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Abstract—This paper investigates two scheduling problems i.e.,
single machine scheduling problem with minimizing the
number of tardy jobs and two machine flow shop scheduling
problem with a common due date and minimizing the number
of tardy jobs, in a stochastic setting in the class of non-
preemptive static list policies. It is assumed that the processing
times of jobs are Gamma distributed stochastic variables. In
previous results on these stochastic models, the strict
condition- that all scale parameters are the same —is required.
Howewer, this condition may be difficult to be specified in real
world problems. This paper presents new stochastic models for
these two problems. Approximate deterministic problems are
generated for these stochastic problems based on a new
probability inequality, under mild conditions. The former
stochastic models are special cases of our results.
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. INTRODUCTION

Consider two problems of scheduling n jobs for the
purpose of minimizing the number of tardy jobs in the class
of non-preemptive static list policies. The first involves a
single machine problem. The other involves a two machine
flow shop problem with a common due date. Following the
three-field notation proposed by Lawler et al. [1], the

problems are denoted by 1l > U and F,|d; =d|D U,
respectively.
Recently, Elyasiand Salmasi [2] develop two interesting

stochastic  versions of problems 1 D_U; and

F2 | dj =d | ZUJ- . In their research, the job processing

times are assumed to be independent random variables with
Gamma distributions. To obtain the effective models for
these problems, Elyasi and Salmasi assume that the second
parameter are all the same. That s, assume

that A ‘“F(kjﬁ), 1=12,..n where A is the
processing times of the job j. However, these conditions
may be difficult to be satisfied in real world problems.

In this paper, we develop approximate stochastic

the 1” zuj

F, | dj =d |ZUJ- in which the processing times of the

job follow general Gamma distributions. The scale
parameter can be different in our models. Also, Elyasi and
Salmasi’s models are special cases of our models.

versions of problems and
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The rest of this paper is organized as follows. In Section
2, we provide necessary background and briefly present

stochastic versions of problems of 1| U; and

ledj =d |zUj developed in [2] for the readers

convenience. An new probability inequality is proved in the
Section 3, which is used to establish new stochastic models

for the problems of 1|| ZU,- and F2 | dj =d |ZUJ- in
Section 4. Finally, conclusions and suggestions for future
research areas are provided in Section 5.

[l.  STOCHASTIC VERSIONS OF THE PROBLEMS 1| ZU j

AND F2|dj:d|Z:Uj

In the classic version of the problem 1| ZU,- , a set

N ={12,...,n}of independent and non-preemptive jobs is
available at the beginning of the planning horizon to be
processed on the machine. All jobs have equal weights. The
machine is always available, and it can process at most one

job at a time. Let Pj and dj denote the processing time and

the due date of job j, respectively. The job due dates are
assumed to be given exogenously. If the process of job j is
completed after its due date, the job is considered as tardy.
The objective is to minimize the number of tardy jobs.

Let the jobs be re-indexed according to the earliest due

date(EDD) first rule, ie., d; <d, <---<d, . Then, the
following integer programming model maximizes the

number of on-time jobs (or equivalently minimizes the
number of tardy jobs) on a single machine [3]:

n
mex z=>) X,
j=1
i
sty p;x; <d;,i=12,...n,
-1 1)
x; {01} j=12,...,n,
where X; =1jf job j is on-time, and 0 otherwise.
The classic version of the problem

| d,- =d |ZU,- is a flow shop with two machines,
M and M, . A set N ={L2,...,n} of independent and



non-preemptive jobs is available at the beginning of the
planning horizon to be processed sequentially on

machine M, and then on M, . Each machine cannot

process more than one job and each job cannot be processed
by more than one machine at a time. The jobs have a
common and deterministic due date d, which is given
exogenously. The objective is to minimize the number of
tardy jobs.

Let &; and bj be the processing times of job j on
machines M, and M, , respectively. Without loss of
generality, assume that jobs are re-indexed according to the
Johnson algorithm [4], i.e., first set the jobs with &; < bj in

anon-decreasing order of &; , then set the remaining jobs in

a non-increasing order ofb,—. Then, Della Croce et al. [5]
present the following integer programming model for the

problem F2|dj =d|ZUj'
max z =YX,
j=1

Kk n
sty a;x;+y bx; <d k=1...n, )
. =

J_ =
x; {01, j=1...,n,
where X; = Ljf job j is on-time, and 0 otherwise.

Stochastic versions of the 1| ZU,- problem have been

studied by some authors, see e.g., [6, 7, 8, 9]. The problem
can be modeled as a chance constrained programas follows:

max Z:Zn:Xj
i-L

S.t.P{ZAij Sdi}Zp,i =1...n, @
j=1

x; €{01} j=1....,n,
where A;, 1< j < denote the stochastic processing time
of job j on the machine, P(') is the probability of

e 0< p<1js the desired confidence level for satisfaction
of the constraint set. Fortz and Poss [10] prove the
following theorem to transform the chance constrained
formulation of a combinatorial optimization problem to a
deterministic one.

Theorem 1 ([10]). Consider n independent random
variables

A ~T(k;,0)1<j<n,,
with @ > Oand K; =0 and assume that d >0 . Then, if

X; € {0,1}for eachl < j <N the following constraints are
equivalent:
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P{z AjX; < d}z
j=L

) , @
c>2ijj <k*
-1

where k™ is the unique root of the equation
j A

gamma

" dz
(k)ek =p

and the function is defined

by
.fz e 9dz

Let the jobs be re-indexed so that
k! <k;<---<k

Using Theorem 1, Elyasi and Salmasi [2] obtain the
equivalent  deterministic  model of the problem

1”ZUJ with Gamma distributed processing times as
follows:

maxz:ij
StZkX Si=12,...,n )
X, 6{01}1—12
where ki* is the unique root of the equation
i)
IZ dZ_ ,foreach 1<i<n.
L(k; )g*

Also, Elyasi and Salmasi [2] consider stochastic version
of the problem F,|d;=d|> U; = where the job

processing times on the machines are gamma distributed
with a common scale parameter, i.e.,

A ~Tlk, .0)

and
B, ~Tlk, .6).

Recall that if Aj - F(kAj ae)and Bj - F(kaj ﬂ),then
A +B; ~Tlk, +kg ,0).

Using Theorem 1, each chance constraint can be replaced by
a deterministic linear constraint if the processing times of

job j on machines M, and M, follow F(kAj’e) and

r(ksjﬂ), respectively. Let the jobs be re-indexed
according to the Johnson algorithm [4] assuming that the



processing times of job j on machines M, and M, are
kAj and kBj , respectively. In other words, first set the jobs
with kAj < kBj in a non-decreasing order of kAj , then set

the remaining jobs in non-increasing order of kBj .

Therefore, the chance constrained formulation of the
stochastic problem with gamma distributions is turned into
an equivalent deterministic model as follows:

max z = ij
StZk X +Zk X <k*, k=12,. 6)
j=1
x; {01}, j=1
where k™ is the unique root of the equation
J'Od 2% 9dz
rikpe- ”

In models (5) and (6), the job processing times on the
machines are gamma distributed with a common scale

parameter @ . In this paper, we construct new stochastic
versions  of  the  problems 1] ZUJ- and
F | dj =d |ZUJ- , Where different scale parameters are

allowed in Gamma distributions.

In this section, we establish a probability inequality
which will be used to formulate new stochastic versions of

the problems 1| ZUJ and F, |dj =d |ZUJ
Theorem 2 Consider n independent random variables
A ~Tlk;,0,)k, >0 j=12,..,n
Assume that 6, <6, <---<6 and b>0 Then, if
Xj e {0,1} for each 1< J <N the following inequality
o

holds:
Pt Ay, (X)Z (f}n)< ( 2)< ( j 1)( pnn Q)

Proof We prove (7) by induction on n. Denote by

A PROBABILITY INEQUALITY

pq(x) the density function of random variable 77 .
For N =2, note thatd;, < &, andU < X we have

pAﬁAQ (X)
=[P (W)p,, (x—u)du
065

=172 ukrl X u)kz le—Hlu 040U 4
ke
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_ Hllflé?zkz a0:x J’X u krl(x _ u)szle(er.gl)u du
r(k)rk,) =
01&02‘(2 —0,x [ k1 k,—1
> 172 e % gt (x—u)*du
o)
— eliflezkz —6,X r(kl)r(kz) Xk1+k2—l
r(kl )r(kz ) r(kl +k, ) (8)
— % k1+k2—1e—62x
Tk, +k,)
_(a) ﬁ ki+ko =10 =0,X
_Q)11k+k) °
= (&) Tk, +K,,0,)
Now’let
91 < '92 See n+1'An+l ( n+1’9n+l)’
And

n~Tk +---+k,,0,)
Assume that

pAﬁ—---/—\ﬂ (X)

() ()
Then from (8), (9) we have
pAﬁ A

>
9
r(k +--+k,,8,) ©)

Plarsn s (X)

- r”pm )P, (x-uja
> GG ) e e (x
> (PG G s

G G ) e o ek

By induction we have proved that
Pren (X)= (Z%)kl (z_i)kz a '(ggf )knf

Thus, if X; are binary numbers, we have also that
P 092 (S G (52 2, 0

where 77,, ~ F(kX +- -l-kn n,@ )

This completes the proof of the Theorem 2.
For a given desired confidence level £ , denoted by

PG e

u)du

+ kn+l'9n+1)

)

Tk, +---+k,,6,)

6

n+l? ¥ n+l

Yo,




Corollary If

P[pﬂn (x)<d]|=p (10)
Ploneca (¥)<d]zp ay

Proof The proof follows easily from (7) and thus
omitted here.

Then

IV. NEW STOCHAST IC VERSIONS OF THE
PROBLEMSL | ZUJ Aanp F, |d; =d |ZUJ.

In this section, we establish new stochastic versions of
the problems 1| ZUJ- and F,|d; =d |ZUJ- , under a
relaxed condition. Strict conditions—all Gamma distributions
have a common scale parameter— will be dropped from the
modeling process.

4.1 New stochastic version of the problem 1| ZU i

Using Theorem 2, each chance constraint (11) can be
approximately replaced by a deterministic linear
constraint(10) if the conditions in Theorem 2 are satisfied.

Therefore, for a given confidence level £ the chance
constrained  formulationof the stochastic problem

1||ZUJ- with gamma distributions is turned into an
approximately equivalent deterministic model as follows:

max z :ixj
=L

[
S.t.ijstki*,izl,...,n (12)
j=L
x;€{01} j=1...,n,
where ki* is the unique root of the equation

gl kia

:;i ,and pFWp .The gamma

1

. 4
1 -1
24 04z

r(k; Jo*

5

0
6k

© k1,75
function is defined by F(k) &

4.2 New stochastic versions of the

problems F2|dj=d|ZUj

Consider the stochastic problem F, | dj =d |ZU,-
where the job processing times on the machines are gamma
distributed, A *F(kAj ’9A,-) and B; ~ F(kBj ’HBJ-) :
that
and

Assume
0, <O, <-<0, |

0, <0, j=L-n.

Let the jobs be re-indexed according to the Johnson
algorithm[4] assuming that the processing times of job j on

O,

machines M and M, are Ka and Kg, , respectively. In

j o
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other words, first set the jobs with kAj < kBj in a non-

decreasing order of kAj , then set the remaining jobs in non-

increasing order of kBj . Therefore, the chance constrained
formulation of the stochastic
problem F, | dj =d |ZUJ with gamma distributions is
turned into an approximate ly deterministic modelas follows:

mex z=) X;
-1
h n
sty ky X+ kg X; <k h=1...n, (3
j=1 j=h

x; {01}, j=12....,n,

where k" is the unique root of the equation Ioz—

HgAl +“'+kA|-| +th +'"+an71
n

and 0 = —,— P.
1.,
N

An g¥Bh . ¥Bn1
'y gsh -l

n-1

V. CONCLUSIONS
In this paper we investigate two stochastic models of

scheduling problems 1] U, and F, |d; =d [ > U, .

Compared to their stochastic counterparts proposed in [2],
the new models have some advantages. The strict condition
that all gamma distributions have same scale parameter,

required by other models of problems 1||ZUJ- and

Fld;=d |ZUJ- , is dropped here. Thus, the new

models apply to a wider class of problems under a mild
condition.

Theoretically speaking, we obtain approximate optimal
solutions by models (12) and (13), rather than the exact
optimal solutions obtained by models (5) and (6). Our
models perform well in the situation that the gaps between
|6 are not too big. However, it is worth mentioning that the
corresponding models proposed in [2] are special cases of

our results. In fact, let 6, =6, =---=6, in model (12) and
gAl = ..gAn =...:0|31 :...:08n in  model (13),

respectively. It is easy to see that we obtain the same models
proposed in [2] in this situation.

There are several directions for future research. The first
one is to establish new stochastic versions of models of the

problems 1] > U, and F,|d;=d|D U, with the

processing times following other distribution functions.
Also, develop stochastic versions of

models F, |dj =d |ZUJ- is interesting.
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