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Abstract—OpenMP is a standard parallel programming lan-
guage to develop parallel applications on shared memory ma-
chines. OpenMP is very suitable for designing parallel 
algorithms for regular applications where the amount of work 
is known apriori and therefore, distribution of work among the 
threads can be done at compile time. In irregular applications, 
the load changes dynamically at runtime and distribution of 
work among the threads can be done only at runtime. In the 
literature, it has been shown that OpenMP produces poor 
performance for irreg-ular applications. In 2008, the OpenMP 
3.0 version introduced new features such as ”tasks” to handle 
irregular computations. Not much work has gone into studying 
irregular algorithms in OpenMP 3.0. In this paper, we consider 
one graph problem, the all pair shortest path problem and its 
implementation in OpenMP 3.0. We show that for large 
number of vertices, the algorithm running on OpenMP 3.0 
surpasses the one on OpenMP 2.5 by 1.6 times. 

Keywords-OpenMP 3.0; All Pair Shortest Path; Task Paral-
lelization 

I. INTRODUCTION 
Homogeneous multicore architectures have been used 

widely in the past decade. This is due to the need to have 
machines with high performance that are more computation-
ally powerful than uniprocessor machines. In a 
homogeneous multi-core architecture, many identical 
processors or cores work together to perform complex tasks. 
Many companies such as Intel, have moved towards 
increasing the processor’s power by adding more cores on a 
single chip. Most of the commodity homogeneous 
architectures have many duplicated CPUs on a single chip 
with a shared memory. The different CPUs interact with 
each other through shared variables. 

Shared memory machines can be categorized as either 
Uniform Memory Access (UMA) or Non-Uniform Memory 
Access (NUMA) architectures. In UMA machines, the 
CPUs have same access time to a shared primary memory. 
On the other hand, each CPU in NUMA has its own 
memory. This memory can be accessed by the CPU that it 
belongs to or by other CPUs. The memory access time is, 
therefore, non-uniform. Modern homogeneous multicore 
architectures with a shared memory system are also 
multithreaded. The cores have the capabilities of handling 
several threads concurrently. These architectures exploit 
both instruction level parallelism and thread level 
parallelism. There are many parallel programming 
languages or APIs that support a shared memory paradigm. 

One such API is OpenMP [11]. 
OpenMP contains a set of compiler directives and 

libraries to execute specific instructions in parallel and to 
divide the work among threads. OpenMP employs a fork-
join paradigm. The program starts with one thread called the 
master thread. Then, whenever there is a parallel region in 
the program, the master thread invokes a set of slave threads 
and distributes the work among them. This operation is 
called fork. After forking, the threads are allocated to the 
processors by the runtime environment and work 
concurrently to solve the problem. Once the slave threads 
have completed their work, they are destroyed and the 
master thread continues until it encounters another parallel 
region. This operation is called join. 

OpenMP is very suitable for designing algorithms for 
regular applications. The data structures used in these 
problems are structured (such as an array). The program 
flow and memory access patterns are also very structured 
and are known apriori. An example of a regular problem is 
matrix-vector multiplication, where A is a dense matrix, x is 
a vector and b is the resultant vector. In this example, the 
computations or operations required producing the output 
and data access patterns are known beforehand. On a 
multiprocessor system, each processor can be assigned the 
same vector x with certain number of data elements (a row 
or a given number of rows) to compute an element(s) in b. 
All processors perform the same computations to produce 
the resultant vector but with different data sets. As a result, 
these problems can be optimized to run on any type of 
architecture relatively easily. These problems are also 
classified as data parallel applications. 

The same is not true for irregular applications. Irregular 
applications rely on pointer or graph-based data structures. 
The algorithms used to solve irregular applications are 
referred to as irregular algorithms. Graph problems, list 
ranking and unstructured grid problems are examples of 
irregular computations. In these computations [15], [12], 
[6], [10], the data size changes dynamically at runtime, 
leading to non-uniform memory access and communication 
latencies. The load or amount of work to be distributed to 
the threads is not known apriori. We could consider the 
matrix-vector multiplication as an irregular problem, if A is 
a sparse matrix. Since A is instance specific, the structure of 
A is unknown at compile time. A matrix is not necessarily 
the correct data structure to use since there may be many 0‘s 
in the matrix wasting memory resources. In such problems, 
accesses to data often have poor spatial and temporal 
locality leading to ineffective use of the memory hierarchy 
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[15]. 
It is important to find efficient solutions in solving 

irregular problems. Irregular adaptive methods [1], [6], for 
example, have their applications in many science and 
engineering problems. With muticores becoming very 
popular, having a standard programming language that 
addresses both irregular and regular applications is very 
important. OpenMP is one such language. In the literature, 
some works [13], [3], [4] have shown that OpenMP 
produces reduced performance when dealing with irregular 
computations. The earlier versions of OpenMP were not 
meant to handle irregular computations [8]. In 2008, the 
OpenMP 3.0 version introduced a directive called “task” to 
help develop parallel algorithms for irregular applications. 
The directive “task” creates independent work units to be 
executed. The task in OpenMP 3.0 is nothing but a thread 
that can be created and destroyed as needed. It can also 
spawn other tasks that are not possible under the previous 
version of OpenMP. Spawning threads allows dynamic 
creation of threads incorporating fine grained parallelism 
and exploiting load balancing at runtime which is important 
for performance improvement in irregular computations. 

In this paper we focus on one graph problem, all pair 
shortest path (APSP) problem and its implementation on 
OpenMP 3.0. 

II. RELATED WORK 
APSP can be solved using Floyd Warshall’s algorithm. 

Venkataraman et al. [14] proposed a blocked algorithm to 
find APSP. Their algorithm exploits cache locality to 
optimize cache performance. The algorithm divides the 
adjacency ma-trix into blocks of B×B and each block 
processes individually in B iterations. They tested their 
blocked algorithm on two different machines, Sun Ultra 
Entrprise 4000/5000 and SGI O2. Their blocked algorithm 
delivers a speedup between 1.6 to 1.9 for graphs that are 
between 480 to 3200 vertices on Sun Ultra Entrprise 
4000/5000 and 1.6 to 2 on SGI O2 for graphs that are 
between 240 to 1200 vertices. Likewise, Ma et al. [7] 
developed parallel Floyd Warshall’s algorithm for multi-
core architecture on threading building blocks (TBB). TBB 
is a parallel programming model for C++ code. It is a 
runtime based programming model that specifies tasks. The 
task is mapped to threads. However, unlike Venkatraman et 
al., Ma et al. use task and data level parallelism available in 
the algorithm to find all pair shortest paths. The results 
reveal that the parallel algorithm surpasses both serial and 
single threaded algorithms by 57.26% and 50.06% 
respectively. 

Recently, Jasika et al. [5] used Dijkstra’s algorithm for 
APSP. They used OpenMP to parallelize Dijkstra algorithm. 
They use the algorithm to find the single source shortest 
path for every vertex. They compared the OpenMP 
implementation to OpenCL [9] and showed that there was 
no gain in perfor-mance in the two implementations. This 
they showed is due to the inherent sequential nature of 
Dijkstra’s algorithm problems which makes this algorithm 
very difficult to be efficiently parallelized. 

III. IMPLEMENTATION AND RESULTS 
There are two algorithms to find APSP which are Floyd-

Warshall and Dijkstra algorithms. As mentioned in section 
2, Dijkstra is not an efficient algorithm to be used in 
parallel. Therefore, in this work we consider Floyed-
Warshall’s algo-rithm. We use the new directive 
called ”collapse” available in OpenMP 3.0 to handle nested 
loops. This directive deals efficiently with multi-
dimensional loops. In other words, it combines multiple 
loops into single loop. Thus, by using “collapse” directive, 
we avoid the overhead of spawning of the nested loop in the 
algorithm. Also, we create a task for each vertex and 
process them in parallel since each vertex is independent of 
each other. Algorithm 1 shows our proposed parallel APSP. 

Algorithm 1: Parallel APSP Algorithm  
Input: G = (V; E)  

 

begin
1

 

Cost(i; j)  

Wight(i; j) = Cost(i; j)  

for i     0 to n do in parallel 
 

 Collapse (2)  
 

 for j     0 to n do
 

  for k 0 to n do 
 

   Cost(j; k) = 
 

   min(Cost(j; k); Cost(j; i) + Cost(i; k))
 

       

      

     

 
IV. RESULTS 

This section shows our results for our parallel APSP 
algorithm. We report results on an AMD Accelerated 
Processing Unit (APU) 8 quad-core machine. Each core has 
clocks speed of 3.0 MHz and 48GB of RAM memory. We 
used GCC 4.4 compiler to compile and run the algorithm. 
We implemented our algorithm on two types of graphs: 

• R-MAT graphs: These are random graphs 
[2] allowing high and low degree vertices.  

• SSCA#2 graphs: Graphs in this category 
have high connected cliques. The size of 
the clique is distributed uniformly. Then, 
they generate edges of inter-clique with a 
chosen probability.  

We used undirected graphs for our experiments. We start 
from 16 vertices and increase the number of vertices to 
4096. We compare with OpenMP 2.5 and newer OpenMP 
3.0 versions for both types of graphs. 

TABLE I: The execution time on SSAC#2 

 
 
 
 
 
 
 
 
 
 

Number of vertices OpenMP 3.0 OpenMP 2.5
16 0.002 0.001
32 0.003 0.001
64 0.01 0.004
128 0.03 0.01 
256 0.11 0.07 
512 0.53 0.50 
1024 3.06 4.06 
2048 19.59 31.81
4096 158.85 257.47
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TABLE II: The execution time on R-MAT 
 
 
 
 
 

 
 
 
 
As shown in table I and table II and its subsequent 

figures 1 and 2 respectively, the algorithm runs a bit slower 
on OpenMP 3.0 for small number of vertices. However, for 
large number of vertices, the algorithm on OpenMP 3.0 
surpasses the one on OpenMP 2.5 by 1.6 times. The new 
directive allows effective use of the OpenMP 3.0 threads. 
By collapsing the loops we make efficient use of the 
resources and also eliminate any sychronization issues 
between the two for loops. 
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Fig. 1: Execution Time for SSAC#2 
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Fig. 2: Execution Time for R-MAT 

V. CONCLUSION  
In this paper we implemented one graph problem, all 

pair shortest path problem in OpenMP 3.0. We showed that 
the algorithm run 1.6 times faster than the OpenMP 2.5 
version for two different types of graphs. 
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