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Abstract

It is known that many integrable systems can be reduced from self-dual Yang-Mills
equations. The formal solution space to the self-dual Yang-Mills equations is given by
the so called ADHM construction, in which the solution space are graded by vector
spaces with dimensionality concerning topological index. When we consider a reduced
self-dual system such as the Bogomol’nyi equations, in terms of ADHM construction,
we need to incorporate an infinite dimensional vector space, in general. In this paper,
we reformulate the ADHM construction by introducing various infinite dimensional
vector spaces taking into account the reduction of self-dual system.

1 Introduction

There are many integrable systems which can be obtained by a reduction of the self-dual
Yang-Mills (SDYM) equations, defined on R

4. In case of the reduction to 2 (or 1 + 1)
dimensions, we may regard the SDYM a simple zero curvature condition, so that there
appear standard soliton systems such as Korteweg-de Vries (KdV), Nonlinear Schrödinger,
Sine-Gordon equation, and so on [1, 2]. Another interesting case is the reduction to
3 (or 2 + 1) dimensions, in which there emerge the Bogoyavlenski ((2 + 1)-dimensional
KdV)[3], the Bogomol’nyi equation [4], etc., which are considered as integrable. This is
not so surprising fact because the SDYM equations are shown to be completely solvable by
defining their formal solution space graded by topological index, the ADHM construction
[5, 6].
Although the solution space of SDYM equations are found completely, our knowledge

of analytic descriptions to exact solutions is insufficient, since the ADHM method does
not give an explicit procedure to fix functional forms of instantons in general. In fact the
well-known analytic solutions, ’tHooft instantons [7], are not the most general solutions,
they are obtained through imposing some symmetries in their configurations. Hence,
to understand more about the SDYM equations, and/or the reduced systems, we need to
investigate further concrete examples of exact analytic solutions. In this context the author
and the collaborator obtained a new family of solutions to SDYM through constructing a
q-analog of the ADHM method [8].
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The ADHM construction is, as we shall see later, designed so that each solution with
topological index (instanton number) k, say, is assigned by a vector in an (n + k)-
dimensional linear vector space, where the gauge group is fixed Sp(n), and the vector
is determined by a certain finite dimensional linear algebraic equation. The advantage of
the method is that we can treat linear system rather than the original nonlinear PDE.

Now, when we consider the dimensionally reduced SDYM systems, how does the ADHM
construction work? For this subject, Nahm introduced an infinite dimensional L2[I] vector
space to find a solution to the Bogomol’nyi equation [9, 10], where I is an interval on which
the L2 functions defined. Hereafter we call these formulations the ADHMN construction.
We can intuitively understand the necessity for the infinite dimensional vector space as
follows, see also section 2. If we perform a reduction to 3 dimensions by requiring “time”
translational invariance, then the solutions to the reduced system have infinite number of
instantons aligned on some time-axes, except for the vacuum configuration. Hence we have
to assign an infinite dimensional vector space to the solutions in the reduced system, since
the dimensionality of the vector space associated to each instanton solution is concerned
with the instanton number, as mentioned above. As a result of the fact that the vector is
in L2[I], the linear equation determining it turns out to be a linear differential equation
instead of an algebraic one.

In this paper we consider how to merge infinite dimensional vector spaces into the
ADHMN construction. Of course the L2[I] vector space introduced by Nahm is a stan-
dard example. Another example is given in ref.[8] in which a function space defined on a
multiplicatively located discrete point set such as

{±1/2,±q/2,±q2/2,±q3/2, . . .} =: Iq,
where q ∈ (0, 1), is considered instead of L2[I]. We call this infinite dimensional function
space an 
2[Iq] vector space, say. In this “q-analog” formulation of the ADHMN construc-
tion, a vector associated to SD solution is determined by a linear q-difference equation.
This paper deals with further extension of a q-analogous formulation, a generalized L̂2[I]
formulation, where the same q-difference equation in the 
2[Iq] formulation appears, how-
ever we will see a degrees of freedom of “pseudo-constant” coming out in the solution. In
another point of view, a difference analog of the Nahm equations is known, the discrete
Nahm equations [11], whose solutions correspond to a monopole in hyperbolic 3-space,
a hyperbolic monopole [12]. We will comment on the relation between these distinct
difference analogs in the concluding remarks.

This paper is organized as follows. In the next section we review the ADHMN con-
struction briefly. In section 3 we present its q-analog formulation with focusing on the
linear q-difference equation. Finally, section 4 is given for concluding remarks.

2 The ADHMN construction

In this section, we give a brief review to the ADHMN construction. In subsection 2.1 we
consider the ADHM formulation for instanton solutions [5, 6] to SDYM (or anti-SD one,
hereafter (A)SD in short) equations in R

4, and in subsection 2.2, the Nahm formulation
for monopole solutions [10] to Bogomol’nyi equations in R

3.
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2.1 The ADHM formulation for SDYM in R
4

The standard variational equations in classical Sp(n) Yang-Mills theories in R
4, DµFµν =

0, are automatically satisfied by the (A)SD equations Fµν = ±F̃µν due to the Bianchi
identity DµF̃µλ = 0. The ADHM construction gives (A)SD configurations with a finite
instanton number k, which are obtained through a vector v of an (n + k)-dimensional
quaternion vector space V n+k with inner product < w, v >:= w†v. The connection one-
form is given by

A(x) = i < v, dv >= iv†(x)dv(x) (2.1)

and is (A)SD due to the theorem:

Theorem 1. [5] For Sp(n)(⊃ U(n), O(n)) gauge group, the (n+k)×n matrix v enjoying
a linear equation ∆†v = 0 and normalization v†v = 1n yield (A)SD gauge fields, if the
matrix ∆†∆ is quaternionic real and invertible. Here the (n+ k)× k matrix ∆ is assumed
to be linear in x, i.e., ∆ = a+ bx.

We can trace the proof of this theorem in the following way1. First of all, we no-
tice that the n + k column vectors of the matrices v and ∆ span V n+k, which can be
understood from the normalization v†v = 1n, the invertibility of the matrix ∆†∆, and
the linear equation ∆†v =< ∆, v >= 0 which implies that the column vectors of v and
those of ∆ are orthogonal to each other. Then we can find the completeness condition,
1n+k = v(v†v)−1v† + ∆(∆†∆)−1∆†. This gives the following two projection operators,
P := v(v†v)−1v† = vv† and P ′ := ∆(∆†∆)−1∆† = ∆F∆†, where F := (∆†∆)−1, onto the
n and k dimensional subspaces spanned by the column vectors of v and ∆, respectively.
We obtain the curvature two-form from (2.1) expressed in terms of P and v as

F = dA− iA ∧A
= iv†dP ∧ dP v
= iv†b dxF ∧ dx† b†v, (2.2)

provided that the matrices ∆ is linear in quaternion x, i.e., ∆ = a + bx. Since ∆†∆ is
quaternionic real, i.e., each entry is proportional to 12, F is also quaternionic real, hence
commutes with the quaternion coordinate x. We find that F is ASD, because

dx ∧ dx† = iη̄j
µνσjdxµ ∧ dxν , (2.3)

where η̄j
µν is the ’tHooft ASD tensor [7]. On the other hand, a SD curvature two-form is

also derived by exchanging x and x†, which yields the ’tHooft SD tensor ηj
µν [7]

dx† ∧ dx = iηj
µνσjdxµ ∧ dxν . (2.4)

Note that the gauge group acts on v on the right, v → v′ = vg where g ∈ Sp(n), then
the connection one-form transforms correctly, A → A′ = g†Ag + g†idg. And that we can

1Hereafter, † denotes hermitian conjugation, τµ = (12, iσ1, iσ2, iσ3) and xµ = (x0, x1, x2, x3) are
quaternion elements and spacetime coordinates, respectively, x :=

∑3
µ=0 xµτµ, |x|2 := ∑3

µ=0 xµxµ, and

x̂ :=
∑3

j=1 xjσj/r.
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prove that the integral (16π2)−1
∫
tr(F ∧ F ) gives the instanton number k, hence the

action becomes finite as long as k <∞.
To be concrete, we hereafter restrict ourselves to the gauge group SU(2) � Sp(1), that

is, n = 1. In this case the matrix v reduces to a (1+ k)× 1 matrix, i.e., an (1+ k) column
vector with quaternion entries. For the k = 1 case, we can derive one-instanton solution,
known as the BPST solution [16]. We set the matrix ∆ as follows,

∆ =
(
x− iλ12
x+ iλ12

)
, (2.5)

without loss of generality. This leads to the well known connection one-form in regular
gauge,

A = η̄j
µν

σjxν

|x|2 + λ2
dxµ. (2.6)

For k > 1 cases, the canonical form [5, 17] of ∆ is known to be,

∆ =




λ112 λ212 · · · λk12
x+ α112 0 · · · 0

0 x+ α212 · · · 0
· · · · · · · · · · · ·
0 0 · · · x+ αk12


 . (2.7)

These yield the multi-instanton solution with 5k − 3 parameters in singular gauge [7, 5],
firstly obtained by ’tHooft,

A =
1
2
ηj

µνσj∂µ ln

(
1 +

k∑
i=1

λ2
i

|x+ αi|2
)
dxν . (2.8)

The most general multi-instanton solutions admits 8k − 3 (k > 1) parameters [5, 6],
however no explicit formula for these solutions has never been known.

2.2 The Nahm formulation in R
3

The Bogomol’nyi equations [4], which governs minimum energy configurations in static
Yang-Mills-Higgs system, are DjΦ = ±1

2εjklFkl. This equations can be regarded as a
reduction of SDYM equations into Euclidean three dimensions, if we identify Φ = A0.
As mentioned in introduction, Nahm [10] applied the ADHM construction to constructing
monopoles, localized energy configurations in R

3 to the Bogomol’nyi equations, by bringing
in an infinite dimensional vector space L2[I]. Intuitively, we can recognize the necessity
of the infinite dimensional L2 space through the following argument [19]. We consider a
single monopole as a superposition of instantons putting densely on a time axis at a definite
location in R

3. To compose this configuration we firstly put the instantons periodically
on each time axis, this situation is called caloron solution [20, 21], and next we take the
limit of infinitesimal periodicity to restore the time translation invariance. Obviously, the
instanton number of monopoles is infinite, so that we need an infinite dimensional vector
space in the language of ADHM construction.
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In Nahm’s construction, we assume a linear equation ∆†v = 0 for the vector v(z) ∈
L2[I] ⊗ VN ⊗ H which defines the monopole configurations, where VN is an additional
N -dimensional vector space representing a multi-monopole configuration. The matrices
∆ and ∆† of the ADHM construction turn out to be differential operators here. The
connection one-form is given by the formula (2.1) with the L2[I] inner product,

< w, v >=
∫

I
w(z)†v(z) dz. (2.9)

We find that the conditions on F become,

Theorem 2. [10, 18] If

∆† = i
d

dz
⊗ 1N ⊗ 12 + 1⊗ 1N ⊗ x† +

3∑
j=1

1⊗ Tj(z)⊗ τ †j , (2.10)

the quaternionic reality and invertibility of ∆†∆ are equivalent to the differential equations
for the matrices Tj (the Nahm equation),

dTj

dz
=
1
2
εjkl[Tk, Tl]. (2.11)

In practice we need some additional conditions on Tj to impose correct boundary con-
ditions which guarantee the finiteness of energy in the monopole configurations. Note
that the Nahm equation also appears when we perform the reduction of SDYM into 1-
dimension.
The simplest, however, non-trivial example of solutions to the Nahm equation (2.11)

is given by the one-dimensional sector of the matrices Tj(z). The Nahm equation yields
all Tj(z), (j = 1, 2, 3) are constants, which are natural to choose zeroes since they lead to
the single BPS monopole at the origin. The linear equation ∆†v = 0 with ∆† = i d

dz + x†

gives v(z) = N(xµ)eix†z, where N(xµ) is a normalization function, hence we arrive at the
following connection one-form of the BPS monopole [4, 13],

ABPS = −1
2

(
coth r − 1

2

)
x̂dx0 − 1

2

(
1− r

sinh r

)
εijk

xi

r2
dxjσk. (2.12)

3 A q-analog of ADHMN construction

In the ADHMN construction reviewed in the last section, we associated a certain linear
equation, ∆†v = 0, to each solution to SDYM equations. At this point, the author and
the collaborator considered whether one can obtain a SD solution through a q-difference
equation or not, and indeed obtained an analytic SD configuration, see the following table.

linear eqn. SD solutions
algebraic (fin. dim.) ↔ instantons

q-difference eqn. ↔ ??

differential eqn. ↔ monopoles
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In this q-analog construction to the ADHMN formalism, the authors were inspired by
the fact that the Knizhnik-Zamolodchikov (KZ) equation in conformal field theory allows
meaningful q-analog, the q−KZ equation, a difference equation on a q-interval Iq, e.g.,

Iq =
{
±1
2
,±1
2
q,±1

2
q2,±1

2
q3, . . .

}
, (0 < q < 1). (3.1)

Here we consider the q-analog formulation in ref.[8] and its generalization, in which
we need appropriate inner products < w, v >q compatible with SD condition on the q-
derivative operator in new ∆’s. As we will see the q-analog formulations approach the
Nahm formulation for monopoles when q → 1, since then q-derivative tends to ordinary
derivative.

3.1 Definition of ∆ associated with q-derivative

We introduce the following q-analysis operations, the q-derivative and the q-integration
(“Thomae-Jackson integral”) [14],

Dqf(z) : =
f(z)− f(qz)
(1− q)z

−−→
q→1

df

dz
(z), (3.2)

∫ a

0
f(z) dqz : = a(1− q)

∞∑
n=0

f(aqn)qn −−→
q→1

∫ a

0
f(z) dz, (3.3)

respectively. If we define a ∆ operator associated with q-derivative similarly to the
monopole construction, that is,

∆ = iDq ⊗ 1N ⊗ 12 + 1⊗ 1N ⊗ x+
3∑

j=1

1⊗ Tj(z)⊗ τj , (3.4)

then we need, at least, the self-adjointness for q-derivative,

< iDqw, v >q =< w, iDqv >q . (3.5)

This is critical for the SD condition in ADHMN construction, i.e., the reality and in-
vertibility for the operator ∆∗∆, where the symbol ∗ is the involution associated with an
inner product of vector space under consideration, in the construction given in the last
section it is simply the hermitian conjugation †. We can see this explicitly for the simplest
case (one-dimensional sector of the matrices Tj(z)), which brings a q-analog of the BPS
monopole, i.e., if we define the linear operator ∆∗ as,

∆∗ = iDq + x†, (3.6)

then we have

∆ = iDq + x, (3.7)

due to the self-adjointness of iDq, this leads to the SD conditions1,

1As for the case k > 1 we need further consideration, see concluding remarks
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Proposition 3 (The reality). The product ∆∗∆ is quaternionic real, that is,

∆∗∆ = −D2
q + 2ix0Dq + |x|2

= (iDq + ρ+)(iDq + ρ−),

where ρ± := x0 ± ir.

Proposition 4 (The invertibility). The function:

F (xµ; z, z′; q) = 1
4r ε(z, z

′){Eq(−iρ+(1− q)qz′)eq(iρ+(1− q)z)
−Eq(−iρ−(1− q)qz′)eq(iρ−(1− q)z)},

where eq and Eq are the so called q-exponential functions defined below. We can see F
satisfies the equation,

∆∗∆F (xµ; z, z′; q) =
1

(1− q)|z′|δz,z′ , (3.8)

We easily find the expected limit,

F −−→
q→1

1
4r
ε(z − z′)

(
eiρ+(z−z′) − eiρ−(z−z′)

)
= − 1

2r
eix0(z−z′) sinh r|z − z′|, (the BPS limit) (3.9)

3.2 Inner product compatible with ∆

Now we determine the inner products < w, v >q with which the q-derivative enjoys the
self-adjointness (3.5). According to the functional vector space on which the vector v is
defined, we have the following choice:

(I) For functions defined on a q-interval Iq, we can define an inner product by using the
q-integral,

Definition 1 (The 
2[Iq]-inner product).

< w, v >q =
∫ 1/2

−1/2
w∗v dqz :=

∫ 1/2

0
w∗v dqz −

∫ −1/2

0
w∗v dqz, (3.10)

where Iq is fixed {±1/2,±q/2,±q2/2,±q3/2, . . . } and q ∈ (0, 1) as usual.
(II) For functions defined on an interval I, we can also define another inner product by

ordinary integral,

Definition 2 (L̂2[I]-inner product).

< w, v >q =
∫ 1/2

−1/2
w∗v dz (3.11)

provided that outside the defining region I (here we fixed I = [−1/2, 1/2]) functions
does not take values.
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In both cases, we define the conjugate vector v∗ as,

Definition 3 (the conjugate vector).

v∗ = [f(xµ, z; q)]∗ = f †(xµ, qz; q−1), (3.12)

where † is hermitian conjugation of quaternion. This definition of the conjugate vector
distinguishes the functional inner product in the original Nahm formulation and the case
(II). Note that (v∗)∗ = v.

3.3 The ASD solution in the case (I)

In this subsection we determine the 
2 vector v defined on Iq by solving q-difference
equation. We have already known that the operator ∆∗∆ satisfies the SD condition for
the one-dimensional sector of Tj(z), so that the equations we must solve are,

∆∗v = (iDq + x†)v = 0 (3.13)
< v, v >q= 1. (3.14)

By introducing the q-exponential functions familiar in q-analysis,

eq(z) =
∞∑

n=0

zn

(q; q)n
, (3.15)

Eq(z) =
∞∑

n=0

qn(n−1)/2

(q; q)n
zn, (3.16)

where (a; q)n =
∏n

j=0(1− aqj) (q-shifted factorial). We can easily find the solution to the
linear q-difference equation (3.13),

v = eq(ix†(1− q)z)N(xµ; q), (3.17)

N(xµ; q) being a “normalization function” taking a value in quaternion. Next we fix the
functional form of N as follows,

< eq(ix†(1− q)z), eq(ix†(1− q)z) >= Λ+(x0, r; q)1 + Λ−(x0, r; q)x̂, (3.18)

where

Λ±(x0, r; q) =
1− q

2

{ ∞∑
n=0

(ρ+

ρ− ; q)2n

(q; q)2n+1

(
i
(1− q)ρ−

2

)2n

± (ρ+ ↔ ρ−)

}
, (3.19)

then we find the normalization condition is,

N∗(xµ; q)(Λ+1 + Λ−x̂)N(xµ; q) = 1. (3.20)

Finally, we obtain the solution by power series expansion in x̂,

Proposition 5 (The normalization function).

N(xµ; q) = 1
2{(Λ+ + Λ−)−

1
2 + (Λ+ − Λ−)−

1
2 }1

+1
2{(Λ+ + Λ−)−

1
2 − (Λ+ − Λ−)−

1
2 }x̂ (3.21)
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The next step is to find the connection one-form determined by the vector v fixed above.
A straightforward calculation leads to,

A =
1
4
(−∂Ω

∂r
dx0 +

∂Ω
∂x0

dr) + fdx̂+ gεijk
xi

r2
dxjσk (3.22)

where

Ω(xµ) = log
L+

L− · 1 + log(L+L−) · x̂ (3.23)

f(x0, r) = − i

4
(M+ −M−)(L+L−)−1/2 (3.24)

g(x0, r) = −1
2
{1− M+ +M−

2
(L+L−)−1/2}. (3.25)

Here L± and M± are the functions of ρ± := x0 ± ir

L± := Λ+ ± Λ− =
∞∑

n=0

(q ρ∓
ρ± ; q)2n

(q2; q)2n

{
−(1− q)2ρ2±

4

}n

(3.26)

M± =
∞∑

n=0

1− q

1− q2n+1

{
−(1− q)2ρ2±

4

}n

. (3.27)

We should observe another expression to the solution,

L± = 2φ1[q
ρ∓
ρ±
, q2

ρ∓
ρ±
; q3;−(1− q)2ρ2±

4
], (3.28)

where 2φ1 is well-known basic hypergeometric series (with base q2).
We have A∗

µ = Aµ instead of the hermiticity A
†
µ = Aµ. However, we can obtain su(2)-

valued connection through a certain “gauge transformation” with g∗ = g−1

The components of curvature two-form are

F0r = (∂2
0 + ∂2

r ) log(L
+L−) · x̂ (3.29)

Fθφ = −1
2

(
1− M+M−

L+L−

)
sin θx̂ (3.30)

F0θ = {∂0f +
1
4
(1 + 2g)∂r log(L+L−)}∂x̂

∂θ

+{∂0g − 1
2
f∂r log(L+L−)} 1

sin θ
∂x̂

∂φ
(3.31)

Frφ = {∂rf − 1
4
(1 + 2g)∂0 log(L+L−)}∂x̂

∂φ

−{∂rg +
1
2
f∂0 log(L+L−)} sin θ∂x̂

∂θ
(3.32)

Frθ = ∂rf − 1
4
(1 + 2g)∂0 log(L+L−)}∂x̂

∂θ

+{∂rg +
1
2
f∂0 log(L+L−)} 1

sin θ
∂x̂

∂φ
(3.33)

F0φ = {−∂0g +
1
2
f∂r log(L+L−)} sin θ∂x̂

∂θ

+{∂0f +
1
4
(1 + 2g)∂r log(L+L−)}∂x̂

∂φ
(3.34)
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We can explicitly confirm the (A)SD condition,

Fµν = −F̃µν . (3.35)

We can find two extreme cases, in which the solutions turn out to be elementary functions,
one is the BPS monopole limit as q → 1,

L± −−→
q→1

sinh r
r

, M± −−→
q→1

1 (3.36)

then

A −−→
q→1

−1
2
(coth r − 1

2
)x̂dx0 − 1

2
(1− r

sinh r
)εijk

xi

r2
dxjσk (3.37)

= ABPS (3.38)

as expected. The other is obtained by taking the q → 0 limit, which brings a zero curvature
configuration (vacuum),

L±,M± −−→
q→0

1
1 + ρ2±/4

⇒ A � 0. (3.39)

Hence we find that our solution is interpolating vacuum and the BPS monopole by the
parameter q.

3.4 The ASD solution in the case (II)

In the case of the L̂2[I] inner product (3.11), the vector v must be considered as an analytic
function on the continuous region I = [−1/2, 1/2]. The defining relations are formally the
same as in the 
2[Iq] case,

∆∗v = (iDq + x†)v = 0 (3.40)
< v, v >q= 1. (3.41)

It is a little bit surprising that the self-adjointness (3.5) for the q-derivative holds even in
this case. Here we should pay attention on the fact that the solution to the linear equation
(3.40) has ambiguity of so called pseudo-constants C(z); if v is a solution to (3.40) then
C(z)v is also. The pseudo-constants are defined as invariance under the q-shift,

C(qz) = C(z), (3.42)

which are familiar in the q-analysis and we can easily give an example with a new parameter
α,

C(z) = zαΘ(q
αz)

Θ(z)
, (α �= Z) (3.43)

where Θ(z) is Jacobi’s elliptic theta function defined as,

Θ(z) = (z; q)∞(q/z; q)∞(q; q)∞. (3.44)

Introducing the pseudo-constant (3.43) results in the dependence on the special values of
theta function for the normalization functions and also the connection one-form. Further
consideration is needed for the consequence of the pseudo-constants.
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4 Concluding remarks

The configurations (3.22) obtained by a q-analog formulation of the ADHMN construction
are deeply concerned with the axisymmetric instantons derived by Witten [15] in his early
work. The axisymmetric instantons are the solutions to SD equations in R

4 with the ansatz
that the configurations are spherically symmetric in three space R

3. Hence the solutions
are depending only on x0 and r, “time” and radial coordinate, respectively. With this
ansatz, the SD equations in R

4 can be reduced to YM-Higgs system in R
2, in which the

field equation turns out to be a Liouville equation,

∂+∂−φ = 2e−φ. (4.1)

Thus we can easily find the general solution to (4.1),

−φ = log g′+g′−
(g+ − g−)2

(4.2)

where g± is holomorphic functions of ρ± := x0 ± ir. In particular, the solutions are shown
to have finite instanton number, provided that g± is the meromorphic functions with finite
zeroes and poles. We can find that the 
2[Iq] solutions (3.22) are also enjoys (4.1) with
meromorphic functions of infinite zeroes and poles, i.e.,

g− =
∞∏

n=0

2q−n

1−q + ρ−
2q−n

1−q − ρ−
, (4.3)

(and similar expression for g+.) This means the solutions (3.22) are axisymmetric instan-
tons with infinite instanton number.
As pointed out in section 3, we can generalize the ∆ operator in our q-analog formu-

lations into k > 1 sector. In this case the SD conditions inherit to finite dimensional
matrices Ti(z; q) in (3.4) enjoying the following equations,

DqTi(z) = εijk(Tj(qz)Tk(z)− Tk(qz)Tj(z)), (4.4)

similarly to the Nahm construction. As mentioned in the introduction, there is another
difference analog of the Nahm equations, the discrete Nahm equations [11], which yield
a monopole on hyperbolic 3-space [12]. In contrast to the discrete Nahm equations, the
q-analog formulation considered in this paper gives SD solutions in flat R

4 with infinite
instanton number. About the relationship between these difference equations, and for the
integrability of the q-Nahm equations, we will publish elsewhere.
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