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Abstract—This paper investigates two scheduling problems i.e., 

single machine scheduling problem with minimizing the 

number of tardy jobs and two machine flow shop scheduling 

problem with a common due date and minimizing the number 
of tardy jobs, in a stochastic setting in the class of non-

preemptive static list policies. It is assumed that the processing 

times of jobs are Gamma distributed stochastic variables. In 

previous results on these stochastic models, the strict 

condition– that all scale parameters are the same – is required. 
However, this condition may be difficult to be specified in real 

world problems. This paper presents new stochastic models for 

these two problems. Approximate deterministic problems are 

generated for these stochastic problems based on a new 

probability inequality, under mild conditions. The former 

stochastic models are special cases of our results. 

Keywords-stochastic scheduling; single machine scheduling; 

flow shop scheduling; tardy jobs 

I. INTRODUCTION  

 Consider two problems of scheduling n jobs for the 

purpose of min imizing the number of tardy jobs in the class 

of non-preemptive static list policies. The first involves a 
single machine problem. The other involves a two machine 

flow shop problem with a common due date. Following the 
three-field notation proposed by Lawler et al. [1], the 

problems are denoted by  jU||1 and  jj UddF ||2 ,  

respectively. 

Recently, Elyasi and Salmasi [2] develop two interesting 

stochastic versions of problems  jU||1 and 

 jj UddF ||2 . In their research, the job processing 

times are assumed to be independent random variables with 

Gamma distributions. To obtain the effective models for 
these problems, Elyasi and Salmasi assume that the second 

parameter are all the same. That is, assume 

that   njkA jj ,2,1,,~   ,where jA is the 

processing times of the job j. However, these conditions 

may be d ifficult  to be satisfied in real world p roblems. 
In this paper, we develop approximate stochastic 

versions of the problems  jU||1 and 

 jj UddF ||2 in which  the processing times of the 

job follow general Gamma d istributions. The scale 
parameter can be different in our models. Also, Elyasi and 

Salmasi’s models are special cases of our models.  

The rest of th is paper is organized as fo llows. In  Sect ion 

2, we provide necessary background and briefly present 

stochastic versions of problems of  jU||1 and 

 jj UddF ||2 developed in [2] for the readers 

convenience. An new probability inequality is  proved in the 

Section 3, which is used to establish new stochastic models 

for the problems of  jU||1 and  jj UddF ||2 in 

Section 4. Finally, conclusions and suggestions for future 

research areas are provided in Section 5.  

II. STOCHASTIC VERSIONS OF THE PROBLEMS  jU||1  

AND  jj UddF ||2   

In the classic version of the problem  jU||1 , a set 

},...,2,1{ nN  of independent and non-preemptive jobs is 

available at the beginning of the planning horizon to be 

processed on the machine. All jobs have equal weights. The 
machine is always available, and it can process at most one 

job at a  time. Let jp  and jd denote the processing time and 

the due date of job j, respectively. The job due dates are 

assumed to be given exogenously. If the process of job j is 
completed after its due date, the job is considered as tardy. 

The objective is to min imize the number of tardy jobs. 

Let the jobs be re-indexed accord ing to the earliest due 

date(EDD) first rule, i.e., nddd  21 . Then, the 

following integer programming model maximizes the 

number of on-time jobs (or equivalently min imizes the 
number of tardy jobs) on a single machine [3]: 





n

j

jx
1

z max  

    

,,2,1,..
1





i

j

jjj nidxpts 
 (1) 

  ,,,2,1,1,0 njx j   

where 1jx if job j is on-time, and 0 otherwise. 

The classic version of the problem 

 jj UddF ||2 is a flow shop with two machines, 

1M and 2M . A set },...,2,1{ nN  of independent and 
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non-preemptive jobs is available at the beginning of the 

planning horizon to be processed sequentially on 

machine 1M  and then on 2M . Each machine cannot 

process more than one job and each job cannot be processed 

by more than one machine at a t ime. The jobs have a 
common and determin istic due date d, which is given 

exogenously. The objective is to min imize the number of 
tardy jobs.  

Let ia and jb be the processing times of job j on 

machines 1M  and 2M , respectively. Without loss of 

generality, assume that jobs are re-indexed according to the 

Johnson algorithm [4], i.e., first set the jobs with ji ba  in 

a non-decreasing order of ja , then set the remain ing jobs in 

a non-increasing order of jb . Then, Della Croce et al. [5] 

present the following integer programming model for the 

problem  jj UddF ||2 : 
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  ,,,1,1,0 njx j   

where 1jx if job j is on-time, and 0 otherwise. 

Stochastic versions of the  jU||1 problem have been 

studied by some authors, see e.g., [6, 7, 8, 9]. The problem 
can be modeled as a chance constrained program as fo llows: 
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   ,,,1,1,0 njx j   

where jA , nj 1  denote the stochastic processing time 

of job j on the machine,  P is the probability of 

 , 10   is the desired  confidence level for satisfaction 

of the constraint set. Fortz and Poss [10] prove the 

following theorem to transform the chance constrained 

formulat ion of a combinatorial optimization problem to a 
deterministic one. 

Theorem 1 ([10]). Consider n independent random 
variables  

  ,1,,~ njkA jj   ,  

with 0 and 0jk and assume that 0d . Then, if 

 1,0jx for each nj 1 , the fo llowing constraints are 

equivalent: 
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where k is the unique root of the equation 
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and the gamma function is defined by 
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Let the jobs be re-indexed so that 
  nkkk 21  

Using Theorem 1, Elyasi and Salmasi [2] obtain the 

equivalent deterministic model of the problem 

 jU||1 with Gamma distributed processing times as 

follows: 
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where 
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ik is the unique root of the equation 
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, for each ni 1 . 

Also, Elyasi and Salmasi [2] consider stochastic version 

of the problem  jj UddF ||2 , where the job  

processing times on the machines are gamma distributed 

with a common scale parameter, i.e .,  
 ,~

jAj kA    
and  

 ,~
jBj kB  .  

Recall that if  ,~
jAj kA  and  ,~

jBj kB  , then 

 ,~
jj BAjj kkBA  .  

Using Theorem 1, each chance constraint can be replaced by 

a determin istic linear constraint if the processing times of 

job j on machines 1M and 2M  follow  ,
jAk  and 

 ,
jBk , respectively. Let  the jobs be re-indexed 

according to the Johnson algorithm [4] assuming that the 
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processing times of job j on machines 1M  and 2M  are 

jAk and 
jBk  , respectively. In other words, first set the jobs 

with 
jj BA kk  in a non-decreasing order of 

jAk , then set 

the remaining jobs in non-increasing order of 
jBk . 

Therefore, the chance constrained formulation of the 
stochastic problem with gamma d istributions is turned into 

an equivalent deterministic model as fo llows: 
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where k is the unique root of the equation 
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In models (5) and (6), the job processing times on the 

machines are gamma distributed with a common scale 

parameter  . In this paper, we construct new stochastic 

versions of the problems  jU||1  and 

 jj UddF ||2 , where d ifferent scale parameters are 

allowed in Gamma distributions. 

 

III. A PROBABILITY INEQUALITY  

In this section, we establish a probability inequality 
which will be used to formulate new stochastic versions of 

the problems  jU||1 and   jj UddF ||2 . 

Theorem 2 Consider n independent random variables  

  0,,~  jjjj kkA  , nj ,,2,1  . 

Assume that n  21 and 0b .Then, if 

 1,0jx for each nj 1 , the following inequality 

holds: 
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Proof We prove (7) by  induction on n. Denote by 

 xp the density function of random variable  . 
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This completes the proof of the Theorem 2.  
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Corollary  If 

     dxpP
n

          (10) 

Then 

    dxpP
nAA 1

          (11) 

Proof The proof fo llows easily from (7) and thus 
omitted here.  

IV. NEW STOCHASTIC VERSIONS OF THE 

PROBLEMS  jU||1 AND  jj UddF ||2  

In this section, we establish new stochastic versions of 

the problems  jU||1 and  jj UddF ||2 , under a 

relaxed condition. St rict  conditions–all Gamma d istributions 
have a common scale parameter– will be dropped from the 

modeling process. 

4.1 New stochastic version of the problem  jU||1  

Using Theorem 2, each chance constraint (11) can be 

approximately  replaced by a determin istic linear 
constraint(10) if the conditions in Theorem 2 are satisfied. 

Therefore, for a given confidence level  ,the chance 

constrained formulationof the stochastic problem 

 jU||1 with gamma d istributions is turned into an 

approximately equivalent deterministic model as follows: 
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4.2 New stochastic versions of the 

problems  jj UddF ||2  

Consider the stochastic problem  jj UddF ||2  

where the job processing times on the machines are gamma 

distributed,  
jj AAj kA ,~   and  

jj BBj kB ,~  . 

Assume that 

nAAA   
21

,
nBBB   

21
and 

nj
jj BA ,,1,   . 

Let the jobs be re-indexed according to the Johnson 

algorithm[4] assuming that the processing times of job j on 

machines 1M and 2M are jAk and jBk  , respectively. In  

other words, first set the jobs with 
jj BA kk  in a non-

decreasing order of 
jAk , then set the remaining jobs in non-

increasing order of 
jBk . Therefore, the chance constrained 

formulat ion of the stochastic 

problem  jj UddF ||2 with gamma distributions is 

turned into an approximately deterministic model as  follows: 





n

j

jxz
1

 max  

,,,1,..
1

nhkxkxkts
h

j

n

hj

jBjA jj
 







 (13) 

  ,,,2,1,1,0 njx j   

where k is the unique root of the equation 
 













k

d z
k

k

dzez
0

1

, 

and 




1

1

1

1

11









nBk

nB
hBk

hB
hAk

hA

Ak

A

nBk
hBk

hAkAk

nB





. 

V. CONCLUSIONS  

In this paper we investigate two stochastic models of 

scheduling problems  jU||1 and  jj UddF ||2 . 

Compared to their stochastic counterparts proposed in [2], 
the new models have some advantages. The strict condition 

that all gamma distributions have same scale parameter, 

required by other models of problems  jU||1 and 

 jj UddF ||2 , is dropped here. Thus, the new 

models apply to a wider class of problems under a mild  

condition. 
Theoretically speaking, we obtain approximate optimal 

solutions by models (12) and (13), rather than the exact 
optimal solutions obtained by models (5) and (6). Our 

models perform well in the situation that the gaps between 
µs are not too big. However, it is worth mentioning that the 

corresponding models proposed in [2] are special cases of 

our results. In fact, let n  21 in model (12) and 

nn BBAA   
11

 in model (13), 

respectively. It is easy to see that we obtain the same models 

proposed in [2] in this situation. 

There are several d irections for future research. The first 
one is to establish new stochastic versions of models of the 

problems  jU||1  and  jj UddF ||2 with the 

processing times following other distribution functions. 
Also, develop stochastic versions of 

models  jj UddF ||2  is interesting. 
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