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Abstract

A series of rational solutions are presented for an extended Lotka-Volterra equa-
tion. These rational solutions are obtained by using Hirota’s bilinear formalism and
Béacklund transformation. The crucial step is the use of nonlinear superposition for-
mula.

The so-called extended Lotka-Volterra equation is [1]

Han+nl 1+’L k:l H(l 1 +i

( :]_,2,-“,]{3:]_,2,--',77175]6)

or

g —k—1 -1 —k—1 -1

dt H Apmol g = ( H an+mT“+z’> - ( H an—"‘T“+i+k+1> .
; i=0 i=0

(m:172>"' 7_]{7:1327)

In particular, if m = 1 in (1), equation (1) can be transformed into

k—1

Nn Z n—r — n—i—r)Nn

r=1

by the variable transformation
Np = H pppi—kg1e
i=0
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Obviously, when k£ = 2 in (3), equation (3) becomes the Lotka-Volterra equation

%Nn — (Ny_1 — Not1) N (4)

The Lotka-Volterra equation expresses a sequence of ecologocal prey-predator process
[2]. It also finds applications in other areas such as plasma physics [3]. As to the integrabil-
ity of (3) and (4), it is known that (3) and (4) are completely integrable. For examples, (3)
and (4) have N-soliton solutions [4,5] and infinite number of conserved quantities [2,6,7].
Bogoyavlensky [8] has found the Lax form for (3). In [9], a recursion operator for (3) with
k=3 was given and higher symmetries were presented. A higher order version of (4) was
also considered in [10].

In this short paper, we shall consider (1) and (2). By the transformation

L
-
Fotgt fuiit

equation (1) or (2) can be transformed into the following bilinear equation [1]
. m . k . 1
[Dt sinh (5Dn) — 2sinh <§Dn) sinh <§(m — k)Dn>] fn-fan=0. (5)

Here the Hirota’s bilinear differential operator D! and the bilinear difference operator
exp(dD,,) are defined by

me=<%—%y«mwm¢
exp(6Dy)a(n) - b(n) = exp [5 <% - %)} ()b | —n = a(n + 8)b(n — ).

Equation (5) is reduced to the Lotka-Volterra equation or a differential-difference analogue
of the KdV equation [4,11] corresponding to the choices of 2m = k or m = —k. In [12], we
have presented a series of rational solutions for the differential-difference analogue of the
KdV equation. Thus it is natural and interesting to search for rational solutions of the
extended Lotka-Volterra equation (5). It is noted that in [5], a Bécklund transformation
and nonlinear superposition formula for (5) was given. As a result, N-soliton conjecture
by Narita is confirmed. Here in order to derive a series of rational solutions of (1) or (2),
we focus on the following special Backlund transformation for (5):

exp (3m=0D,) fu-

exp (;(m 4 k)Dn> 4 %exp (;(k - m)Dnﬂ o £ (6a)

We shall represent the transformation (6) symbolically by f,, — f7.
Henceforth, we denote f,(t) = f(n,t) = f(n) = f. We obtain the following result
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Proposition. Let fo, fi and fi2 be three solutions of eqn.(5) and fo — fi — f12 with
fo, f1, fi2 # 0. Then there exists a fo given by

exp<k >f0 f12_cm ksmh<k )fl f2, (7)

exp (D) fo- o = " E i (U, 11 )

such that fo is a new solution of (5) and fo — fo — fi2, where ¢ is a nonzero constant.

Proof. First we choose a particular solution F' from (7) and (8), i.e., F' satisfies

exp<’“ >fo fio =™ E sin (’“ )fl (9)

exp (22D,) o s = £

m m

sinh ( ) fi-F (10)

We have, by using (9),(A1),(A2) and fo — fi — fi2, that

sinh <§Dn> [thl .F — %exp(an)fo : f12:| fE

oo (30)1] o ()1

_ %sinh (gDn> lexp(kDy,) fo - fi2] - f12

= ﬁDt [exp <k )fo f12] : [QXP( k >f1 fl}
_ %smh ];Dn> lexp(kDy) fo - fi2] - f1

- C(mm_ k) exp (gDn> {[Difo - f1] - fifiz — fofi - [Def1 - fral}

_ gsinh (gDn> lexp(kDy) fo - fi2] - f12

Cc

= —exp (gD > {lexp(kDn) fo - f1] - frfiz — fofr - [exp(kDyp) f1 - fi2]}

_ gsinh (gD”> lexp(kDy,) fo - fi2] - fl2

which implies that
2
Dif1 - F — ~ exp(kDy) fo - fi2 = g(t) f1, (11)

where g(t) is a suitable function of . Now we choose fo = F + f1 f g(t")dt'. Then (11)
becomes

Difi- fo = = exp(kDa) fo - fra = . (12)
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Obviously, fa2 so obtained satisfies (7) and (8). Using (7), (8) and (12), we can deduce
that

exp (5m = 00D, fo- £

= "o (Glm+ 0D, ) + & oxp (06 -miD, )| - £

[Dt _mok exp(kDn) + mT_k} fo-fa=0.

In fact, we have, by using (7), (8), (12), (A3), (A4) and fo — fi1,

oo (G0m+02.) o 4| exp (500 - 0002 )

_mn; k exp (%(m + k)Dn) — %exp <1(k — m)Dn> fo- fo

2

- [exp <§<m " k)Dn) fo- fz} {exp (%(m = k)Dn)
m—k

— exp <%(m + k:)Dn> - %exp <%(k — m)Dn> fo-

[ (b 95 ] o )
—mn:kexp <%(m+k)D >—%€XP< )] Jo- fa

v ) (i) ] o3
2o (0.) oo () 2] fn (20 7
-t (50 o (32 5] on () 1]
oo (302) o (20 01 o (22) -1
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and

— [<Dt — ——exp(kDy,) + m—k> fo fz] f1
= [(Dt — ———exp(kDy) + m—k) fo fl] fo
m
- [(Dt SR (kD) + m—’“) f fz} i
ot £) o) 1) 5

= fom)[-Dufi - fo + > exp(hDu)fo - fio

which imply that fo — fs. Similarly, we can show that fo — fi2. Thus we have
completed the proof of Proposition. |

Remark 1. It is noted that the process of generating solutions is not carried out in the
conventional manor. Usually we use fy, fi and fo to generate fio. But here we start
with three solutions fy, fi and fi2 to derive fs. The reason for this is the following: For
a soliton equation, soliton solutions could be linked by a Béacklund transformation with
Backlund parameters while rational solutions are usually linked by a Bécklund transfor-
mation without Backlund parameters. Thus in soliton solutions case, starting from a seed
solution fy we can easily obtain f; and fs due to Backlund parameters. But in rational
solutions case it is difficult to find three seed rational solutions fy, fi and fo such that
fo— fi (i =1,2). Instead in this case it is easier to find three seed solutions fy, fi and
fi2 such that fo — f1 — fi2.

Remark 2. Just from proposition, it is unclear how to explicitly calculate desired fo
because fy determined by (7) and (8) is not unique. However from the proof of proposition,
it is easy to know that the desired f» could be found via the following steps. First of all,
we choose a special solution F' such that (9) and (10) hold. Secondly we calculate g(t)
from (11). Then the desired fs is given by fo = F + f; ftg(t’)dt’.

Remark 3. Under the conditions of the Proposition, there exists some relation between
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(7) and (8). In fact, by using (A5), (A6) and fo — fi — fi2, we have

2 sinh <§Dn> [exp ( ) fo- fi2
—cﬁm_ksmh< >f1 fQ] : [GXP( )fl fl}

m m
Pr fo - fl} [6 "EDn flz}

—k

|: m+k

Prfo - fl} [6 z Drfy f12} - [6
— 20E mr; i sinh (%Dn) [Sinh <§Dn> fi- f2:| . [6§D"f1 : fl]

m
= % [ gD D fo - fl: [ek_TmD"fl . f12} - % [ekEmD"fo : fl} [emTJrkD"ﬁ . f12}
- 2% mT; ¥ sinh (%Dn) [sinh <§Dn> i fz] : |:6§an1 ~f1]

= 2% sinh (%Dn) _eXp (k >f0 f12] ’ [eXp (k >f1 fl}

_ 9 km—k sinh (%Dn> [smh < > fi- f2:| : [egD"fl . f1]

m m
_2£smh( D) exp <k >f0 fi2
m

Sl smh(k >f1 fQ] - [exp (k )fa fl]

As an application of Proposition, we can obtain a hierarchy of polynomial solutions of
(5). For example, if we choose

k k
fozﬂJrE(m—k)tJrAl, fi=1, f12:n+a(m—k)t+A2

with A; being arbitrary constants, then it is easily verified that n + %(m — k)t + A; and
1 are solutions of (5) and

k k
n+—m-kt+A4 —1—n+—(m—k)t+ A
m m

Furthermore, we can show that if A4y = Ay 4+ 2(m + k), then

fo = <n+%(m—k)t)3+(3A1+m+k) <n+%(m—k)t>2

+ [342 +2A,(m + k) + km] <n + %(m — k:)t>

+ ﬁ(m — k)[k(m — k) — 342 — 2A;(m + k)]t + co

m

satisfies (7),(8) and (12) with ¢ = —%W, where ¢g is an arbitrary constant. Thus we
have
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n+%(m—k)t+A1—> <n+%(m—k)t>3+(3A1+m+k) <n+%(m—k)t)

+ [342 +2A,(m + k) + km] (n + %(m — k:)t>
+ ﬁ(m — k)[k(m — k) — 3A% — 2A;(m + k)]t + co

m

k 2
—>n+E(m—k)t—l—A1+§(m—|—k)

from which it follows that

<n+ %(m—k)t>3— (m+k) <n+ %(m—k)t>2—|—km (n—l—%(m—k)t)

k2(m — k)2 k
L ) P S A
m m

— <n+ %(m — k)t>3 — (m+k) <n—i— %(m— k:)t)
k% (m — k)2

2

+k‘m<n+ﬁ(m—k)t>+ t+ Ay
m

Next, we assume that
k s k 2
= —(m—-k)t| — —(m —
fo <n+m(m )) (m+ k) (n+m(m k)t>
k2(m — k)2
m

+k‘m<n+£(m—k)t>+ t + As,

m
2

fio = <n+ %(m— k:)t>3 +(m+k) <n—|— %(m— k:)t>

k k2(m — k)?
+ km <n+—(m—k)t) +yt+A4,

3

f1 =n-+ %(m—k)t.

Then we seek a solution in the form

5

fo = <n+ %(m - k:)t)6 +ay(t) <n+ %(m - k)t>

m

+ as(t) <n NS k:)t)3 + ag(t) <n +—(m — k)t>2

m

+ as(t) (n + E(m - k:)t) + ag(t)

such that (7), (8) and (12) hold. A direct calculation shows that

2

(13)

(14)

(15)
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_ 2 Ll — 2 1
Ay A3+3(m+k) [3km 15(m —l—k)}, (17)
2 m 5
2" -0 = Z(km — k2 —m?2 18
& Sk(m_k)v al ) a2 3( m m )7 ( )
5 1 2 k*(m — k)?
ag =543 + = (m + k) [gkm — 1—5(m2 + k:Q)] + 5Mz€, (19)
_4 4 8 3 4 2, .2 8 3 4 4
ay = 9k 9k: m+ 3k m gk:m + 5™ (20)
k 11 22 1 2
a5 = —(m — k) <§k4 — ?k?’m + §k2m2 — gkm?’) t+c1, (21)

_ 14 4 4K 10 4 10, o 144 5 4,5 4 K 1.9
k2 (m — k)? 1 1 2
—10A3Mt—5A§—§0A3(m+k) [gkm—l—5(m2+k2)}, (22)

where c; is an arbitrary constant.

We now explain how to choose seed polynomial solutions fo, f1, fi2 at each step such
that the above process goes on to generate a series of polynomial solutions for (5) step by
step. In practice, these seed solutions could be found from last step.

In fact, if we have four seed solutions from last step: fo, fl, fg, f12 such that fo —
fl — f12, fo — fg — fig, then we try to find a polynomial P from the relation
fa(n+ A) + Bfi(n + A) — fia(n + A) with A, B being arbitrary constants such that
P — fo. By doing so, we now choose fo = P, f1 = fo,flg = fg as seed solutions of
current step. Then using Proposition, we can find a new f. Thus we may deduce a series
of polynomial solutions for (5).

In the appendex B, we will show you some calculation detail of how to choose seed
solutions for next step when we start with (13)-(16) with coefficients given by (17)-(21).

In conclusion, we have obtained rational solutions of the extended Lotka-Volterra equa-
tion. The method used here is Hirota’s bilinear formalism and Béacklund transformation.
The crucial step is the use of nonlinear superposition formula. It is noted that these ob-
tained rational solutions are linked via the Bécklund transformation (6) which is a special
case of a Bécklund transformation with parameters [5]. Thus it enables us to obtain other
new solutions of the equation under consideration by combining soliton solutions with
rational solutions.
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Appendix A. Hirota bilinear operator identities.

The following bilinear operator identities hold for arbitrary functions a, b, ¢ and d.

sinh(6D,,)(Dya - b) - a® = Dy[sinh(6Dy,)a - b] - [cosh(6Dy,)a - a).

2sinh(6D,,)[exp(20Dy)a - b] - ¢ = P {[e*Prq - ] - eb — ac - [e*Pre - b))

[651Dna ) [662Dna ] = 6%(51+62)Dn [6%(51—52)1%& -a) - [e%(51—52)Dnc - b].

(Dta-b)e — (Dia - c)b = —aDyb - c.

sinh (01D, )[sinh(d2Dy,)a - b] - [exp(d2Dy)a - a)
= sinh(d2Dy,)[sinh (61 Dy )a - b] - [exp(01Dy)a - al.

2sinh(61 Dy,)[exp(02Dy)a - b] - [exp(d2Dy)c - ¢
— [6(52+51)Dna -] [6(52*51)Dnc b — [6(52*51)Dna (] [6(52+51)Dnc -b].

(A1)

(A2)

(A3)

(A4)
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Appendix B.

From (13)-(16) with (17)-(22), we have, by using MATHEMATICA, that

6
<n—§(m+k)+£(m—k)t> +§(k:m—k2—m2) <n—§(m+k)+

4 %(k +m)(2k — m)(2m — k) + g(m+ k) ka _ 2 m2y kQ)}

3 15
k2(m — k)? 2 k 3
dpa Bpap e 8La 40N (2 LAY
+<9k‘ 9km+3km 9k:m +9m n 3(m+k‘)+m(m k)t
k 11, 22, 13, 5 2 4
—f—[m(m k‘)<3k¢ 3k‘m+3km 3k:m t+ As
2 k
><<n—§(m+k:)+a(m—k)t)
14 4k7 10 10 14 4 K
t ——]{}6 = —]435 —k‘4 2__]{;3 3 —k2 4\ _ gV —k 4t2
+(9 T T kmA g km = gkt gk ) =50 (m = k)
2 _ 2 4 2
- %(mm)(zk —m)(2m — k)Wt 5 [135(k5+m)(2k —m)(2m — k:)}
10 4 1 2
—— | —=(k 2k —m)(2m — k k) | skm — —(m?* + k?
3 |+ )@= m@m = )| (o4 ) [ = o 412
k 3 k 2
—(m—k)t) — k = (m — k)t
20, 1)\2
+km<n+ﬁ(m—k)t>+Mt
m m
and
3 2 20 132
<n+£(m—k)t> —(m+k) <n+£(m—k)t> +km<n+£(m—kz)t>+wt
m m m m
n+ k(m k)t 6+5(k‘m E—m?) (n+ k(m k)t '
. 5o — O ke — k2 — F o —
m 3 m
5 1 2 k2(m — k)2 k s
- k) |Skm — —(m? + k? ¢ = (m — k)t
+{3(m+ )[3 m 15(m + )]+5 - }<n+m(m ))
4 4 4 2
+ <§k:4 - gk:?’m + §k2m2 - gkm3 + §m4> <n + %(m - k)t>
k 11, 22, 13, , 2 4 k
—i—[m(m kz)<3k 3km+3km Skm t+ Ag n—i—m(m k)t
14 4k7 10 10 14 4 K
t ——]{}6 = —]435 —k‘4 2__]{;3 3 —k2 4) _ gV —k 4t2
+(9 T T kmE g km = gkt gk ) =50 (m = k)
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Now we take

fi= <n+ %(m—k)t)3 — (m+k) (n+ %(m— k)t)z
k2(m — k)2

m

—i—km(n—i—ﬁ(m—k)t)%- t
m

Jo= <n— g(m+k)+ %(m—k)t)G

OJIOT

4
(km — K2 — m?) <n— 2tk + Em— k)t)

3 m

+

f_/h\

(k + m)(2k — m)(2m — k) + g(m+ k) [ km — = (m? + k?)}

4
27 15
(m

45 T)t} (n= 240+ oo k>t>3

4 4 4 2 2
+ (9k4 - gk:3m + §k2m2 — gkmg + 9m4) <n 3(m +k)+ :L(m - k:)t)
2
3

k 11 22 13
—(m—k) [ =k*— Zk3m+ =k*m? - =
—i—[m(m )<3 3 m+ g kbm

+Asz) <n — ;(m—i— k) + %(m — k)t)

4K 1 1 14 4 K

+1 <——k:6 9 0k5 90k4m2 - §k3m3 + §k2m4> — 55— (m — k)*?
m m

k*(m — k)2

m

2
—%(k+m)(2k—m)(2m—k) t—5{%(k+m)(2k—m)(2m—k)}

10

3 [135(k + m)(2k — m)(2m — k)] (m+ k) ka ~ 3(m2 - kQ)]

3 15

4

fi2 = <n+ %(m - k)t>6 - g(km —k? —m?) <n+ %(m — k)t)

5 2 ) k2(m — k)? k 3

—i—{g(m—i-k:) {3km—1—5(m +k)]+5Tt n+a(m—k)t
4 4 4 k 2

+ <§k4 - gk?)m + §k2m2 — gkm3 + §m4> (n + E(m - k)t)

k 11 22 13 2 k
+ | —(m—k) —k4——k3m—|——k2m2——km3 t+ Ag| | n+—(m—k)t
m 3 3 m

4k;7 10 10 14 k4
t ——k6 —km 4+ —k*m? — —k3 k2 — 5" (m — k)*?
" < R T T R S (M= F)

as seed solutions of next step where As and Ag are arbitrary constants. Thus using
Proposition, we can further find new polynomial solution fs.
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