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Abstract—Inspired by the framework of the Interacting Multiple 
Model (IMM), a method, called Interacting Multiple Gaussian 
Particle Filter (IMGPF), is proposed for solving the nonlinear 
Bayesian filtering problem with unknown continuous parameter. 
IMGPF regards the continuous parameter space as a union of disjoint 
subspaces, and each subspace is assigned to a model respectively. At 
each time step, for each model of IMGPF, under the assumption that 
the parameter belongs to the corresponding subspace, a Gaussian 
Particle Filter is applied to estimate the parameter and the state 
together. The parameter of each model of IMM is a fixed value, while 
the parameter of each model of IMGPF is a random variable need to 
be estimated. Thus IMGPF can achieve better estimation 
performance than IMM when the true parameter does not close to any 
element of the IMM model set. A simulation example of bearings 
only tracking problem is presented to demonstrate the effectiveness 
of IMGPF. 

Keywords;Interacting multiple model; Particle Fiter; Gaussian 
Particle Filter  

I. INTRODUCTION  
In the past years, there has been much interest in the 

nonlinear Bayesian filtering problem with unknown parameter. 
As far as we known, the following three kinds of Bayesian 
filtering methods are widely used to deal with such a problem: 
1) Extended Kalman Filter(EKF) or Unscented Kalman 

Filter (UKF) based methods[1,2]: In this kind of method, the 
unknown parameter time series is assumed to be a random 
walk affected by the artificial process noise. The variance of 
the process noise is assumed to be large if the true parameter 
may jump greatly at each time step, while it is assumed to be 
small if the true parameter may jump slightly or remain static at 
each time step. This kind of method is characterized by its fast 
calculation and easy implementation; however, its estimation 
performance may get worse when the real parameter process is 
complex. 
2) Particle Filters[3] (PF) based methods: In this kind of 

method, various sophisticated stochastic process can be used to 
model the parameter process, such as random walk[4], kernel 
smoothing[5,6], time homogeneous Markov Chain[7-9], etc. The 
PF based method has been widely applied in many cases in the 
last decade, however, a small number of particles may degrade 
the estimation performance of the PFs based methods. For 
example, suppose that the true parameter jumps into a region, 
which is a small probability event, a small particle number will 
led to a case that the parameter component of each particle will 
far from the true parameter. 

3) Interacting Multiple Model[10] (IMM) based methods[7,9, 

11]: IMM has shown its great success in handling problems with 

both structural and parameter uncertainties in recent years. 
IMM adopts a model set ΩIMM, which is a collection of discrete 
parameter points, to approximate the parameter space, and each 
elements of ΩIMM is assigned to a model. The parameter 
process is assumed to be a first order Markov process on the 
ΩIMM. At each time step, IMM runs a filter for each model. 
Many kinds of filters can be used for the model of IMM, such 
as EKF[7,9], UKF[7,9] and Raoblackwellised Unscented Kalman 
Filter[11]. The estimation performance of the IMM based 
methods is influenced by the ΩIMM. As soon as the parameter 
jumps, no matter how large the variation is, this kind of method 
are adapted to the change rapidly as long as the new parameter 
is close to any element of ΩIMM. However, such condition 
might appear hard to satisfy provided the parameter space is 
continuous and the cardinality of the ΩIMM is small. 

In this work we attempt to develop an improved Interacting 
Multiple Model for the nonlinear Bayesian filtering problem 
with unknown continuous parameter, named Interacting 
Multiple Gaussian Particle Filter (IMGPF). It achieves better 
estimation performance than IMM when the true parameter is 
not close to any element of the ΩIMM. 

II. STATE SPACE MODEL 
Consider the following state space model affected by the 

system parameter.  

( )1, ,t t tx f x v tθ−=              (1) 

( ), ,t t ty h x w tθ=               (2) 

where, the subscript t is the time index. f( ) and h( ) are two 
known nonlinear functions of the state xt∈Rnx. yt is the 
measurement, and y1:t={y1,…,yt} denotes the measurement 
sequence from time 1 to time t. θt∈Ωθ⊆Rnθ is the parameter, 
and Ωθ denotes the continuous parameter space. The parameter 
process is assumed unknown. The process noise vt, t=0,1,2,… 
and the measurement noise wt, t=1,2,… are independent 
random variables.  

The state transition probability distribution function (pdf) 
p(dxt|xt-1,θt) and the measurement likelihood p(yt|xt,θt) can be 
derived from (1) and (2). 

We will discuss below how to estimate the combination 
state ηt=[xt, θt] which includes the state and the parameter. 
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III. IMGPF INTRODUCTION 

A. Parameter Process Modeling 
The IMGPF model set ΩIMGPF={s(i), i=1,…,NIMGPF} is a 

partition of the parameter space, where s(i) is a subspace of the 
Ωθ, i=1,…,NIMGPF. At each time step, θt belongs to one and 
only one element of the ΩIMGPF, denoted as st. Let st

(i) represent 
the event: st=s(i), i=1,…,NIMGPF. 

For the purpose of modeling different kinds of parameter 
behaviors, such as jumping and being static, effectively, the 
parameter process is assumed to obey the following hypotheses:  

• {st, t∈N+} is a first order Markov process with 
transition probability matrix (TPM) πIMGPF. The 
element in the ith row and jth column of πIMGPF is 
denoted as π(s(i)|s(j)).  

• If st=st-1, the parameter remains static with probability 
c(st). The probability c(st) is called inner subspace 
conditional static probability. 

• If st=st-1, the parameter jumps from a point in st to 
another one in st (include the event that θt=θt-1) with 
probability (1-c(st)), and the transition probability 
distribution function (PDF) is q(dθt |st,st-1).   

• If st≠st-1, the parameter jumps from a point in st-1 to a 
point in st with the transition PDF q(dθt |st,st-1). 

• q(dθt |st,st-1) is the uniform distribution over st. 

B. Model Set Design 
In theory, any partition of the Ωθ can be used as the IMGPF 

model set. Inspired by the fifth hypothesis mentioned above, 
one optional design criterion of the model set is to minimize 
the following function, 

( )

( )
( )IMGPFN

1
d

i

i
si s

P
θθ θ
dθ θ

= ∈ ∈Ω

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∫ ∫                   (3) 

where 

( ) ( )( ) ( )( )( )
( )( )

d d
i i

Ti i i
s s ss s

P m m
θ φ

θ θ φ
∈ ∈

⎛ ⎞= − − ⎜ ⎟
⎝ ⎠∫ ∫ θ      (4) 

( )

( )( )
d d

i i

i
s s s

m
θ φ

θ φ θ
∈ ∈

⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ ∫                                        (5) 

ms
(i) and Ps

(i) are the mean and covariance of the uniform 
distribution over the s(i), respectively. 

Equation (3) implies that the k-means clustering 
algorithm[12] can be used to design the IMGPF model set. The 
main steps of a numerical approach to minimize the (3) are: (a) 
drawing a set of samples from the Ωθ  equally by using Monte 
Carlo method; (b) using k-means clustering method to 
decompose the samples into NIMGPF clusters, which are used to 
approximate the elements of the IMGPF model set, 
respectively; (c) computing the sample mean and covariance of 
the ith cluster to approximate the ms

(i) and Ps
(i), respectively.  

C. Basic idea of IMGPF  
For the purpose of responding to the parameter jump as 

soon as possible, IMGPF inherits the idea of parallel 
computation from IMM.  

IMGPF assigns each subspace to a model respectively. For 
each model, under the assumption that the parameter belongs to 
the corresponding sub-space, a Gaussian particle filter[13] (GPF) 
is employed to estimate the state and the parameter together. 
The estimations of all the GPFs will be combined to generate 
the estimation of the IMGPF.   

The main difference between IMM and IMGPF is that the 
parameter of each model of IMM is a constant point, however, 
that of IMGPF is an unknown parameter needs to be estimated.  
Thus, the IMGPF may perform better than IMM when the true 
parameter is not close to any elements of the IMM model set. 

D. Main steps of IMGPF 
Some notations are defined below to facilitate the 

readability of the paper: 
• : conditional probability of the true 

parameter belongs to the ith model at time t given the 
data 

( )
1: 1( |i

t tp s y − )

1: 1ty − , named the prior probability of the ith model. 
• : conditional probability of the true 

parameter belongs to the ith model at time t given the 
data , named the posterior probability of the ith 
model. 

( )
1:( |i

tp s y )t

1

1:ty

• : conditional probability of the 
measurement  given the event s

( )
1: 1( | , )i

t t tp y s y −

ty t
(i) and the date , 

named the likelihood of the ith model. 
1:ty

• : conditional pdf of the combination 
state 

( )
t 1:(d | , )i

t tp s yη −

tη  given the event st
(i) and the data 1: 1ty − : 

•  : a Gaussian distribution which is 
used to approximate the , named the 
output pdf of the ith model. 

( ) ( )
t , ,(d ; ; )i i

t tN m Pη ηηη
( )

t 1:(d | , )i
t tp s yη −1

]• 1[ ,t t txψ θ−= :  a vector which includes the 1tx −  and 

tθ , named the mixed state. 
• : conditional pdf of the ( )

t 1:(d | , )i
t tp s yψ −1 tψ  given the 

event ( )i
ts  and data . 1: 1ty −

• : a Gaussian distribution which is 
used to approximate the , named the 
input pdf of the ith model 

( ) ( )
t , ,(d ; ; )i i

t tN m Pψ ψψψ
( )

t 1:(d | , )i
t tp s yψ −1

)

]θ

Assuming that  and  of 
the ith model, i=1,…, N

( )
1 1: 1( |i

t tp s y− −
( ) ( )

1 , 1 , 1(d ; ; )i i
t t tN m Pη ηηη − − −

IMGPF, have been calculated before the 
time t, where 

( ) ( ) ( )
, 1 , 1 , 1[ ,i i i
t x t tm m mη − − −=                                   (6) 

( ) ( )
, 1 , 1( )

, 1 ( ) ( )
, 1 , 1

i i
xx t x ti

t i i
x t t

P P
P

P P
θ

ηη
θ θθ

−
−

− −

−⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

                             (7) 
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The ( )
, 1
i

x tm −  is a component of , which is about the 
mean of the state. The

( )
, 1
i
tmη −

( )
, 1

i
xx tP −  is a component of , which is 

about the covariance of the state. 

( )
, 1

i
tPηη −

The IMGPF has four major steps associated with it.  
First, for i=1,…, NIMGPF, computer the prior probability of 

the ith model by 

IMGPFN( ) ( )
1: 1 ( ) ( ) 1 1: 11

( | ) ( | ) ( |i
t t i j t tj

p s y s s p s yπ− −=
= ∑ )j

−                (8) 

 Second, for i=1,…, NIMGPF, a GPF is used as the model 
filter to compute the  and . 
The 

( )
1: 1( | , )i

t t tp y s y −
( ) ( )

t , ,(d ; ; )i i
t tN m Pη ηηη

( )
,
i
tmη  is regarded as the estimation of the ith model. More 

details about this step will be discussed in the followed section.  
Third, for i=1,…, NIMGPF, update the posterior probability 

of the ith model by 

IMGPF

( ) ( )
( ) 1: 1 1: 1

1: N ( ) ( )
1: 1 1: 11

( | , ) ( | )
( | )

( | , ) ( | )

i i
i t t t t t

t t j j
t t t t tj

p y s y p s y
p s y

p y s y p s y
− −

− −=

=
∑

            (9) 

 Fourth, obtain the IMGPF estimation by 
IMGPFN ( ) ( )

IMGPF , 1:1
[ ] m ( | )i i

t t ti
e ηη

=
= ∑ tp s y                                (10) 

E. Model filtering 
The ith model is taken as an example to show how the 

model filter works. There are four steps in the process of model 
filtering, which are given as follows: 
Step1) Input pdf calculation: Compute the mean and 
covariance of  by ( ) ( )

t , ,(d ; ; )i i
t tN m Pψ ψψψ

( ) ( ) ( ) ( ) *( , ) ( ) ( )
, , 1 ( ) 1 , 1 1( ) ( | ) ( | )i i i i i j j
t t i t t t t tj i

m m c s q s s m q s sψ η ψ− − − −≠
= +∑ i

t

 

*( , ) ( ) ( )
, 1 ( ) 1(1 ( )) ( | )i i i i
t i tm c s q s sψ − −+ −                                       (11) 

( ) ( ) ( ) ( ) ( ) ( ) ( )
, , 1 , , 1 , ( ) 1( )( ) ( ) (i i i i i T i
t t t t t i t tP m m m m c s q s sψψ η ψ η ψ− − −= − − | )i

| )

| )

)i

)

 

*( . ) ( ) *( , ) ( ) ( ) ( )
, 1 , , 1 , ( ) 1( )( ) (1 ( )) (i i i i i i T i i
t t t t i t tm m m m c s q s sψ ψ ψ ψ− − −+ − − −  

*( , ) ( ) *( , ) ( ) ( ) ( )
, 1 , , 1 , 1( )( ) (i j i i j i T j i
t t t t t tj i

m m m m q s sψ ψ ψ ψ− − −≠
+ − −∑  

( ) ( ) ( ) *( , ) ( ) ( )
, 1 ( ) 1 , 1 ( ) 1( ) ( | ) (1 ( )) ( |i i i i i i
t i t t t i t tP c s q s s P c s q s sηη ψψ− − − −+ + −  

*( , ) ( ) ( )
, 1 1( |i j j i
t t tj i

P q s sψψ − −≠
+∑                                              (12) 

where 
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Step2) Filtering: A GPF is used to estimate the likelihood and 
the output pdf the ith submodel. 

Step2.1) Draw particles from , and 
denote them as . 

( ) ( )
t , ,(d ; ; )i i

tN m Pψ ψψψ
( , ) ( , ) ( , )

1 s{ [ , ], 1,..., N }i j i j i j
t t tx jψ θ−= =

Step2.2) For j=1,…,Ns, sample from  to 
obtain the 

( , ) ( , )
1(d | , )i j i j

t t tp x x θ−
( , )i j
tx , and denote ,  ( , ) ( , ) ( , )[ ,i j i j i j

t t txη θ= ]
Step2.3) Approximate the likelihood of the ith model by 

sN( ) ( , ) ( , )
1: 1 s1

( | , ) ( | , ) Ni i j
t t t t t tj

p y s y p y x θ− =
= ∑ i j          (16) 

Step2.4) Estimate the mean and covariance of 
  by ( ) ( )

t , ,(d ; ; )i i
t tN m Pη ηηη

   ( )Ns( ) ( , ) ( , ) ( , ) ( )
, s1

( | , ) N ( | , )i i j i j i j i
t t t t t t t tj

m p y x p y sη η θ −=
= ∑ 1: 1y   (17) 

Ns ( , ) ( ) ( , ) ( ) ( , ) ( , )
, ,1( )

, ( )
s 1: 1

( )( ) ( | ,

N ( | , )

i j i i j i T i j i j
t t t t t t tji

t i
t t t

m m p y x
P

p y s y
η η

ηη

η η θ
=

−

− −
=
∑ )

    (18) 

Step3) Reinitialize output pdf: If the following inequality is not 
satisfied, 

( )( ) ( ) ( )( )( ) ( )
, , Th

Ti i ii i
t s s t sm m P m mη η− − ≤

]i

⎥

               (19) 

the mean and covariance of the output pdf should be 
reinitialized as:  

                                                                   (20) ( ) ( ) ( )
, ,[ ,i i
t x t sm m mη =%

                                                               (21) 
( )

( ) ,
, ( )

i
i xx t

t i
s

P
P

Pηη

⎡ ⎤
= ⎢
⎣ ⎦

%

where Th is a threshold. 
The reason to carry out the Step3 is that the mean of the 

output pdf may away from s(i) if the true parameter is not 
belongs to the s(i) for a long time. However, if that happens, it 
may disobey the basic idea of the IMGPF, because the ith 
model concerns about the distribution  over the s(i). One simple 
approach to solve such an issue is to test the (19) to determine 
whether the output pdf should be reinitialized according to (20) 
and (21) or not. More sophisticated methods will be taken into 
account in our future work.  

IV. SIMULATION RESULTS 
The proposed IMGPF is compared with IMM, SIR and 

UKF under a simulation of bearings only tracking problem. 
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Suppose the object moves in the X-Y plane according the 
constant turn[14] (CT) model, and the measurements of the 
object taken by the sensors at fixed intervals are the bearings 
(subject to Gaussian white noise) with respect to three sensors. 
The sate space form of the dynamic system is as follows: 

sin cos 1
1 0

0.5 0
0 cos 0 sin 1 0

1 cos sin 0 0.50 1
0 1

0 sin 0 cos

t t

t t

t t
t t

t t

t t

t t

x v

θ θ
θ θ
θ θ
θ θ

θ θ
θ θ

−⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎢= +⎢ ⎥ ⎢−⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

⎥
⎥

         (22) 

( ) ( )
( ) ( )
( ) ( )

1

1

1

tan 0 0

tan 0.2 0.2

tan 0.2 0.2

c c
t t

c c
t t t

c c
t t

y x

ty y x

y x

−

−

−

⎡ ⎤⎡ ⎤− −⎣ ⎦⎢ ⎥
⎢ ⎥⎡= − −⎣⎢ ⎥
⎢ ⎥⎡ ⎤+ −⎢ ⎥⎣ ⎦⎣ ⎦

w⎤ +⎦                          (23) 

where, [ , , , ]c v c v
t t t t tx x x y y= . c

tx and  denote the Cartesian 
coordinates of the object, and

c
ty

v
tx and  denotes the velocities 

in the X and Y directions, respectively. v

v
ty

t  and wt are zero-mean 
white noise with covariance Pvv=(0.001(m/s2))2×I2 and 
Pww=(0.005(rad))2×I3, respectively, where In is the n×n 
identity matrix. The initial pdf of x0 is a Gaussian distribution 
with mean [0(m),0(m/s),0.4(m),-0.005(m/s)] and covariance 
diag[(0.005(m))2; (0.001(m/s))2; (0.005(m))2; (0.001(m/s))2]. 

The turn rate (parameter) time series which is unknown to 
the filters is illustrated in Table.1 

TABLE I.  TURN RATE AT EACH TIME STEP 

Time(s) Turn rate(°/s) 

1-10 0 

11-15 18 

16-25 33 

26-30 -33 

 

IMGPF and IMM both include two models, and the initial 
prior probability of each model is 0.5. The IMM model set is 
ΩIMM={-22.5×π/180, 22.5×π/180}, and the IMGPF model set 
is ΩIMGPF={s(1)={θ|-45×π/180≤θ<0}, s(2)={θ|0≤θ≤45×π/180} }. 
IMM and JSIMM have the same model TPM： 

0.9 0.1
0.1 0.9
⎡

Π = ⎢
⎣ ⎦

⎤
⎥                                   (24) 

Let c(s(1))= c(s(2))=0.9. The SIR uses 400 particles to 
estimate the state and parameter together. 

 A simulation with 100 Monte Carlo runs is conducted to 
test the performance. The root mean square error (RMSE) of 

position and parameter estimation for the four methods are 
show in Fig.1 and Fig.2, respectively. 

 

Figure 1.  Root mean square error of position estimation 

 

Figure 2.  Root mean square error of parameter estimation 

As is shown in the Fig.1 and Fig.2 that when the true 
parameter is close to any one of the elements in the IMM 
model set, the IMM performs best and IMGPF is the next. 
However, the estimation performance of IMM gets worse when 
none of the elements in the IMM model set is close to the true 
parameter, such as the period between the 1(s) to 10(s) . 
Meanwhile, the IMM performs better than other methods. 

Parameter change occurs three times in the simulation. 
When the parameter jumps greatly, such as the change 
happening between 25(s) to 26(s), the SIR and UKF fail to 
response to the large change as the particle number of SIR is 
insufficient and the variance of the process noise of the UKF is 
not large. 

V. CONCLUSION 
The estimation performance of IMM may degrade when the 

true parameter is not close to any element of the IMM model 
set. The main purpose of this study is to develop an improved 
method to solve such a problem. 

The IMGPF proposed in this paper inherits the idea of 
parallel computation from IMM. The main difference between 
IMM and IMGPF is that the parameter of each model of IMM 
is a constant point, however, that of IMGPF is an unknown 
parameter needs to be estimated 

The simulation results show that when compared with IMM, 
SIR and UKF, our new approach performs better in many 
situations 
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