

The Research on Attack Threat Sensing based on "Software Security Sensor"

Yuan Zhao1,2, Qiangbo Liu1,Dingyi Fang1,2, Huaijun Wang1,2,Cong Zhang1,2
1School of Information Science and Technology, Northwest University, Xi’an, China

2NWU-Irdeto Network-information Security Joint lab (NISL)
Corresponding Author: zhaoyuan19890807@126.com

Abstract—Aim at the different attack threats the running
software faced with during reversing, a method of sensing
attack threats based on "software security sensor "is proposed
in this paper. And the instance has demonstrated that the
method is effective and feasible. Drawing lessons from the
thought of physical sensors, the code snippet which is used to
sense the attack threats is called "software security sensor”,
SwSensor for short. Firstly, the attack threats and their
features are analyzed; then the design of the corresponding
SwSensors and the delimiting of sensed areas is discussed in
detail; finally, the layout model based on the multi-level
gateway in physical sensor network is described.

Keywords- Attack threat; Sensing; Software Security Sensor;
Code Blocks Dependency

I. INTRODUCTION
The software runs in white box attack environment[1],

leading to the key information exposed to attackers further.
Meanwhile, the continuous development of attack tools and
methods makes the white box attack environment more
dynamic, complex and unpredictable[2].

Traditional software protection methods, such as,
encryption, obfuscation belong to the static protection
because the protected software cannot adjust their execution
paths dynamically.2011, Collberg put forward the idea of
dynamic protection, who thought that the factors including
speed, agility, unpredictability, vigilant monitoring, defense
in depth, and renewability of defenses are all necessary to
ensure long-lasting defenses[3].So, to make the protected
software updated the defense with the changes of
environment and dynamically game in the terminal with the
attacker is a new idea to explore dynamic protection further.
The first problem is how to make the running software
sensed the attack threats in white box attack environment.

Reversing attack will cause the changes of elements in
white box attack environment, which is the fundamental
basis to sense attack threats. Usually, the reverse analysis
process can be divided into three stages: the disassembly,
dynamic and static analysis and decompiling[4], as shown in
figure 1.The first stage is to disassemble the binary code
into assembly code. The second is to understand the
functions and semantics to get control flow, data flow and
algorithm etc. The last is to decompile assembly code into
source code. However, the differences among high-level
languages result that the attack effect based on decompiling
is not ideal. Attackers attack the first two stages usually by
means of some mature tools, such as OllyDbg, IDA, to set
breakpoints, memory dump, etc. Among them, the dynamic

and static analysis is the process of human thinking, and
does not change the elements of environment. Therefore, the
attack threats that the running software is faced with in
white attack environment can be divided into three types:
debugging attack, dumping attack and tampering attack
from the perspective of reverse analysis.

Figure 1. Reverse Engineering and Attack Threats.

II. RELATED WORK
There are some related research results at home and

abroad.
• Anti-debugging techniques based on detecting the

changes of environment elements.
Most of the current anti-debugging techniques have been

used[5] in commercial protectors. Its principle is that some
elements of the white box attack environment will be
changed when debugging[6]. However, the current anti-
debugging techniques are simple and can be removed by
some plug-ins directly.
• Tamper-proof techniques based on multi-point guards.
Hoi [7] put forward using guards net for the integrity

protection. Cappaert[8] improved this idea and proposed a
new tamper-proof scheme based on cryptography. A part of
code is encrypted, and the left parts are used to get the key.
When executing, only the code to be running is decrypted
and will be encrypted again after executing. The function
call graph is used to establish the dependencies among parts.
Until 2012, the idea that link all the guards to cycle chain to
ensure the security of guard itself is proposed [9]. Although
the ideas of guard net and code dependencies are very
valuable, the technology itself still belongs to static defense.
• Sensing techniques with intelligent decision.
Arash Salehpour et al.[10] developed an intelligent guard

which could monitor the changes of environment and make
decisions on whether continuing to execute in the software
life cycle. Artificial intelligence is introduced in this
technique to make the terminal software be self-adjusting
with the changes in the environment. Due to the intelligent

2nd International Conference on Advances in Computer Science and Engineering (CSE 2013)

© 2013. The authors - Published by Atlantis Press 170

guard and protected software are separated, attacking on
intelligent guard itself becomes a bottleneck.

III. ATTACK THREATS SENSING BASED ON SWSENSOR

A. Overview

Figure 2. Mechanism of Sensing the Attack Threats.

We will introduce the basic concepts firstly.

B. Basic Concepts
• Sensed elements
Refer to the factors which will cause the changes of

white box environment or affect the running software, such
as, the debugger will modify the flag bit of Beingdebug. And
the other factors, such as, the sequence of API, which can
reflect the changes of software itself, also belong to sensed
elements.
• Set of attack threats features
Attack threats can be divided into debugging, dumping

and tampering. Different attack threats will change different
sensed elements and the subset of which can identify
different attack threats are called set of attack threats features.
• Security dependencies among code blocks
Refer to the software attributes used to identify the

influence on other code blocks when a code block is being
attacked, such as, invoking, data dependencies, etc.
• SwSensor
Assembly code used to sense the attack threat in running

time, such as, the snippet code of integrity checking.

C. Method of Sensing Attack Threats
Step1. Collect the sensed elements of debugging,

dumping and tampering based on attacking experience and
knowledge. Marked as { }, ,ijf name way value= , ijf represents a
sensed element, way represents the usage of ijf , value means
the secure value of ijf .

Construct the attack threat feature library as
following. DgThreat refers to the debugging attack
threat, DpThreat refers to the dumping and TpThreat refers
to tampering attack threat.

11 12 1

21 22 2

31 32 3

: , ,
: , ,

: , ,

x

y

z

DgThreat f f f
AtfLib DpThreat f f f

TpThreat f f f

⎧ ⎫
⎪ ⎪

= ⎨ ⎬
⎪ ⎪
⎩ ⎭

…
…
…

Step2. Construct the corresponding software security
sensors library, marked as SwSensorLib , according to AtfLib .
The design principle is that judge whether the software is in

a secure state or not by identifying the features of attack
threats is normal or not. The details are shown here:
• Design the functional template of SwSensor, marked

as { }, , mSwSensorTemplate At fset Parameter= ,
At represents the type of attack threat, fset represents

the subset of features, mParameter presents the
parameter list, such as, the start address of sensed area.

• "Feature value" is used to reflect different attack
threats, Feval for short. The sensing algorithm is
designed of randomly selecting several features and
normalizing them to get Feval , marked as Algorithm .

• Use the deformation engine to diversify the different
SwSensorTemplate to construct the SwSensorLib.

{ },i iSwSensorLib SwSensorTemple Swsensorset= ,

iSwsensorset represents the set of Swsensors coming
from iSwSensorTemple .

Step3. According to the security dependencies and
division rule among code blocks, delimit the sensed areas.
• According to the attack experience and knowledge,

obtain the security attributes iCSAttr and form the
security dependencies among code blocks.

{ }1 2, , nCodeSecDep CSAttr CSAttr CSAttr= … .
• Delimit the sensed areas of the being protected

software { },i i iSArea CodeSecAttr parameter= then form

{ }1 2, , mSwSensorArea SwSArea SwSArea SwSArea= … .
Step4. Generate the layout scheme based on multi-stage

gateways model.
• Matching suitable SwSensor for the different sensed

area and setting their parameters. Marked
as ,k k

w w iSwSensor SwSensorLib Swsensor SArea∀ ∈ 6 ,
k

wSwsensor is used to sense the state of iSArea ,
• Setting the parameters of SwSensors based on

minimum coverage theory of graph. Regard the
chosen SwSensors as the vertices of graph, the sensed
scope as edge sets, construct associated matrix and
adjust the sensed scope repeatedly to get the
minimum coverage vertex set. And considering the
security dependencies among code blocks, level
classification is carried out on the chosen SwSensor
and the multi-level gateway structure in accordance
with self-security is constructed.

Step5.Reconstruct the protected software to make the
SwSensors triggered in the appropriate time.

IV. INSTANCE AND EVALUATION

A. Attack Threats Lib
Extract several features of three attack threats below.
• DgThreat features: the execution time, the breakpoint;
• DpThreat features: the API sequence;
• TPThreat features: code checksum and control flow;

 The description of attack threat library is shown in table 1.

171

TABLE I . DESCRIPTION OF ATTACK THREAT LIB

Attack Threat Sensed elements Name Way Sec_val

DgThreat f11 ExeTimevar

When the process is being debugged, the debugger event
handling code, step instructions etc will occupy CPU

cycle. If it takes between adjacent orders far more than
conventional, means the process is being debugged.

[t1,t2]

f12 Breakpoints Int3 breakpoint will modify a byte memory into 0xCC. Not 0xCC

DpThreat f21 APISeq When fixing ImageSize, call for API sequence below:
GetProcessBaseSize,GetProcessPath,CreateFile,ReadFile

Not this API
sequence

TpThreat f31 Checksum Checksum is always same without tampering attack. SUM
f32 ControlFlow Code the control flow and test if it is changed in runtime. {a1a2…an}

B. SwSensor Template Lib
1) Design of SwSensor Template

Combine the different sensed elements of one attack
threat to generate the multi-subsets of features.

TABLE II. DESCRIPTION OF SWSENSOR TEMPLATE LIB

Template Attack Threat Features Parameter list
ST11 DgThreat f11,f12 <startaddr,endaddr,val>
ST12 DgThreat f11 <startaddr,endaddr,[t1,t2]>
ST13 DgThreat f12 <startaddr,endaddr, 0xCC>
ST21 DpThreat f21 <startaddr,endaddr,APIseq>
ST31 TpThreat f31,f32 <startaddr,endaddr,val>
ST32 TpThreat f31 <startaddr,endaddr,SUM>
ST33 TpThreat f32 <startadr,endadr, {a1,a2…an>

For example, the two sensed elements of DgThreat from
table 1 are combined to produce three subsets of features:
{f11, f12}, {f11} and {f12}. Then, compute the “feval” of
each subset. The second subset only includes {f11}, so its
“feval” can be directly identified as [t1, t2], but the first
subset includes {f11, f12 which do not belong to the same
dimension and must be computed by normalizing.

2) Sensing algorithm
Sensing algorithm

Read fij from AtfLib
Normalize(fij) to get VAL
Compare VAL, parameters.val
If unequal Broadcast()
else Continue

The Normalize (fij) is defined by user. Broadcast ()
transfers the attack information.

We define the Normalize (fij) below:
①ST11:t2-t1+0xCC; ②ST12 :(t2-t1)* t1;
③ST13:0xcc; ④ST21:1111;
⑤ST31: SUM+a1+a2+…+an;
⑥ST32: SUM; ⑦ST33:a1+a2+…+an.

A part of pseudo codes of templates are shown in table 3.

TABLE III. PSEUDO CODE OF SWSENSOR TEMPLATES

ST11 ST12 ST32
mov eax,t2
mov ebx,t1
sub eax,ebx

add eax,0xcc
sub eax,feval

jz label
continued

label:
Broadcast

Invoke GetTickCount
mov ebx,eax

Invoke GetTickCount
sub eax,ebx
mov ebx,eax

mul ebx
sub eax,feval

jns label:
continued

add ebp, checksum
mov eax, startaddr

for:
cmp eax, endaddr

jg end
mov ebx, dword[eax]

add ebp, ebx
add eax, 4

jmp for

label: Broadcast end:

3) Diversifying Swsensors

Deformation engine[11] is used to tranform the SwSensor
templates to different forms which are equivalent Semantics.
As shown in figure 3.N-Iterative is the parameter to control
the number of iterations of matching instruction pattern. It
will generate mulitple SwSensor templates with different
deformation level.

Figure 3. Deformation engine.

C. Delimiting the Sense Area
1) Security dependencies

We adopt the control dependency[12] as the security
dependency.There are three atomic control dependencies
based on the functions granularity[13],as figure 4 shows.

Figure 4. Three atomic control dependencies.

The weighted directed graph commonly is used to
indicate the control dependencies among code blocks, as
shown in figure 5. Among, P Q→ represents P depends
on Q , the weight means the degree of control dependency.

Figure 5. The control dependency among code blocks.

The degree of control dependency is computed here:

172

Step1: Daw the control dependency graph without
weight;

Step2: List the paths starting from the node with zero in-
degree and ending in that of zero out-degree;

Step3: The weight of one edge equals to the outdegree
of head node plus the weight when it is tail node.That is, the
weight of “Q W” in “P Q W” equals to the outdegree
of Q plus the weight when Q is tail node. For the ring node
as the tail node,the weight of the edge plus 1.

Step4: Repeat step 3.
So, we analyze the weight of each edge in figure 5 here:
List all paths:

①ABCG,②ABDE,③ABDG,④ABDHH,⑤AE,⑥FDE,
⑦FDG,⑧FDHH.

And then, mark the weight from the node with zero
indegree:①A2B4C5,②A2B4D8E,③A2B4D8G,
④A2B4D8H9H, ⑤A2E, ⑥F1D8E, ⑦F1D8G,
⑧F1D8H9H.

2) Assembly of Sensend Areas
Sort the code blocks according to control dependency

with key code block from strong to weak, and then select
first n related code block as the assembly of Sensend areas.

As shown in figure 5, it is assumed that “D” is the key
block, sort the other code blocks according to the control
dependencies with “D” from strong to weak:DEGHBF. In
this case, select “DEGHBF” as the assembly of sesend areas.

D. Layout schema and Reconstrction
1) Matching SwSensors with code blocks

Choosing the appropriate SwSensor for different sensed
area according to two principles:①Select SwSensor
according to the code block's own features; ②Considering
the performance cost,select the smallest SwSensor only if
meeting the first priciple.

2) Layout model based on multi-layer gateway
It is to assign a value to the parameters. Like the left in

figure 6.The control dependencies among the block codes
aren’t changed in fact and just increased several layers of
SwSensor. The sensed attack information is passed to the
higher layer, which is similar to physical multistage gateway.

Figure 6. Layout model based on multi-layer gateway.

3) Reconstrction
The chosen SwSensors are embedded into the code

blocks in the assembly instruction level to generate the
protected software.Like the right in figure 6.

V. CONCLUSION
Method of attack threat sensing based on "software

security sensor" is proposed in this paper. Explore what kind
of attack threats are in the white box attack environment and
their features in the process of reverse engineering. And
then research on how to make the software sensed the
different attack threats according to the features in runtime.
However, how to store and pass the attack information
safely is another key point in the research of self-adjusting,
which is the next step of this paper.

ACKNOWLEDGMENT
This work is supported by the Natural Science Fundation

of China(61070176, 61170218, 61272461), Research Fund
for the Doctoral Program of Higher Education of
China(20106101110018), Research and Industrial Project of
Shanxi Province(2011K06-07).

REFERENCE
[1]De Mulder Y, Wyseur B, Preneel B. Cryptanalysis of a perturbated

white-box AES implementation [M]. Progress in Cryptology-
INDOCRYPT 2010. Springer. 2010: 292-310.

[2] Huang Yu, Yu Jian-Ping, et al. Monitoring Properties of Open
Environments [J]. Journal of Software, 2011, 22(5).

[3]Collberg C. The Case for Dynamic Digital Asset Protection
Techniques[J]. Department of Computer Science, University of
Arizona, June 1,2011: 1-5.

[4]Zhao Yu-Jie, Tang Zhan-Yong, et al. Evaluation of Code Obfuscating
Transformation [J]. Journal of Software, 2012, 23(3): 700-711.

[5]http://bbs.pediy.com/showthread.php?t=106143&highlight=%E5%8F%
8D%E8%B0%83+%E8%B0%83%E8%AF%95+%E8%AF%95.
2010

[6]Gagnon M N, Taylor S, Ghosh A K. Software protection through anti-
debugging[J]. Security & Privacy, IEEE, 2007, 5(3): 82-84.

[7]Chang H, Atallah M J. Protecting software code by guards [M]. Security
and privacy in digital rights management. Springer. 2002: 160-175.

[8]Cappaert J, Preneel B, Anckaert B, et al. Towards tamper resistant code
encryption: Practice and experience [M]. Information Security
Practice and Experience. Springer. 2008: 86-100.

[9] WU Shao-jie, HE Rong-yu, et al. Study of Software Protection Method
Based on Cyclical Guards [J]. JISUANJI YU XIANDAIHUA, 2012,
1: 161-165.

[10]Salehpour A, Etemad M, Nazarlu M M. Intelligent Guard: A Novel
Approach toward Software Protection [M]. Informatics Engineering
and Information Science. Springer. 2011: 449-460.

[11]Desai P. Towards an undetectable computer virus[D]. Citeseer, 2008.
[12]Cappaert J, Kisserli N, Schellekens D, et al. Self-encrypting code to

protect against analysis and tampering[C]. 1st Benelux Workshop on
Information and System Security (WISSec 2006), 2006:14.

[13] XU Bao-wen,Zhang Ting,et al. Dependence analysis of recursive
subprograms and its applications [J].Journal of Computer, 2001,
24(11): 1278-1283.

173

