

Task Level Parallelization of All Pair Shortest Path Algorithm in OpenMP 3.0

Eid Albalawi
Department of Computer Science

University Of Manitoba
Winnipeg, Manitoba

Email: albalawi@cs.umanitoba.ca

Parimala Thulasiraman
Department of Computer Science

University Of Manitoba
Winnipeg, Manitoba

Email: thulasir@cs.umanitoba.ca

Ruppa Thulasiram
Department of Computer Science

University Of Manitoba
Winnipeg, Manitoba

Email: tulsi@cs.umanitoba.ca

Abstract—OpenMP is a standard parallel programming lan-
guage to develop parallel applications on shared memory ma-
chines. OpenMP is very suitable for designing parallel
algorithms for regular applications where the amount of work
is known apriori and therefore, distribution of work among the
threads can be done at compile time. In irregular applications,
the load changes dynamically at runtime and distribution of
work among the threads can be done only at runtime. In the
literature, it has been shown that OpenMP produces poor
performance for irreg-ular applications. In 2008, the OpenMP
3.0 version introduced new features such as ”tasks” to handle
irregular computations. Not much work has gone into studying
irregular algorithms in OpenMP 3.0. In this paper, we consider
one graph problem, the all pair shortest path problem and its
implementation in OpenMP 3.0. We show that for large
number of vertices, the algorithm running on OpenMP 3.0
surpasses the one on OpenMP 2.5 by 1.6 times.

Keywords-OpenMP 3.0; All Pair Shortest Path; Task Paral-
lelization

I. INTRODUCTION
Homogeneous multicore architectures have been used

widely in the past decade. This is due to the need to have
machines with high performance that are more computation-
ally powerful than uniprocessor machines. In a
homogeneous multi-core architecture, many identical
processors or cores work together to perform complex tasks.
Many companies such as Intel, have moved towards
increasing the processor’s power by adding more cores on a
single chip. Most of the commodity homogeneous
architectures have many duplicated CPUs on a single chip
with a shared memory. The different CPUs interact with
each other through shared variables.

Shared memory machines can be categorized as either
Uniform Memory Access (UMA) or Non-Uniform Memory
Access (NUMA) architectures. In UMA machines, the
CPUs have same access time to a shared primary memory.
On the other hand, each CPU in NUMA has its own
memory. This memory can be accessed by the CPU that it
belongs to or by other CPUs. The memory access time is,
therefore, non-uniform. Modern homogeneous multicore
architectures with a shared memory system are also
multithreaded. The cores have the capabilities of handling
several threads concurrently. These architectures exploit
both instruction level parallelism and thread level
parallelism. There are many parallel programming
languages or APIs that support a shared memory paradigm.

One such API is OpenMP [11].
OpenMP contains a set of compiler directives and

libraries to execute specific instructions in parallel and to
divide the work among threads. OpenMP employs a fork-
join paradigm. The program starts with one thread called the
master thread. Then, whenever there is a parallel region in
the program, the master thread invokes a set of slave threads
and distributes the work among them. This operation is
called fork. After forking, the threads are allocated to the
processors by the runtime environment and work
concurrently to solve the problem. Once the slave threads
have completed their work, they are destroyed and the
master thread continues until it encounters another parallel
region. This operation is called join.

OpenMP is very suitable for designing algorithms for
regular applications. The data structures used in these
problems are structured (such as an array). The program
flow and memory access patterns are also very structured
and are known apriori. An example of a regular problem is
matrix-vector multiplication, where A is a dense matrix, x is
a vector and b is the resultant vector. In this example, the
computations or operations required producing the output
and data access patterns are known beforehand. On a
multiprocessor system, each processor can be assigned the
same vector x with certain number of data elements (a row
or a given number of rows) to compute an element(s) in b.
All processors perform the same computations to produce
the resultant vector but with different data sets. As a result,
these problems can be optimized to run on any type of
architecture relatively easily. These problems are also
classified as data parallel applications.

The same is not true for irregular applications. Irregular
applications rely on pointer or graph-based data structures.
The algorithms used to solve irregular applications are
referred to as irregular algorithms. Graph problems, list
ranking and unstructured grid problems are examples of
irregular computations. In these computations [15], [12],
[6], [10], the data size changes dynamically at runtime,
leading to non-uniform memory access and communication
latencies. The load or amount of work to be distributed to
the threads is not known apriori. We could consider the
matrix-vector multiplication as an irregular problem, if A is
a sparse matrix. Since A is instance specific, the structure of
A is unknown at compile time. A matrix is not necessarily
the correct data structure to use since there may be many 0‘s
in the matrix wasting memory resources. In such problems,
accesses to data often have poor spatial and temporal
locality leading to ineffective use of the memory hierarchy

2nd International Conference on Advances in Computer Science and Engineering (CSE 2013)

© 2013. The authors - Published by Atlantis Press 109

[15].
It is important to find efficient solutions in solving

irregular problems. Irregular adaptive methods [1], [6], for
example, have their applications in many science and
engineering problems. With muticores becoming very
popular, having a standard programming language that
addresses both irregular and regular applications is very
important. OpenMP is one such language. In the literature,
some works [13], [3], [4] have shown that OpenMP
produces reduced performance when dealing with irregular
computations. The earlier versions of OpenMP were not
meant to handle irregular computations [8]. In 2008, the
OpenMP 3.0 version introduced a directive called “task” to
help develop parallel algorithms for irregular applications.
The directive “task” creates independent work units to be
executed. The task in OpenMP 3.0 is nothing but a thread
that can be created and destroyed as needed. It can also
spawn other tasks that are not possible under the previous
version of OpenMP. Spawning threads allows dynamic
creation of threads incorporating fine grained parallelism
and exploiting load balancing at runtime which is important
for performance improvement in irregular computations.

In this paper we focus on one graph problem, all pair
shortest path (APSP) problem and its implementation on
OpenMP 3.0.

II. RELATED WORK
APSP can be solved using Floyd Warshall’s algorithm.

Venkataraman et al. [14] proposed a blocked algorithm to
find APSP. Their algorithm exploits cache locality to
optimize cache performance. The algorithm divides the
adjacency ma-trix into blocks of B×B and each block
processes individually in B iterations. They tested their
blocked algorithm on two different machines, Sun Ultra
Entrprise 4000/5000 and SGI O2. Their blocked algorithm
delivers a speedup between 1.6 to 1.9 for graphs that are
between 480 to 3200 vertices on Sun Ultra Entrprise
4000/5000 and 1.6 to 2 on SGI O2 for graphs that are
between 240 to 1200 vertices. Likewise, Ma et al. [7]
developed parallel Floyd Warshall’s algorithm for multi-
core architecture on threading building blocks (TBB). TBB
is a parallel programming model for C++ code. It is a
runtime based programming model that specifies tasks. The
task is mapped to threads. However, unlike Venkatraman et
al., Ma et al. use task and data level parallelism available in
the algorithm to find all pair shortest paths. The results
reveal that the parallel algorithm surpasses both serial and
single threaded algorithms by 57.26% and 50.06%
respectively.

Recently, Jasika et al. [5] used Dijkstra’s algorithm for
APSP. They used OpenMP to parallelize Dijkstra algorithm.
They use the algorithm to find the single source shortest
path for every vertex. They compared the OpenMP
implementation to OpenCL [9] and showed that there was
no gain in perfor-mance in the two implementations. This
they showed is due to the inherent sequential nature of
Dijkstra’s algorithm problems which makes this algorithm
very difficult to be efficiently parallelized.

III. IMPLEMENTATION AND RESULTS
There are two algorithms to find APSP which are Floyd-

Warshall and Dijkstra algorithms. As mentioned in section
2, Dijkstra is not an efficient algorithm to be used in
parallel. Therefore, in this work we consider Floyed-
Warshall’s algo-rithm. We use the new directive
called ”collapse” available in OpenMP 3.0 to handle nested
loops. This directive deals efficiently with multi-
dimensional loops. In other words, it combines multiple
loops into single loop. Thus, by using “collapse” directive,
we avoid the overhead of spawning of the nested loop in the
algorithm. Also, we create a task for each vertex and
process them in parallel since each vertex is independent of
each other. Algorithm 1 shows our proposed parallel APSP.

Algorithm 1: Parallel APSP Algorithm
Input: G = (V; E)

begin
1

Cost(i; j)

Wight(i; j) = Cost(i; j)

for i 0 to n do in parallel

 Collapse (2)

 for j 0 to n do

 for k 0 to n do

 Cost(j; k) =

 min(Cost(j; k); Cost(j; i) + Cost(i; k))

IV. RESULTS

This section shows our results for our parallel APSP
algorithm. We report results on an AMD Accelerated
Processing Unit (APU) 8 quad-core machine. Each core has
clocks speed of 3.0 MHz and 48GB of RAM memory. We
used GCC 4.4 compiler to compile and run the algorithm.
We implemented our algorithm on two types of graphs:

• R-MAT graphs: These are random graphs
[2] allowing high and low degree vertices.

• SSCA#2 graphs: Graphs in this category
have high connected cliques. The size of
the clique is distributed uniformly. Then,
they generate edges of inter-clique with a
chosen probability.

We used undirected graphs for our experiments. We start
from 16 vertices and increase the number of vertices to
4096. We compare with OpenMP 2.5 and newer OpenMP
3.0 versions for both types of graphs.

TABLE I: The execution time on SSAC#2

Number of vertices OpenMP 3.0 OpenMP 2.5
16 0.002 0.001
32 0.003 0.001
64 0.01 0.004
128 0.03 0.01
256 0.11 0.07
512 0.53 0.50
1024 3.06 4.06
2048 19.59 31.81
4096 158.85 257.47

110

TABLE II: The execution time on R-MAT

As shown in table I and table II and its subsequent

figures 1 and 2 respectively, the algorithm runs a bit slower
on OpenMP 3.0 for small number of vertices. However, for
large number of vertices, the algorithm on OpenMP 3.0
surpasses the one on OpenMP 2.5 by 1.6 times. The new
directive allows effective use of the OpenMP 3.0 threads.
By collapsing the loops we make efficient use of the
resources and also eliminate any sychronization issues
between the two for loops.

 250 OpenMP 3.0

 OpenMP 2.5

se
co

nd
s

200

in

150

tim
e

Ex
ec

ut
io

n 100

50

 0

 0 1;000 2;000 3;000 4;000

 Number of vertices

Fig. 1: Execution Time for SSAC#2

 250 OpenMP 3.0

OpenMP 2.5

se
co

nd
s 200

in
 150

tim
e

Ex
ec

ut
io

n 100

50

 0

 0 1;000 2;000 3;000 4;000

 Number of vertices

Fig. 2: Execution Time for R-MAT

V. CONCLUSION
In this paper we implemented one graph problem, all

pair shortest path problem in OpenMP 3.0. We showed that
the algorithm run 1.6 times faster than the OpenMP 2.5
version for two different types of graphs.

ACKNOWLEDGMENTS
A special thanks to the Saudi Cultural Bureau in Canada

that facilitated everything for us and provided the expenses
of the equipments to success this project.

REFERENCES
[1] R. Biswas and R. C. Strawn. A new procedure for dynamic adaption

of three-dimensional unstructured grids. Applied Numerical
Mathematics, 13:437–452, 1994.

[2] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-
MAT: A Recursive Model for Graph Mining. In Proceedings of the
Fourth SIAM International Conference on Data Mining (2004), Lake
Buean Vista, FL, USA, 22–24 April 2004.

[3] Eugen Dedu, Stephane´ Vialle, and Claude Timsit. Comparison of
OpenMP and classical multi-threading parallelization for regular and
irregular algorithms. In In proceesing of Software Engineering Ap-
plied to Networking & Parallel/Distributed Computing (SNPD 2000),
Champagne-Ardenne, France, pages 53–60, 19–21 May 2000.

[4] Dixie Hisley, Gagan Agrawal, Punyam Satya-narayana, and Lori
Pol-lock. Porting and performance evaluation of irregular codes using
OpenMP. In In proceesing of First European Workshop on OpenMP
(EWOMP 1999), Lund, Sweden, pages 47–59, 1999.

[5] Nadira Jasika, Naida Alispahic, Arslanagic Elma, Kurtovic Ilvana,
Lagumdzija Elma, and Novica Nosovic. Dijkstra’s shortest path
algorithm serial and parallel execution performance analysis. In
Proceedings of the 35th International Convention on Information and
Communication Technology, Electronics and Microelectronics
(MIPRO 2012), Opatija, Croatia, pages 1811 –1815, 21–25 May
2012.

[6] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Rama-
narayanan, Kavita Bala, and L. Paul Chew. Optimistic parallelism
requires abstractions. In Proceedings of the 2007 ACM SIGPLAN
con-ference on Programming language design and implementation
(PLDI 2007), San Diego, CA, USA, pages 211–222, 2007.

[7] Jian Ma, Ke ping Li, and Li yan Zhang. A parallel Floyd-Warshall
algorithm based on TBB. In In proceesing of The 2nd IEEE In-
ternational Conference on Information Management and Engineering
(ICIME 2010), Bangkok, Thailand, pages 429–433, 2010.

[8] Timothy G. Mattson. How good is openmp. Scientific Programming,
11(2):81–93, 2003.

[9] Aaftab Munshi. The opencl specification. Khronos OpenCL
Working Group, 1:l1–15, 2009.

[10] Jarek Nieplocha, Andres` Marquez,´ John Feo, Daniel Chavarr´ıa-
Miranda, George Chin, Chad Scherrer, and Nathaniel Beagley.
Evaluating the potential of multithreaded platforms for irregular
scientific computa-tions. In Proceedings of the 4th international
conference on Computing frontiers (CF 2007), Ischia, Italy, pages 47–
58, 7–9 May 2007.

[11] OpenMP. The OpenMP API specification for parallel programming.
http://openmp.org/wp/, 1998.

[12] Simone Secchi, Antonino Tumeo, and Oreste Villa. A bandwidth-
optimized multi-core architecture for irregular applications. In
Proceed-ings of 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, (CCGrid 2012), Ottawa, ON,
Canada, pages 580–587, 13–16 May 2012.

[13] Michael Sußand¨ Claudia Leopold. Implementing irregular parallel
algorithms with OpenMP. In Proceedings of the 12th international
conference on Parallel Processing (Euro-Par 2006), Dresden,
Germany, pages 635–644, 2006.

[14] Gayathri Venkataraman, Sartaj Sahni, and Srabani Mukhopadhyaya.
A blocked all-pairs shortest-paths algorithm. Journal on Experimental
Algorithmics, 8, December 2003.

[15] Zheng Zhang and Josep Torrellas. Speeding up irregular applications
in shared-memory multiprocessors: memory binding and group

Number of vertices OpenMP 3.0 OpenMP 2.5
16 0.002 0.001
32 0.003 0.001
64 0.01 0.004

128 0.03 0.01
256 0.11 0.07
512 0.73 0.52
1024 4.08 3.91
2048 21.56 31.02
4096 154.21 251.12

111

prefetch-ing. In Proceedings of the 22nd annual international
symposium on computer architecture (ISCA 1995), S. Margherita
Ligure, Italy, pages 188–199, 1995.

112

