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Abstract

We investigate linear stability of solitary waves of a Hamiltonian system. Unlike
weakly nonlinear water wave models, the physical system considered here is nonlinearly
dispersive, and contains nonlinearity in its highest derivative term. This results in
more detailed asymptotic analysis of the eigenvalue problem in presence of a large
parameter. Combining the technique of singular perturbation with the Evans function,
we show that the problem has no eigenvalues of positive real part and solitary waves
of small amplitude are linearly stable.

1 Introduction

It has long been an issue to model and understand the full water wave problem due to
its broad applications to coastal engineering, and fluid mechanics. The full water wave
problem is imposed as a fully nonlinear system. A great deal of effort has been made
to directly tackle it both numerically and analytically, the problem is still not completely
well understood due to the complexity of its nonlinearity. Approximate model equations of
this problem have been developed to understand its physical ramifications. One primary
approach was linear approximation under the assumption of a small perturbation from
a quiescent state. While using a higher order approximation, weakly nonlinear models
have been developed in the parameter regime of small amplitude and long wave length.
Among them are the well-known Korteweg-de Vries (KdV) and Boussinesq equations [19].
The derivation of these equations confirmed the existence of solitary waves for the the full
water wave problem, as a consequence, leading to the development of theories on solitons,
integrability and inverse scattering transform [1]. Despite both physical and mathematical
importance of the weakly nonlinear approximation for the full water wave problem, it
has limitations to model higher nonlinear phenomena, including high-amplitude waves
and wave breaking. Efforts have been made to obtain higher nonlinear model equations.
Among them, the Green-Naghdi (GN) equations [10], [11], [6], [7]

ηt + (uη)x = 0, ut + uux + ηx =
1
3η

(
η2 d

dt
(ηux)

)
x
, (1.1)
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and its alternations for variable depth of fluid were derived for both free surface and
inter-facial surface waves in the regime of long wave length but relatively large amplitude
compared with the depth of the fluid. Here, d

dt(ηux) = (ηux)t +u(ηux)x, η and u represent
the surface disturbance and the horizontal velocity, respectively. Here, we shall analyti-
cally investigate linear stability of solitary waves of the GN equations. It is well-known
that solitary waves of the KdV equation are orbitally stable and this has been proved by
using a variational method due to the fact that its solitary waves are minimizers of its
Hamiltonian functional [4]. However, this is not a common property for the full water
wave problem [5], a class of Boussinesq equations [14], and the GN equations. As a matter
of fact, the second variation of their Hamiltonian functional subject to certain constraints
are indefinite. Therefore, variational approach for the stability analysis of these systems
may not be applicable. Therefore, we use the techniques of the Evans function and singu-
lar perturbation to investigate eigenvalue problems for solitary waves of the GN equations.
Evans [9] has used this method for the stability issue of the impulses in nerve axon equa-
tion. Later, this method was further developed by Jones et al, [2], [3], and Pego and
Weinstein [13], [14] to apply it to a wide range of nonlinear evolution equations, including
the weakly nonlinear KdV equation and Boussinesq equations. However, compared with
weakly nonlinear models, the higher nonlinearity possessed by the GN equations demands
more detailed analysis on this system. To deal with singular perturbation problem in
presence of a large eigenvalue parameter, we shall decompose operators to separate slow
and fast flows in the dynamical system. Then the singular perturbation method [8], [18]
is applied to investigating the fast flows. As a result, we show that the dynamical system
has no homoclinic orbits in presence of a large eigenvalue parameter. The fact that the
KdV equation is a second order approximation of the GN equations and analyticity of the
Evans function are used to eigenvalue analysis in a neighbourhood of zero.

2 Hamiltonian structure of the GN equations

The GN equations have a Hamiltonian structure of the form

(
mt

ηt

)
= J

(
δH
δm
δH
δη

)
,

where the Hamiltonian functional H takes the form

H =
1
2

∫ (
ηu2 +

1
3
η3u2

x + (η − 1)2
)
dx,

and the Hamiltonian operator J is expressed as

J = −
(
∂m+m∂ η∂
∂η 0

)
,

m = Lu = ηu − 1
3

(
η3ux

)
x

and ∂ is the derivative with respect to the spatial variable
x. One-parameter symmetry groups of the GN equations include the space translation
(x+ ε, t, η, u), the time translation (x, t+ ε, η, u), the Galilean boost (x+ εt, t, η, u+ ε) and
the scaling eε(eεx, t, eεη, u). Using the characteristics of the first three symmetry groups
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and the Hamiltonian operator J , one may recover the following conserved quantities.
Q =

∫
m

(
1 − 1

η

)
dx, H and

∫
(tm− x(η − 1)) dx, respectively. The last symmetry does

not yield a conservation law with respect to J . In addition,
∫

m
η dx and

∫
(η − 1)dx are

distinguished functionals for J .
A direct calculation shows that each solitary wave solution (m(x− ct), η(x− ct)) of the

GN equations is a critical point of the functional H − cQ, i.e. the identities

δH

δm
− c δQ
δm

= 0,
δH

δη
− cδQ

δη
= 0,

hold at the solitary wave, where

η = 1 + (c2 − 1) sech 2
(√

3(c2 − 1) (x− ct)
2c

)
, u = c

(
1 − 1

η

)
, m = Lu,

for any constant c with |c| > 1. Since the second variational derivative H ′′ − cQ′′ is a self-
adjoint operator, it follows from Weyl’s essential spectrum theorem [17] that the essential
spectrum of the operator H ′′− cQ′′ evaluated at a solitary wave coincides with that of its
asymptotic operator H ′′∞ − cQ′′∞ as |x| → ∞. Because

H ′′
∞ − cQ′′

∞ =
(L−1

0 −c
−c I

)
,

with L−1
0 = (I − ∂2/3)−1, it follows that the essential spectrum of H ′′ − cQ′′ consists of

the intervals [1−
√

1+4c2

2 , 1−|c|] and [1+
√

1+4c2

2 , 1+ |c|]. Hence, the operator H ′′− cQ′′ has
a negative, infinite-dimensional spectral space. This fact fails to satisfy one of the basic
assumptions on H − cQ to be used for nonlinear stability analysis, i.e. H ′′ − cQ′′ has at
most a finite-dimensional, negative spectral space [4], [12]. Therefore, as the first step to
consider the stability issue, we investigate linear stability of solitary waves.

3 Main Results

Assume that the depth of the fluid flow is h = 1 so that the surface disturbance η and the
horizontal velocity u satisfy the condition η → 1 and u → 0 as |x| → ∞. One may also
multiply the first equation of (1.1) by u and the second equation by η, and then adding
the resulting equations together. By letting w = uη, we obtain the equivalent system

ηt + wx = 0,
wt = −(

w2

η

)
x
− ηηx + 1

3

(
η2 d

dt

(
η(w

η )x
))

x
.

(3.1)

The system (3.1) will be used to conduct linear stability analysis of solitary waves.
A solitary wave solution (w(x − ct), η(x − ct)) of the system (3.1) takes the form of

sech-functions such that

w = c(c2 − 1) sech 2
(√3(c2−1) (x−ct)

2c

)
,

η = 1 + w
c
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for any fixed constant c with |c| > 1. Then we use the standard expression

w̃ = wc(x− ct) + eλtw(x− ct), η̃ = ηc(x− ct) + eλtη(x− ct)
to derive the eigenvalue problem as a system of the following two ordinary differential
equations.

λw =
(
J1w + J2w

′ + J3w
′′ + J4η + J5η

′ + J6η
′′)′,

λη = c η′ − w′, (3.2)

where ′ represents the derivative with respect to ξ = x− ct, and Jk’s are functions of the
solitary wave and its derivatives such that

J1 = c− 2wc
ηc

− λ
3ηcη

′
c − 2

3η
′
cw

′
c − 2

3wcη
′′
c + 2

3ηcw
′′
c + 2wc(η′

c)
2

3ηc
,

J2 = λ
3η

2
c + c ηcη′

c
3 − 2η′

cwc

3 , J3 = 2ηcwc

3 − c
3η

2
c ,

J4 = −2c ηcw′′
c

3 + w2
c

η2
c
− ηc + c

3η
′
cw

′
c + 2

3wcw
′′
c − w2

c (η′
c)

2

3η2
c
,

J5 = cηcw′
c

3 − 2
3wcw

′
c + 2w2

cη′
c

3ηc
, J6 = −1

3w
2
c .

Lemma 1. Let (w, η) be a solution of the system (3.2). Then there are an constant N > 0,
functions uk, for 1 ≤ k ≤ 4, ∆1 and ∆2, depending on the solitary wave solution (wc, ηc)
and λ, such that whenever |λ| ≥ N , the linear operator Eλ, defined by

Eλf = −(
a2 +

s1
λ2ρ

)
f ′′ − (

a1 − s2b

λ3ρ
+
u1

λ

)
f ′ +

(
a0 + 1 − u2

λ

)
f,

is invertible on the function space

{f ; sup
|x|<∞

ea|x||f (j)(x)| <∞, j = 0, 1, 2}

for any fixed a ≥ 0, and the first equation of the system (3.2) can be decomposed as

λEλw = Eλ

(ca2 − 2wcηc

3

a2 + s1
λ2ρ

w′ +
w2

c

3(a2 + s1
λ2ρ

)
η′ +

c

λρ
(
a2 + s1

λ2ρ

)η) +

− Eλ

(∆1 + J∗2 + J ′3 + u3/λ

a2 + s1
λ2ρ

w +
∆2 + J5 + J ′6 + u4/λ

a2 + s1
λ2ρ

η
)
+

1
λ2

U ,

where a0 = 1
3(ηcη

′
c)

′, a1 = 1
3ηcη

′
c and a2 = 1

3η
2
c , and the coefficients b, ρ and sk, for

k = 1, 2, 3, satisfy the equations

1 − s1 =
a2s2b c

λ2
(
a2 + s1

λ2ρ

) , c− ca2

a2 + s1
λ2ρ

=
(1 − s2)b
λ2ρ

, b =
−c

a2 + s1
λ2ρ

,

s3 =
s2

λ2ρ(a2 + s1
λ2ρ

)
, ρ = 1 +

(1 − s3)bc
λ2

.

In addition, U is a linear function of y = (w, η), y′ and y′′, together with the expressions
uk, ∆1 and ∆2, satisfying the inequalities

|U| ≤Mγ2e−γ|x|(‖y‖ + ‖y′‖ + ‖y′′‖), |uk| ≤Mγ2e−γ|x|,

|∆1| ≤Mγ2e−γ|x|, |∆2| ≤Mγ2e−γ|x|.

for γ = 1 − c−2 and some constant M independent of λ for any |λ| ≥ N .
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It follows from the above Lemma that the system (3.2) may be expressed as

(
w′

η′

)
= A1

(
w
η

)
−

3
(
a2 + s1

λ2ρ

)E−1
λ (U)

λ2c2

(
c
1

)
, (3.3)

where

A1 = λ

(
3a2
c −w2

c
c2

3a2
c2

3a2
c − 2wcηc

c2

)
+ 3

λc2ρ

(
cs1 −c2
s1 −c

)
+

+ 3
c2

(
c(∆1 + J∗2 + J ′3) c(∆2 + J5 + J ′6)
∆1 + J∗2 + J ′3 ∆2 + J5 + J ′6

)
+ 3

c2λ

(
cu3 cu4

u3 u4

)
.

The kernels of the operators Eλ and ∂I − A1 correspond to slow flows and fast flows
asymptotically in the dynamical system (3.2). Since Eλ is invertible, one sees that slow
flows are not homoclinic orbits. Furthermore, applying the singular perturbation method
[18], we obtain the following estimates for fundamental solution of the system Y ′ = A1Y .

Theorem 1. Let X = X(ξ) be the fundamental solution of the system Y ′ = A1Y . Then
there is a constant M > 0 independent of λ of sufficiently large magnitude such that the
inequality |X(ξ)X−1(s)| ≤ |λ|M holds for c > 0, and any ξ and s with −∞ < ξ ≤ s <∞.
If c < 0, then the inequality |X(ξ)X−1(s)| ≤ |λ|M is valid for any ξ and s with −∞ <
s ≤ ξ <∞.

Applying the above estimates of the fundamental solution X to the equations (3.3), one
may conclude that the dynamical system (3.2) has no homoclinic orbits when |λ| becomes
sufficiently large.

Next, we substitute the KdV scaling

s = γ(x− ct), τ = cγ3t, η = 1 + γ2v1 + γ4v2 + · · · , w = c(γ2u1 + γ4u2 + · · · )

into the system (3.1), from which we derive the second order approximation

v1s − u1s = 0, v1τ − v2s + u2s = 0,
u1τ − u2s + v2s − v1s = −(u2

1)s − v1v1s − 1
3u1sss.

It follows that u1 is a solution of the KdV equation.

u1τ − 1
2
u1s +

3
4
(u2

1)s +
1
6
u1sss = 0.

Then one may use this fact to show that the Evans function of the linearized KdV equation
about its solitary waves also approximates that of the GN equations in the KdV scaling.
Using the technique in [15], we show that in the regime of the KdV approximation, the
Evans function of the GN equations does not vanish in a neighbourhood of zero except
the zero itself. Combining the above results, we draw the conclusion.

Theorem 2. For any γ > 0 sufficiently small, the problem (3.1) has no other eigenvalues
except λ = 0 that has a geometric multiplicity of one and algebraic multiplicity of two.
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Let zt = Az be the linearized system of the GN equations (3.1). The linear stability
analysis of (3.1) relies on properties of the spectrum of the semigroup eAt. Based on the
previous eigenvalue analysis for the system λy = Ay and the result by Prüss [16], one
may show that eAt has no unstable eigenvalues by verifying the following properties of the
operator A.

I. A generates a C0 semigroup on the Banach space X to be specified below.
II. For any complex valued λ with �λ ≥ 0 and λ �= 0, λ belongs to the resolvent set of

A, and λ = 0 is a simple eigenvalue with an algebraic multiplicity two.
III. For the set of all λ outside any small neighbourhood of λ = 0, the operators

(λ−A)−1 are uniformly bounded on X for �λ ≥ 0.
Here we use a weighted norm to define the Banach space X that consists of all func-

tions (f, g) such that eaxS(f, g) is in H × L2 with 0 < a < min{γ/2,√3} if c > 0, or
−min{γ/2,√3} < a < 0 if c < 0. This is a technique similar to that used in [15] to shift
essential spectrum of A to the left side of imaginary axis. Hence, we have proved linear
stability of solitary waves of the GN equations.

Theorem 3. When |c| > 1 and γ =
√

1 − c−2 is sufficiently small, the corresponding
solitary waves of the GN equations are linearly modulational stable in the sense that the
initial data z0 of the system zt = Az modulo the generalized kernel of A satisfies the
inequality ‖z‖X ≤Me−βt‖z0‖X for some fixed β ≥ 0 and any t > 0.

The nonlinear stability analysis for solitary waves of the GN equations depends on
well-posedness of the system. This is also an issue to be considered by the author.
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