉q,
∫

F dx =
∫

Ω
F dx,

if there is no confusion, and the existence is assumed to be guaranteed for any required
objects.

Definition 1. For any object X = X(u) depending on u, the Gateaux derivative X ′ of
X at a direction Y with respect to the potential u is defined as follows

(X ′Y )(u) = X ′(u)[Y (u)] =
∂X(u+ εY (u))

∂ε

∣∣∣∣
ε=0

. (2.3)

Definition 2. Let Φ be an operator transforming r-dimensional vector functions to s-
dimensional vector functions. The adjoint operator of Φ, denoted by Φ†, transforming
s-dimensional vector functions to r-dimensional vector functions is defined through

〈Φ†Y, Z〉r = 〈Y,ΦZ〉s, (2.4)

where 〈·, ·〉r and 〈·, ·〉s are the corresponding inner products determined by (2.2).
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For any r-dimensional vector function X = X(u), its Gateaux derivative X ′ can be
viewed as an operator transforming q-dimensional vector functions to r-dimensional vector
functions: X ′ : Y �→ X ′Y , and the adjoint operator (X ′)† of X ′ can be viewed as an
operator transforming r-dimensional vector functions to q-dimensional vector functions.

If we have X = X(t, x, u, ux, · · · , u(n)), where u(n) denotes the nth order spatial deriva-
tive of u, i.e., X only depends on t, x and spatial derivatives of u up to some finite order,
then X is called to be local, and we often write X = X[u]. It is well-known that for any
local vector function X = X[u] = (X1, · · · , Xr)T , its Gateaux operator can be computed
as follows

X ′ = (Vj(Xi))r×q =


V1(X1) V2(X1) · · · Vq(X1)

V1(X2) V2(X2) · · · Vq(X2)

...
...

. . .
...

V1(Xr) V2(Xr) · · · Vq(Xr)

 , Vi(Xj) =
∞∑

k=0

∂Xj

∂u
(k)
i

∂k,

(2.5)

where ∂ = ∂/∂x and u
(k)
i = ∂kui, and thus, the adjoint operator (X ′)† of X ′ can be

determined by

(X ′)† = (X ′)†(u) = (V †
i (Xj))q×r, V †

i (Xj) =
∞∑

k=0

(−∂)k
∂Xj

∂u
(k)
i

. (2.6)

For example, if X = u1u2 + u2
1,x, then we have

X ′ = (u2 + 2u1,x∂ , u1), (X ′)† = (u2 − 2u1,xx − 2u1,x∂ , u1)T .

Definition 3. For a functional H̃ = H̃(u), its variational derivative δH̃
δu is defined by

〈δH̃
δu

,X〉 = H̃ ′[X], (H̃ ′[X])(u) = H̃ ′(u)[X(u)]. (2.7)

A q-dimensional vector function is called gradient if it can be written as the variational
derivative of a functional, and the functional is called a Lagrangian of the vector function.

It is known that a q-dimensional vector function X = X(u) is gradient iff its Gateaux
derivative operator X ′ is symmetric, i.e., (X ′)† = X ′. If H̃ =

∫
H dx and H is local, then

the variational derivative δH̃
δu can be computed as

δH̃

δu
=

( ∞∑
k=0

(−∂)k
∂H

∂u
(k)
1

, · · · ,
∞∑

k=0

(−∂)k
∂H

∂u
(k)
q

)T
. (2.8)

If X = (X1(u), · · · , Xq(u))T is local and gradient, then its Lagrangian can be given by

H̃ =
∫

H dx, H =
∫ 1

0
〈X(λu), u〉 dλ.
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In particular, given H̃ =
∫
H dx, H = 2u1u2,x + u2

2 + u4
3,x, we have

δH̃

δu
= (2u2,x ,−2u1,x + 2u2 ,−12u2

3,xu3,xx)T .

If we are given X = (6u2
1 + u2,x ,−u1,x)T , then

X ′ =

[
12u1 ∂

−∂ 0

]
,

and thus (X ′)† = X ′ and its Lagrangian is computed as

H̃ =
∫

H dx, H =
∫ 1

0
〈X(λu), u〉 dλ = 2u3

1 +
1
2
u1u2,x − 1

2
u1,xu2.

Definition 4. A q-dimensional vector function X = X(u) is called an adjoint symmetry
of the system of evolution equations (2.1), if it satisfies the adjoint linearized system

(X(u))t = −(K ′(u))†X(u) (2.9)

when u solves ut = K[u]. A conservation law of the system of evolution equations (2.1) is
given by

Ht + Fx = 0, H = H(u), F = F (u), (2.10)

where H and F are scalar functions and u solves ut = K[u], of which H is called a
conserved density of (2.1) and F , a conserved flux of (2.1) associated with H.

Any linear combination of adjoint symmetries (or conserved densities) of (2.1) is again
an adjoint symmetry (or a conserved density) of (2.1). The following result just needs a
direct computation.

Proposition 1. Let H̃(u) =
∫
H(u) dx. Then the function H = H(u) is a conserved

density of the system (2.1) iff δH̃
δu is an adjoint symmetry of the same system (2.1).

2.2 General scheme

Let us now show the structure of soliton equations which associate with two square matrix
spectral problems

φx = Uφ = U(u, λ)φ, (2.11a)

φtn = V (n)φ = V (n)(u, ux, · · · ;λ)φ, (2.11b)

where n ≥ 0, λ is a spectral parameter, and U and V (n) are two square matrices, called
spectral matrices. If the Gateaux derivative U ′ of U is injective, then under the isospectral
condition

λtn = 0, (2.12)
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zero curvature equations

Utn − V (n)
x + [U, V (n)] = 0 (2.13)

will usually determine a hierarchy of soliton equations with a Hamiltonian structure:

utn = Kn(u), Kn = JGn = J
δH̃n

δu
, H̃n =

∫
Hn dx, (2.14)

where J(u) is a Hamiltonian operator and H̃n(u) is a Hamiltonian functional. Obviously,
the compatability conditions of the adjoint spectral problem and the adjoint associated
spectral problems

ψx = −UT (u, λ)ψ, ψtn = −V (n)T (u, λ)ψ, (2.15)

determine the same soliton hierarchy (2.14).
It is known (for example, see [12]) that

δλ

δu
= E−1ψT ∂U(u, λ)

∂u
φ, E = −

∫
Ω
ψT ∂U(u, λ)

∂λ
φ dx,

where E is called the normalized constant. Therefore, based on the above proposition, if
the functionals H̃m are assumed to be conserved, we have the following common adjoint
symmetries:

Gm, ψT ∂U(u, λ)
∂u

φ (2.16)

for the soliton hierarchy (2.14), since λ = λ(u) is conserved.
Let us go on to introduce N distinct eigenvalues λ1, · · · , λN , and so we have

φ(s)
x = U(u, λs)φ(s), ψ(s)

x = −UT (u, λs)ψ(s), 1 ≤ s ≤ N, (2.17)

φ
(s)
tn = V (n)(u, λs)φ(s), ψ

(s)
tn = −V (n)T (u, λs)ψ(s), 1 ≤ s ≤ N, (2.18)

where the corresponding eigenfunctions and adjoint eigenfunctions are denoted by φ(s)

and ψ(s), 1 ≤ s ≤ N . Fix an adjoint symmetry Gm0 , and then we can define the so-called
binary adjoint symmetry constraint

Gm0 =
N∑

s=1

Esµs
δλs

δu
=

N∑
s=1

µsψ
(s)T ∂U(u, λs)

∂u
φ(s), (2.19)

where µs, 1 ≤ s ≤ N, are arbitrary nonzero constants, and Es, 1 ≤ s ≤ N , are N
normalized constants. The right-hand side of the binary adjoint symmetry constraint
(2.19) is a general linear combination of N adjoint symmetries δλs/δu, 1 ≤ s ≤ N . Such
an adjoint symmetry is not Lie type, since φ(s) and ψ(s) can not be expressed in terms
of x, u and spatial derivatives of u to some finite order. But, usually Gm0 is a Lie type
adjoint symmetry. According to the property of the Lie-type symmetry Gm0 , all adjoint
symmetry constraints (2.19) can be divided into the following three categories:



Adjoint symmetry constraints 111

• Neumann type: (2.19) does not depend on any spatial derivative of u and it is
impossible to solve (2.19) for u.

• Bargmann type: (2.19) does not depend on any spatial derivative of u but it is
possible to solve (2.19) for u.

• Ostrogradsky type: (2.19) depends on spatial derivatives of u.

In a soliton hierarchy, usually the first conserved functional corresponds to the Neumann
type constraint, the second conserved functional corresponds to the Bargmann type con-
straint, and the other conserved functionals correspond to the Ostrogradsky type con-
straints.

Let us focus on the Bargmann type adjoint symmetry constraints. Upon solving the
adjoint symmetry constraint (2.19) for u, we are assumed to have

u = ũ(φ(1), · · · , φ(N);ψ(1), · · · , ψ(N)). (2.20)

Make the replacement of u with ũ in the Lax systems (2.17) and (2.18), and then we
obtain the so-called spatial binary constrained flow:

φ(s)
x = U(ũ, λs)φ(s), ψ(s)

x = −UT (ũ, λs)ψ(s), 1 ≤ s ≤ N, (2.21)

and the so-called temporal binary constrained flow:

φ
(s)
tn = V (n)(ũ, λs)φ(s), ψ

(s)
tn = −V (n)T (ũ, λs)ψ(s), 1 ≤ s ≤ N. (2.22)

These two constrained flows still require the nth system of evolution equations utn =
Kn(u) as their compatability condition. Therefore, u = ũ gives rise to an integrable
decomposition of the system utn = Kn(u), if (2.21) and (2.22) are Liouville integrable.

Note that the constrained flows (2.21) and (2.22) are nonlinear, although the original
Lax systems (2.17) and (2.18) are linear with the eigenfunctions and adjoint eigenfunctions.
In view of this property and the involvement of the original spectral problems and the
adjoint ones, the above process of carrying out the Bargmann adjoint symmetry constraints
is called binary nonlinearization [7, 13].

The whole manipulation above shows us that binary nonlinearization can also result
from adjoint symmetry constraints. Actually, if the underlying system of evolution equa-
tions possesses a Hamiltonian structure, then adjoint symmetries generate symmetries
under the Hamiltonian transformation and thus adjoint symmetry constraints also yield
symmetry constraints which are required in binary nonlinearization. However, noting
that adjoint symmetry constraints do not require the Hamiltonian structure for systems
of evolution equations, they can be applied to non-Hamiltonian systems of evolution equa-
tions, for example, the Burgers type systems of evolution equations, for which symmetry
constraints don’t succeed.
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3 Application to multicomponent AKNS equations

3.1 Multicomponent AKNS hierarchy

Let us consider the following 3× 3 matrix spectral problem

φx = U(u, λ)φ, U(u, λ) =


−2λ q1 q2

r1 λ 0

r2 0 λ

 = U0λ+ U1,
∂U0

∂λ
=

∂U1

∂λ
= 0, (3.1)

where λ is a spectral parameter and

φ = (φ1, φ2, φ3)T , u = ρ(U1) = (q1, q2, r1, r2)T , q = (q1, q2), r = (r1, r2)T . (3.2)

Since U0 has multiple eigenvalues, (3.1) is degenerate. Under the special reduction of
q2 = r2 = 0, (3.1) is equivalent to the AKNS spectral problem [14], and thus (3.1) is called
a multicomponent AKNS spectral problem.

To derive an associated soliton hierarchy, we first solve the adjoint equation Wx =
[U,W ] of (3.1) following the generalized Tu scheme [15]. We suppose that a solution W is
given by

W =

[
a b

c d

]
, (3.3)

where a is a scalar, bT and c are two-dimensional columns, and d is a 2× 2 matrix. Then
the adjoint equation Wx = [U,W ] is equivalent to

ax = qc− br, bx = −3λb+ qd− aq, (3.4a)
cx = 3λc+ ra− dr, dx = rb− cq. (3.4b)

We seek a formal solution as

W =

[
a b

c d

]
=

∞∑
k=0

Wkλ
−k =

∞∑
k=0

[
a(k) b(k)

c(k) d(k)

]
λ−k (3.5)

with b(k), c(k) and d(k) being assumed to be

b(k) = (b(k)
1 , b

(k)
2 ), c(k) = (c(k)

1 , c
(k)
2 )T , d(k) = (d(k)

ij )2×2.

Thus, the condition (3.4) becomes the following recursion relation:

b(0) = 0, c(0) = 0, a(0)
x = 0, d(0)

x = 0, (3.6a)

b(k+1) =
1
3
(−b(k)

x + qd(k) − a(k)q), k ≥ 0, (3.6b)

c(k+1) =
1
3
(c(k)

x − ra(k) + d(k)r), k ≥ 0, (3.6c)

a(k)
x = qc(k) − b(k)r, d(k)

x = rb(k) − c(k)q, k ≥ 1. (3.6d)
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We choose the initial values as follows

a(0) = −2, d(0) = I2, (3.7)

where I2 is the second-order identity matrix, and require that

Wk|u=0 = 0, k ≥ 1. (3.8)

This requirement (3.8) means to identify all constants of integration to be zero while using
(3.6) to determine W , and thus, with a(0) and d(0) given by (3.7), all matrices Wk, k ≥ 1,
will be uniquely determined. For example, it follows from (3.6) that

b
(1)
i = qi, c

(1)
i = ri, a(1) = 0, d

(1)
ij = 0,

b
(2)
i = −1

3
qi,x, c

(2)
i =

1
3
ri,x, a(2) =

1
3
(q1r1 + q2r2), d

(2)
ij = −1

3
riqj ,

b
(3)
i =

1
9
[qi,xx − 2(q1r1 + q2r2)qi], c

(3)
i =

1
9
[ri,xx − 2(q1r1 + q2r2)ri].

Noting (3.6d), we can obtain a recursion relation for b(k) and c(k):[
c(k+1)

b(k+1)T

]
= Ψ

[
c(k)

b(k)T

]
, k ≥ 1, (3.10)

where Ψ is a 4× 4 matrix operator

Ψ =
1
3


(∂ −

2∑
k=1

rk∂
−1qk)I2 − r∂−1q r∂−1rT + (r∂−1rT )T

−qT∂−1q − (qT∂−1q)T (−∂ +
2∑

k=1

qk∂
−1rk)I2 + qT∂−1rT

. (3.11)

As usual, for any integer n ≥ 0, choose

V (n) = (λnW )+ =
n∑

j=0

Wjλ
n−j , (3.12)

and then introduce the time evolution law for the eigenfunction φ:

φtn = V (n)φ = V (n)(u, ux, · · · , u(n−1);λ)φ. (3.13)

The compatibility condition of (3.1) and (3.13) leads to a system of evolution equations

utn =

[
qT

r

]
tn

= Kn =

[ −3b(n+1)T

3c(n+1)

]
. (3.14)

The first nonlinear system in this soliton hierarchy (3.14) is given by

qi,t2 = −1
3
[qi,xx − 2(q1r1 + q2r2)qi], 1 ≤ i ≤ 2, (3.15a)

ri,t2 =
1
3
[ri,xx − 2(q1r1 + q2r2)ri], 1 ≤ i ≤ 2, (3.15b)



114 W X Ma and R G Zhou

which is the multicomponent version of the AKNS system of nonlinear Schrödinger equa-
tions. Therefore, the soliton hierarchy (3.14) is called the multicomponent AKNS soliton
hierarchy.

In order to generate the Hamiltonian structure of the multicomponent AKNS hierarchy
(3.14), we apply the trace identity [16]:

δ

δu

∫
tr(W

∂U

∂λ
)dx = λ−γ ∂

∂λ

[
λγtr(W

∂U

∂u
)
]
,

with γ being a constant to be found, which yields

δH̃n+1

δu
= Gn, H̃n =

∫
(−2a(n) + d

(n)
11 + d

(n)
22 ) dx, Gn−1 =

[
c(n)

b(n)T

]
, n ≥ 0. (3.16)

Actually, we have

tr(W
∂U

∂λ
) = −2a+ tr(d) =

∞∑
k=0

(−2a(k) + d
(k)
11 + d

(k)
22 )λ

−k,

and

tr(W
∂U

∂u
) =

[
c

bT

]
=

∑
k≥0

Gk−1λ
−k.

Inserting these into the trace identity and considering the case of k = 2, we get γ = 0 and
thus we have (3.16). Now it follows from (3.16) that the multicomponent AKNS equations
(3.14) have the following bi-Hamiltonian formulation

utn = Kn = JGn = J
δH̃n+1

δu
= M

δH̃n

δu
, (3.17)

where the Hamiltonian pair (J,M = JΨ) reads as

J =

[
0 −3I2
3I2 0

]
, (3.18a)

M =


qT∂−1q + (qT∂−1q)T (∂ −

2∑
k=1

qk∂
−1rk)I2 − qT∂−1rT

(∂ −
2∑

k=1

rk∂
−1qk)I2 − r∂−1q r∂−1rT + (r∂−1rT )T

. (3.18b)

3.2 Adjoint symmetry constraint

Let us go on to consider the problem of adjoint symmetry constraints for the multicompo-
nent AKNS equations ut2 = K2 defined by (3.14) or (3.15). A direct computation shows
us that the Gateaux derivative operator of K2 is given by

K ′
2 =

2
3
(−1

2
∂2 + qr)

[
I2 0

0 −I2

]
+

2
3

[
qT rT qT q

−rrT −rq

]
, (3.19)
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and thus its adjoint operator is given by

(K ′
2)

† =
2
3
(−1

2
∂2 + qr)

[
I2 0

0 −I2

]
+

2
3

[
rq −rrT

qT q −qT rT

]
= (K ′)T . (3.20)

We choose a constant diagonal matrix:

Γ = diag(γ1, γ2, γ3), γi �= γj , 1 ≤ i �= j ≤ 3. (3.21)

Then the commutator

[Γ, U1] =


0 (γ1 − γ2)q1 (γ1 − γ3)q2

(γ2 − γ1)r1 0 0

(γ3 − γ1)r2 0 0

 ,

will give rise to a symmetry of the multicomponent AKNS equations (3.15):

K̄0 := ρ([Γ, U1]) =


(γ1 − γ2)q1
(γ1 − γ3)q2
(γ2 − γ1)r1
(γ3 − γ1)r2

 . (3.22)

Through the Hamiltonian structure in (3.17), we obtain an adjoint symmetry of (3.15):

Ḡ0 := J−1K̄0 =

 0
1
3
I2

−1
3
I2 0

 K̄0 =
1
3


(γ2 − γ1)r1
(γ3 − γ1)r2
(γ2 − γ1)q1
(γ3 − γ1)q2

 , (3.23)

which contains three arbitrary distinct constants γ1, γ2 and γ3. This also can be shown
by directly checking

Ḡ0,t2 = −(K ′
2)

†Ḡ0,

while u solves ut2 = K2(u). Now the Bargmann adjoint symmetry constraint reads as

Ḡ0 =
N∑

s=1

µsψ
(s)T ∂U(u, λs)

∂u
φ(s), (3.24)

where for a later use, φ(s) and ψ(s) are assumed to be

φ(s) = (φ1s, φ2s, φ3s)T , ψ(s) = (ψ1s, ψ2s, ψ3s)T , 1 ≤ s ≤ N. (3.25)

Upon introducing the matrix

B = diag(µ1, µ2, · · · , µN ), (3.26)
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and through solving (3.24) for q and r, we are led to the potential constraints

qi = q̃i :=
3

γi+1 − γ1
〈Φ1, BΨi+1〉, ri = r̃i :=

3
γi+1 − γ1

〈Φi+1, BΨ1〉, (3.27)

where 1 ≤ i ≤ 2, Φi and Ψi are defined by

Φi = (φi1, φi2, · · · , φiN )T , Ψi = (ψi1, ψi2, · · · , ψiN )T , 1 ≤ i ≤ 3, (3.28)

and 〈·, ·〉 refers to the standard inner product of the Euclidian space R
N . Now the spatial

and temporal constrained flows of the multicomponent AKNS equations (3.15) read as

φ(s)
x = U(ũ, λs)φ(s), ψ(s)

x = −UT (ũ, λs)ψ(s), 1 ≤ s ≤ N, (3.29)

and

φ
(s)
t2

= V (2)(ũ, λs)φ(s), ψ
(s)
t2

= −V (2)T (ũ, λs)ψ(s), 1 ≤ s ≤ N, (3.30)

where ũ = (q̃1, q̃2, r̃1, r̃2)T and

V (2)(u, λ) =


−2 0 0

0 1 0

0 0 1

λ2 +


0 q1 q2

r1 0 0

r2 0 0

λ

+
1
3


q1r2 + q2r2 −q1,x −q2,x

r1,x −r1q1 −r1q2

r2,x −r2q1 r2q2

 . (3.31)

As usual, let us denote by Ṽ (2)(ũ, λ) the transformed matrix of V (2)(ũ, λ) under (3.29),
i.e.,

Ṽ (2)(ũ, λ) = V (2)(ũ, λ)|spatial constrained flow (3.29). (3.32)

Since Ṽ (2)(ũ, λ) just depends on φis and ψis but not on any spatial derivative of φis and
ψis, the transformed temporal constrained flow (3.30) under (3.29) becomes the following
system of ordinary differential equations

φ
(s)
t2

= Ṽ (2)(ũ, λs)φ(s), ψ
(s)
t2

= −Ṽ (2)T (ũ, λs)ψ(s), 1 ≤ s ≤ N. (3.33)

In order to derive the Liouville integrability of the resulting two constrained flows, let
us define a constant coefficient symplectic structure

ω2 =
3∑

i=1

BdΦi ∧ dΨi =
3∑

i=1

N∑
s=1

µsdφis ∧ dψis (3.34)

over the Euclidian space R
6N , and then the corresponding Poisson bracket is given by

{f, g} = ω2(Idg, Idf) =
3∑

i=1

(〈 ∂f
∂Ψi

, B−1 ∂g

∂Φi
〉 − 〈 ∂f

∂Φi
, B−1 ∂g

∂Ψi
〉)

=
3∑

i=1

N∑
s=1

µ−1
s

( ∂f

∂ψis

∂g

∂φis
− ∂f

∂φis

∂g

∂ψis

)
, f, g ∈ C∞(R6N ), (3.35a)
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where the vector field Idf is defined by

ω2(X, Idf) = df(X), X ∈ T (R6N ).

A general Hamiltonian system with a Hamiltonian H defined over the symplectic manifold
(R6N , ω2) is given by

Φi,t = {Φi, H} = −B−1 ∂H

∂Ψi
, Ψi,t = {Ψi, H} = B−1 ∂H

∂Φi
, 1 ≤ i ≤ 3, (3.36)

where t is taken as the evolution variable. For presenting Lax representations of the
constrained flows, we need a square matrix Lax operator

L(λ) = Γ +D(λ), (3.37)

with Γ being defined by (3.21) and D(λ), by

D(λ) = (Dij(λ))3×3, Dij(λ) =
N∑

s=1

µs

λ− λs
φisψjs, 1 ≤ i, j ≤ 3. (3.38)

Theorem 1. Under the symplectic structure (3.34), the spatial constrained flow (3.29)
and the temporal constrained flow (3.33) of the multicomponent AKNS equations (3.15)
are Hamiltonian systems with the evolution variables x and t2, and the Hamiltonians

Hx = 2〈AΦ1, BΨ1〉 −
2∑

i=1

〈AΦi+1, BΨi+1〉+
2∑

j=1

3
γ1 − γj+1

〈Φ1, BΨj+1〉〈Φj+1, BΨ1〉,

(3.39)

Ht2 = −2〈A2Φ1, BΨ1〉+
2∑

i=1

〈A2Φi+1, BΨi+1〉+
2∑

i=1

q̃i〈AΦi+1, BΨ1〉

+
2∑

j=1

r̃j〈AΦ1, BΨj+1〉+ 1
3

2∑
i=1

q̃ir̃i〈Φ1, BΨ1〉 − 1
3

2∑
i,j=1

q̃ir̃j〈Φi+1, BΨj+1〉, (3.40)

respectively, where q̃i and r̃i are given by (3.27) and A is defined by

A = diag(λ1, λ2, · · · , λN ). (3.41)

Moreover, the constrained flows (3.29) and (3.33) admit the Lax representations

(L(λ))x = [U(ũ, λ), L(λ)], (L(λ))t2 = [Ṽ (2)(ũ, λ), L(λ)], (3.42)

respectively, where L(λ) is given by (3.37) and (3.38), and U(ũ, λ) and Ṽ (2)(ũ, λ) are two
constrained spectral matrices generated from U and V (2).

Proof: A direct but long calculation can show the Hamiltonian structures of the spatial
constrained flow (3.29) and the temporal constrained flow (3.33) with Hx and Ht2 defined
by (3.39) and (3.40).
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Let us then check the Lax representations. By use of the spatial constrained flow (3.29),
we can make the following computation:

(L(λ))x =
N∑

s=1

µs

λ− λs
(φ(s)

x ψ(s)T + φ(s)ψ(s)T
x )

=
N∑

s=1

µs

λ− λs
(U(ũ, λs)φ(s)ψ(s)T − φ(s)ψ(s)TU(ũ, λs))

=
N∑

s=1

µs

λ− λs
[U(ũ, λs), φ(s)ψ(s)T ]

= [U(ũ, λ), L(λ)− Γ]− [U0,
N∑

s=1

µsφ
(s)ψ(s)T ]

= [U(ũ, λ), L(λ)] + [Γ, U(ũ, λ)]− [U0,
N∑

s=1

µsφ
(s)ψ(s)T ]

= [U(ũ, λ), L(λ)] + [Γ, U1(ũ)]− [U0,
N∑

s=1

µsφ
(s)ψ(s)T ].

In the last step above, we have used [Γ, U0] = 0. Now it follows that (L(λ))x = [U(ũ, λ), L(λ)]
if and only if

[Γ, U1(ũ)] = [U0,
N∑

s=1

µsφ
(s)ψ(s)T ].

This equality equivalently requires the potential constraints shown in (3.27). Therefore,
the spatial constrained flow (3.29) admit the Lax representation defined as in (3.42).

It is also direct to prove the other Lax representation

(L(λ))t2 = [Ṽ (2)(ũ, λ), L(λ)],

and so we do not go to the detail. Thus, the proof of the theorem is completed.
Associated with the Lax operator L(λ) defined by (3.37), there is a functionally inde-

pendent and involutive system of polynomial functions [8]: {Fis | 1 ≤ i ≤ 3, 1 ≤ s ≤ N},
defined as follows

Fi(λ) =
∞∑
l=0

Filλ
−l, 1 ≤ i ≤ 3, (3.43a)

det(νI3 − L(λ)) = ν3 −F1(λ)ν2 + F2(λ)ν −F3(λ). (3.43b)

It follows from Theorem 1 that we can have the following result on the Liouville integra-
bility of the constrained flows (3.29) and (3.33).

Theorem 2. The spatial constrained flow (3.29) and the temporal constrained flow (3.33)
of the multicomponent AKNS equations (3.15) are Liouville integrable. Moreover, they pos-
sess an involutive system of integrals of motion being functionally independent: {Fis | 1 ≤
i ≤ 3, 1 ≤ s ≤ N}, defined by (3.43).
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It follows that the potential constraints (3.27) present an integrable decomposition
and thus show the integrability by quadratures for the multicomponent AKNS equations
(3.15). Furthermore, the resulting solutions from (3.27) are involutive solutions to the
multicomponent AKNS equations (3.15), because we can prove that {Hx, Ht2} = 0.

4 Application to multi-wave interaction equations

4.1 Multi-wave interaction hierarchy

Let us consider the 3×3 matrix AKNS spectral problem:

φx = U (u, λ)φ, U =


α1λ u12 u13

u21 α2λ u23

u31 u32 α3λ

 = λU0 + U1,
∂U0

∂λ
=

∂U1

∂λ
= 0, (4.1)

where α1, α2 and α3 are distinct constants, and the eigenfunction φ and the potential u
are defined by

φ = (φ1, φ2, φ3)T , u = ρ(U1) = (u21, u12, u31, u13, u32, u23)T . (4.2)

To construct a soliton hierarchy associated with the spectral problem (4.1). Similarly, we
first solve the adjoint equation for W :

Wx = [U,W ], W = (Wij)3×3. (4.3)

We look for a formal solution of the form

W =
∞∑
l=0

Wlλ
−l, Wl = (W (l)

ij )3×3, (4.4)

and then the adjoint equation (4.3) is equivalent to

[U0,W0] = 0, Wl,x = [U1,Wl] + [U0,Wl+1], l ≥ 0, (4.5)

which gives us the following recursion relation

W
(0)
ii,x = 0, W

(0)
ij = 0, i �= j, (4.6a)

W
(l)
ij,x + uij(W

(l)
ii −W

(l)
jj ) +

3∑
k=1

k �=i,j

(ukjW
(l)
ik − uikW

(l)
kj )− (αi − αj)W

(l+1)
ij = 0, i �= j,

(4.6b)

W
(l+1)
ii,x =

3∑
k=1
k �=i

(uikW
(l+1)
ki − ukiW

(l+1)
ik ), (4.6c)

where 1 ≤ i, j ≤ 3 and l ≥ 0.
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We set the initial values

W
(0)
ii = βi = const., 1 ≤ i ≤ 3, (4.7)

where βi, 1 ≤ i ≤ 3, are three arbitrary constants, and require that

W
(l)
ij |u=0 = 0, 1 ≤ i, j ≤ 3, l ≥ 1. (4.8)

This condition (4.8) means to take all constants of integration to be zero while using
(4.6) to determine W , and thus all matrices Wl, l ≥ 1, will be uniquely determined. In
particular, we can have that

W
(1)
ii = 0, 1 ≤ i ≤ 3, W

(1)
ij =

βi − βj

αi − αj
uij , 1 ≤ i �= j ≤ 3;

W
(2)
ii =

3∑
k=1
k �=i

βk − βi

(αk − αi)2
uikuki, 1 ≤ i ≤ 3,

W
(2)
ij =

βi − βj

(αi − αj)2
uij,x +

1
αi − αj

3∑
k=1

k �=i,j

(
βk − βi

αk − αi
− βk − βj

αk − αj
)uikukj , 1 ≤ i �= j ≤ 3.

It is easy to see that the recursion relation (4.6) can lead to

2uij∂
−1uijW

(l)
ji + (∂ − 2uij∂

−1uji)W
(l)
ij

+
3∑

k=1
k �=i,j

[
uij∂

−1uikW
(l)
ki + (ukj − uij∂

−1uki)W
(l)
ik

]

+
3∑

k=1
k �=i,j

[
uij∂

−1ukjW
(l)
jk − (uik + uij∂

−1ujk)W
(l)
kj

]
= (αi − αj)W

(l+1)
ij ,

where 1 ≤ i �= j ≤ 3 and l ≥ 1. This can be written as the Lenard form

MGl−1 = JGl, l ≥ 1, (4.9)

where J is a constant operator

J = diag
(
(α1 − α2)σ0, (α1 − α3)σ0, (α2 − α3)σ0

)
, σ0 =

[
0 1

−1 0

]
, (4.10)

and Gl = ρ(Wl+1) is given by

Gl = (W (l+1)
21 ,W

(l+1)
12 ,W

(l+1)
31 ,W

(l+1)
13 ,W

(l+1)
32 ,W

(l+1)
23 )T , l ≥ 0. (4.11)

These two operators J and M can be shown to be a Hamiltonian pair (see [17] for defini-
tion).
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We go on to introduce the associated spectral problems with the spectral problem (4.1):

φtn = V (n)φ, V (n) = V (n)(u, λ) = (λnW )+ =
n∑

i=0

Wiλ
n−i, n ≥ 1. (4.12)

Noting (4.5), we can compute that

[U, V (n)] = [λU0 + U1,

n∑
l=0

λn−lWl]

=
n∑

l=0

[U0,Wl]λn+1−l +
n∑

l=0

[U1,Wl]λn−l

=
n−1∑
l=0

[U0,Wl+1]λn−l +
n∑

l=0

[U1,Wl]λn−l,

where we have used [U0,W0] = 0. Therefore, under the isospectral conditions

λtn = 0, n ≥ 1, (4.13)

the compatibility conditions of the spectral problem (4.1) and the associated spectral
problems (4.12) become

U1tn = Wnx − [U1,Wn] = [U0,Wn+1].

This gives rise to the so-called 3× 3 AKNS soliton hierarchy

utn = Kn := JGn, n ≥ 1, (4.14)

where J and Gn = ρ(Wn+1) are defined by (4.10) and (4.11), respectively.
Similarly, applying the trace identity [16], the soliton hierarchy (4.14) has a bi-Hamiltonian

formulation

utn = Kn = J
δH̃n+1

δu
= M

δH̃n

δu
, n ≥ 1, (4.15)

where the Hamiltonian functionals H̃l are defined by

H̃l := −1
l

∫
(α1W

(l+1)
11 + α2W

(l+1)
22 + α3W

(l+1)
33 )dx, l ≥ 1. (4.16)

The first nonlinear system in this soliton hierarchy (4.15) is the multi-wave interaction
equations [18]

uij,t1 =
βi − βj

αi − αj
uij,x +

3∑
k=1

k �=i,j

(
βi − βk

αi − αk
− βk − βj

αk − αj
)uikukj , 1 ≤ i �= j ≤ 3, (4.17)

which contain three-wave interaction equations arising in fluid dynamics and plasma
physics [19], if U is chosen to be an anti-Hermitian matrix.
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4.2 Adjoint symmetry constraint

Let us assume, for simplicity, that

cij =
βi − βj

αi − αj
, dijkl = cij − ckl, 1 ≤ i �= j ≤ 3, 1 ≤ k �= l ≤ 3. (4.18)

A direct computation shows

K ′
1 =



c21∂x 0 d3231u23 0 0 d3231u31

0 c12∂x 0 d3132u32 d3132u13 0

d2321u32 0 c31∂x 0 d2321u21 0

0 d2123u23 0 c13∂x 0 d2123u12

0 d1312u31 d1312u12 0 c32∂x 0

d1213u13 0 0 d1213u21 0 c23∂x


(4.19)

and thus its adjoint operator reads as

(K ′
1)

† =



−c21∂x 0 d2321u32 0 0 d1213u13

0 −c12∂x 0 d2123u23 d1312u31 0

d3231u23 0 −c31∂x 0 d1312u12 0

0 d3132u32 0 −c13∂x 0 d1213u21

0 d3132u13 d2321u21 0 −c32∂x 0

d3231u31 0 0 d2123u12 0 −c23∂x


, (4.20)

where K1 is defined by (4.14).
To carry out binary nonlinearization, we need to present an adjoint symmetry for the

multi-wave interaction equations (4.17). It is easy to see by using (4.20) that the first
vector function,

G0 = (c12u21, c12u12, c13u31, c13u13, c23u32, c23u23)T ,

among the vector functions Gn, n ≥ 0, defined by (4.11), is an adjoint symmetry of the
multi-wave interaction equations (4.17). However, for the multi-wave interaction equations
(4.17), we can introduce a more general Lie point adjoint symmetry:

Ḡ0 := J−1ρ([Γ, U1]), Γ = diag(γ1, γ2, γ3), (4.21)

where γ1, γ2 and γ3 are arbitrary distinct constants. Noting

Ḡ0 = (c̄12u21, c̄12u12, c̄13u31, c̄13u13, c̄23u32, c̄23u23)T , c̄ij =
γi − γj

αi − αj
, (4.22)

this can be directly proved by checking

Ḡ0,t1 = −(K ′
1)

†Ḡ0,
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while u solves ut1 = K1. In particular, G0 is an example of Ḡ0 with Γ = W0, if βi �= βj,
1 ≤ i �= j ≤ 3. Now make the following Bargmann type adjoint symmetry constraint

Ḡ0 =
N∑

s=0

µsψ
(s)T ∂U(u, λs)

∂u
φ(s), (4.23)

where µs, 1 ≤ s ≤ N , are arbitrary nonzero constants, and the eigenfunctions and adjoint
functions are assumed to be

φ(s) = (φ1s, φ2s, φ3s)T , ψ(s) = (ψ1s, ψ2s, ψ3s)T , 1 ≤ s ≤ N. (4.24)

The above constraint (4.23) is equivalent to

[Γ, U1] = [U0,

N∑
s=1

µsφ
(s)ψ(s)T ].

When N and µs vary, (4.23) provides us with a set of adjoint symmetry constraints of the
multi-wave interaction equations (4.17).

We still use two diagonal matrices:

A = diag(λ1, · · · , λN ), B = diag(µ1, · · · , µN ). (4.25)

Solving the Bargmann adjoint symmetry constraint (4.23) for u, we obtain

uij = ũij :=
αi − αj

γi − γj
〈Φi, BΨj〉, 1 ≤ i �= j ≤ 3, (4.26)

where B is given by (4.25), and Φi and Ψi are defined by

Φi = (φi1, φi2, · · · , φiN )T , Ψi = (ψi1, ψi2, · · · , ψiN )T , 1 ≤ i ≤ 3, (4.27)

Two constrained flows for the multi-wave interaction equations (4.17) read as

φ(s)
x = U(ũ, λs)φ(s), ψ(s)

x = −UT (ũ, λs)ψ(s), 1 ≤ s ≤ N, (4.28)

and

φ
(s)
t1

= V (1)(ũ, λs)φ(s), ψ
(s)
t1

= −V (1)T (ũ, λs)ψ(s), 1 ≤ s ≤ N, (4.29)

where ũ is defined by

ũ = ρ((ũij)3×3) = (ũ21, ũ12, ũ31, ũ13, ũ32, ũ23)T ,

and V (1) is defined by

V (1)(u, λ) = λW0 +W1 =


β1λ W

(1)
12 W

(1)
13

W
(1)
21 β2λ W

(1)
23

W
(1)
31 W

(1)
32 β3λ

 , W
(1)
ij =

βi − βj

αi − αj
uij . (4.30)

Similarly to Theorem 1, we can prove the following result for the multi-wave interaction
equations (4.17).
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Theorem 3. Under the symplectic structure (3.34), the spatial constrained flow (4.28)
and the temporal constrained flow (4.29) for the multi-wave interaction equations (4.17)
are Hamiltonian systems with the evolution variables x and t1, and the Hamiltonians

Hx = −
3∑

k=1

αk〈AΦk, BΨk〉 −
∑

1≤k<l≤3

αk − αl

γk − γl
〈Φk, BΨl〉〈Φl, BΨk〉, (4.31)

Ht1 = −
3∑

k=1

βk〈AΦk, BΨk〉 −
∑

1≤k<l≤3

βk − βl

γk − γl
〈Φk, BΨl〉〈Φl, BΨk〉, (4.32)

respectively, where A and B are defined by (4.25), and Φi and Ψi, 1 ≤ i ≤ n, are defined
by (4.27). Moreover, they admit the Lax representations:

(L(λ))x = [U(ũ, λ), L(λ)], (L(λ))t1 = [V (1)(ũ, λ), L(λ)], (4.33)

respectively, where L(λ), U(λ), and V (1)(λ) are given by (3.37) and (3.38), (4.1) and
(4.30).

Now it is a direct computation to verify the following theorem on the Liouville integra-
bility of the spatial constrained flows (4.28) and the temporal constrained flow (4.29).

Theorem 4. The spatial constrained flows (4.28) and the temporal constrained flow (4.29)
of the multi-wave interaction equations have the common involutive integrals of motion:
Fil, 1 ≤ i ≤ 3, l ≥ 1, defined by (3.43), of which the functions Fis, 1 ≤ i ≤ 3, 1 ≤ s ≤
N, are functionally independent. Therefore, the constrained flows (4.28) and (4.29) are
Liouville integrable.

The potential constraints (4.26) present an integrable decomposition

uij(x, t) =
αi − αj

γi − γj
〈Φi(x, t), BΨj(x, t)〉, 1 ≤ i �= j ≤ 3, (4.34)

for the multi-wave interaction equations (4.17). This also shows the integrability by
quadratures for the multi-wave interaction equations (4.17), since Φi and Ψi can be de-
termined by quadratures. There are many arbitrary constants involved in the resulting
solutions. Moreover, the solutions generated above are all involutive solutions to the
multi-wave interaction equations (4.17), since two Hamiltonian flows of (4.28) and (4.29)
commute, due to {Hx, Ht1} = 0. The results generated from the adjoint symmetry con-
straints (4.23) are the same as those generated from the symmetry constrains [2, 8, 20].

5 Concluding remarks

We remark that for the multicomponent AKNS equations (3.15), the introduction of the
adjoint symmetry Ḡ0 is very crucial for the success of making integrable decompositions.
If we choose G0 as the required adjoint symmetry, then we can not show that the resulting
constrained flows are Liouville integrable. Therefore, adjoint symmetry constraints gener-
alizes the idea of carrying out nonlinearization by symmetry constraints, which was also
seen in the case of the multi-wave interaction equations (4.17).
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We also mention that for the Neumann type adjoint symmetry constraints, we can often
use the Moser constraint technique to show the Liouville integrability for the resulting
constrained flows, although there are some exceptions which can not lead to the Liouville
integrability of the Neumann problem associated with soliton equations. The Ostrogradsky
type adjoint symmetry constraints with involved Lie-Bäcklund symmetries having non-
degenerate Hamiltonians can also result in the Liouville integrable constrained flows, under
the help of the Ostrogradsky coordinates, but the case of degenerate Hamiltonians needs
particular consideration for introducing canonical variables for the resulting constrained
flows [21]. Like symmetry constraints [22], the whole theory of our adjoint symmetry
constraints also can be applied to the perturbation systems, which are associated with
higher-order matrix spectral problems.
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