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Abstract—This paper presents two accelerometer-based 
metabolic equivalent (MET) estimation methods:  1) MET 
regression models estimation; and 2) a mono-exponential MET 
estimation equation. The MET estimation methods can predict 
MET for the following seven categories of activities: sitting, 
standing, walking upstairs, walking downstairs, level walking, 
running, and cycling. The intensity of these activities ranged 
from sedentary (≤ 1.5 METs) to vigorous (> 6 METs), where 1 
MET is equivalent to the metabolic rate associated with sitting. 
First, MET regression model estimations were developed, 
including a single MET regression model and multiple MET 
regression models. Then, the second estimation method, a 
mono-exponential MET estimation equation, was developed to 
enhance estimation accuracy in non-steady and steady states 
during exercise. The experimental results successfully validate 
the effectiveness of the proposed method, the mono-exponential 
MET estimation equation, which substantially ameliorates 
estimation errors in non-steady states and achieves satisfactory 
accuracy for both non-steady and steady states. 

Keywords-accelerometer, energy expenditure, metabolic 
equivalent of task, regression model estimation, non-steady state. 

I.  INTRODUCTION 
Along with advances in science and technology, changes 

in daily lifestyles are resulting in the increased prevalence of 
physical inactivity. This lack of physical activity not only 
increases the incidence of chronic illnesses causing 
substantial financial and medical burdens on governments, 
but also seriously affects living quality. Previous studies [1], 
[2] have suggested the importance of physical activity in 
disease prevention. Existing tools for evaluating physical 
activity and EE include activity questionnaires, indirect 
calorimeters, doubly labeled water technique, 
electrocardiographs and accelerometers [3]. Due to the 
advantages of small size, portability, low power consumption, 
and low cost, accelerometers have become popular tools for 
objective measurement of physical activity and estimation of 
EE. 

The EE estimation method utilizes features generated 
from both acceleration signals and personal parameters 
(height and weight) to construct a single linear regression 
model [4], [5]-[8]. However, using a single linear regression 
model to estimate EE cannot obtain satisfactory accuracy 
when physical activity intensity levels range from sedentary 
to vigorous. For example, Crouter et al. [4] compared the 

accuracy of different MET regression models developed by 
Actigraph, Actical, and AMP-331 accelerometers. 
Participants wore the three devices on their waists 
simultaneously. The experimental results showed that 
Actigraph and Actical overestimated the energy cost of 
walking and static activity, while seriously underestimating 
vigorous-intensity activities. AMP-331 provided a closer 
estimation of the energy cost during walking but slightly 
overestimated sedentary- and light-intensity activities while 
underestimating vigorous-intensity activities. In order to 
improve the accuracy of EE estimation, multiple regression 
models have been developed. For instance, Crouter et al. [9] 
asked participants to wear a uniaxial Actical accelerometer 
on their waists. When the count was ≤ 10, the estimated 
MET was set as 1. Two regression models were developed 
for counts > 10. When count was > 10 and the coefficient of 
variation (CV) was ≤ 13, an exponential regression model 
was used to estimate EE for walking and running activities, 
resulting in a coefficient of determination (R2) of 0.912 and 
standard error of the estimation (SEE) of 0.149 METs. 
Alternatively, when the CV was > 13, a regression model for 
lifestyle/leisure time physical activity was constructed, 
resulting in an R2 of 0.884 and SEE of 0.804 METs.  

In this paper, a wearable activity sensor system and a 
mono-exponential MET estimation equation were proposed 
for long-term MET estimation. The advantages of the 
wearable activity sensor system and the proposed estimation 
method, named “the mono-exponential MET estimation 
equation”, include: 1) the system can detect and record the 
motion accelerations of various physical activities ranging 
from sedentary to vigorous intensity levels for long-term 
monitoring; and 2) the proposed MET estimation method 
substantially reduces estimation errors for the non-steady 
state and achieves satisfactory accuracy for both non-steady 
and steady states. 

The remainder of this paper is organized as follows. In 
Section II, we introduce the experimental protocol and 
hardware devices in detail. The different MET estimation 
methods, including MET regression model estimation and a 
mono-exponential MET estimation equation are presented in 
Section III. Then, in Section IV, the experimental results are 
presented to validate the effectiveness of the proposed 
approach. Conclusions are provided in the final section. 
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II. EXPERIMENTAL PROTOCOL 

A. Hardware Devices 
 Wearable Activity Sensor System 

Each sensor module consists of a triaxial accelerometer 
(MMA7445L, Freescale®), an MCU module (Microchip 
PIC24FJ64GA002), a wireless communication module 
(Nordic nRF2401+ and Bluetooth), and a storage module (16 
MB flash memory). In this study, the accelerometer’s 
sensitivity was set from −8g to +8g. The Microchip® 
PIC24FJ64GA002 was selected as the MCU module and was 
responsible for the following tasks: 1) timing flow control for 
regularly retrieving accelerometer data from the sensor 
module via an I2C bus, 2) converting analog acceleration 
signals into digital signals via its embedded A/D converter, 3) 
wireless communication control and module synchronization, 
and 4) peripheral component control. The wireless 
communication module includes a Nordic® nRF24L01+ 
wireless RF transceiver and a BTM401 Bluetooth® module. 
The Nordic® nRF24L01+ wireless RF transceiver is used to 
execute timing synchronization and data transmission among 
sensor modules worn on different positions of a human body. 
The BTM401 Bluetooth® module serves as the standard 
communication channel between the host of the body sensor 
network and standardized devices such as PCs or smart 
phones. The storage module employed in the sensor module 
is an MXIC® MX25L128 flash memory with a 16 MB 
storage capacity. A Microchip® PIC24FJ64GA002 main 
controller is selected to maximize the performance and 
minimize the power consumption of the sensor module. The 
sampling rate (fs) of the sensor module is 30 Hz with 12-bit 
data resolution, while power consumption is 12.2 mA at 4.2 
V. 

 Portable Indirect Calorimeter System 

An indirect calorimeter system (Cosmed K4b2) was used 
to collect oxygen consumption in this experiment. According 
to the manufacturer’s guidelines, the Cosmed K4b2 oxygen 
analyzer and carbon dioxide analyzer were calibrated before 
the experiment. The system

 
weighs 1.5 kg, including the 

battery and a specially designed harness, and is worn on 
participants’ chest by a chest harness. A flexible face mask 
was placed over each participant’s mouth and nose using a 
nylon mesh hairnet secured by Velcro straps. This mask was 
attached to a flowmeter (bidirectional digital turbine) and an 
optoelectronic reader. A disposable gel seal was placed 
between the participant and the face mask in order to prevent 
air leaks from the face mask. Finally, each participant’s 
physical characteristics (age, height, weight, and gender) 
were entered into the Cosmed K4b2. During the experiment, 
participants wore the calorimeter system and the wearable 
activity sensor system to collect oxygen consumption and 
acceleration signals, which were recorded in the memory of 
the Cosmed K4b2 and then downloaded to a PC for analysis. 

B. Participants 
Ten participants, aged 20 to 25 years old, with an average 

body mass index (BMI) of 21.78 ± 2.82 kg/m2 were recruited 

to participate in this experiment. All participants were non-
smokers, disease-free, and not currently taking medications 
known to influence metabolic rats. 

C. Experimental Procedures 
All participants were asked to complete eleven activities, 

including various lifestyle activities and exercises, from 
seven categories: 1) Sitting: doing computer work and 
wiping the ground with a dry cloth; 2) Standing: sweeping, 
washing dishes, cleaning tables, and picking up objects; 3) 
Upstairs: walking upstairs; 4) Downstairs: walking 
downstairs; 5) Walking at a normal pace on a sports field; 6) 
Running on a sports field; 7) Riding a bicycle on a sports 
field. Before this experiment, each participant was instructed 
to wear the portable indirect calorimeter system and the 
activity sensor system. Participants attached the calorimeter 
system to their chests. The activity sensor system was 
comprised of two sensor modules mounted on participants’ 
wrists and ankles. Participants performed each activity for 3 
minutes, and took a rest between activities to ensure that 
their heart rates were below 100 bpm. Acceleration signals 
and oxygen consumption (    ) during the 3 minutes were 
extracted for analysis. Acceleration data and oxygen 
consumption (    ) were segmented into non-overlapping 
windows of 1 min in length. Important features were 
extracted from the windowed acceleration data for physical 
classification and multiple MET regression model 
construction.    (ml/min) was averaged over a 1-min period 
and converted to     (ml·kg-1·min-1) which divides by 3.5 to 
obtain the actual MET for multiple MET regression model 
construction. 1 MET is defined as (1).  

1MET=3.5 ml/min/kg=1kcal/hr/kg,                         (1) 

III. MET ESTIMATION METHODS 
In this paper, an MET regression model estimation and 

our proposed estimation method, a mono-exponential MET 
estimation equation, are evaluated. MET regression model 
estimations, including a single MET regression model and 
multiple MET regression models, are introduced in detail in 
Section A. The mono-exponential MET estimation equation 
introduced in Section B was developed to enhance the 
estimation accuracy during non-steady state exercise. 

A. MET Regression Model Estimation 
MET regression model estimation consists of three steps: 

signal pre-processing, feature generation, and MET 
regression model construction. In this study, the purpose of 
MET regression model construction is to construct single and 
multiple MET regression models for estimating MET for 
different intensity levels of physical activities.  

 Signal Pre-processing 
Signal pre-processing is a required procedure for 

analyzing signals collected by the sensor system. During 
activities/movement, the sensor system records accelerations 
including both gravitational acceleration (GA) and body 
acceleration (BA). Therefore, a high-pass filter is required to 
remove gravitational acceleration and to obtain the BA 
component after calibration. In general, it is difficult to 
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analyze and recognize activities from a long-term and 
continuous sequence of acceleration data. During data pre-
processing, accelerations are segmented into non-
overlapping windows of 1 min in length (1800 sample points) 
and signal vector magnitude (SVM) is calculated for further 
analysis, as described in the following section.  

 

 . (2) 

Where                                       are the nth sample of the 
x-, y-, and z-axis acceleration signals generated from the 
sensor activity module. 

 Feature Generation 

Characteristics of acceleration signals from different 
physical activities were obtained by extracting features from 
pre-processed SVM signals, and included thirteen generated 
features: 1) eleven time-domain features: count, standard 
deviation (STD), interquartile range (IQR), mean absolute 
deviation (MAD), norm, ratio of stance phase (RSP), 
skewness, kurtosis, the first, second, and third quartile (Q1, 
Q2, and Q3), and 2) two frequency-domain features: energy 
and entropy. A total of 25 features were generated from the 
feature generation process. The features are used to construct 
various MET regression models for seven activity categories 
to estimate MET, respectively. 

 MET Regression Model Construction 
A flowchart for MET regression model construction, 

comprising acceleration acquisition, signal pre-processing, 
feature generation, bivariate correlation analysis, and MET 
regression model construction by stepwise regression. The 
procedures for signal pre-processing and feature generation 
were described in the above sections. The generated features 
were imported into SPSS® 17.0, which is used to perform 
bivariate correlation analysis. Features with the high 
correlation (p<0.05) were selected as input variables for 
constructing single/multiple MET regression models by a 
SPSS® Statistics 17.0 regression function called “stepwise 
regression”. Table I lists single/multiple MET regression 
models for seven activity categories. In this study, the single 
regression model and multiple MET regression models were 
referred to as “Method (1)” and “Method (2)”, respectively. 

TABLE I.  MET REGRESSION MODELS 

Type of 
Model Activity  MET Regression Models 

Single 
Model 

(Method 1) 
All 
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Model Activity MET Regression Models 

Upstairs  
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B. A Mono-exponential MET Estimation Equation 
The body does not always achieve a steady state and is 

more often kept in a non-steady state during exercise of 
moderate- or vigorous-intensity. During moderate- or 
vigorous-intensity exercise, oxygen uptake or metabolism 
can be evaluated in two ways: 1) static estimation for the 
steady state condition, and 2) dynamic response during the 
beginning and the end of exercise (the non-steady state 
condition). From Fig. 1, it can be seen that MET 
consumption at the beginning of running exercise remains in 
a non-steady state. After 1 minute of remaining in a non-
steady state (from the beginning), a steady state is reached. 
Finally, when the participant stops running, MET 
consumption decreases from the stopping point. 

Figure 1.  Acceleration signals generated from the ankle sensor and the 
actual METs measured by the K4b2 during running. The solid line 

represents the starting point, and the dashed line represents the stopping 
point. 

However, the drawback of single/multiple MET 
regression model estimation is that the estimation results 
from the non-steady state, during moderate- and vigorous-
intensity activities, are unsatisfactory. In order to improve 
the accuracy of MET estimation for the non-steady state, an 
MET estimation method, a mono-exponential MET 
estimation equation, was used. This method is also referred 
to as “Method (3)”. The mono-exponential equation can be 
expressed as follows. 

 . (3) 

where METout is the output, and METout(0) is set as 0. 
METin is the input generated from multiple MET regression 
models. pup and pdown are the coefficients of the mono-
exponential equation. 
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IV. EXPERIMENTAL RESULTS 

A. Results of MET Regression Model Estimation 
In this study, performance evaluation was based on the 

standard error of the estimate (SEE) and the coefficient of 
determination (R2) between the desired MET and the 
estimated MET. The sum of squares due to error (SSE) and 
total sum of squares (SSTO) are represented as follows:  

  

 

 

 

 

where n is the total amount of testing data. METa and 
METe represent actual MET and estimated MET.          is the 
mean of METa. p denotes the number of features used in the 
regression model. For example, p is equal to 9 for the single 
MET regression model. For the multiple MET regression 
models, the p of “sitting”, “standing”, “level walking”, 
“running”, “cycling”, “walking upstairs”, and “walking 
downstairs” were equal to 3, 5, 1, 2, 1, 2, and 1, respectively. 
Table II shows the SEE and R2 for the single/multiple 
regression models. The mean was 0.702 and the STD of 
residual errors was 1.215 METs for the single MET 
regression model. For the multiple regression models, the 
mean was 0.613 and the STD was 0.709 METs. These results 
indicate that the performance of the multiple MET regression 
models was better than the single MET regression model. 
Overall, the performance of MET estimation generated by 
the multiple regression models outperformed that generated 
by the single regression model. 

TABLE II.  RESULTS FOR MET REGRESSION MODELS 

Type of 
Model Activity  SEE R2 

Single Model All 1.438 0.815 

Multiple 
Models  

Sitting 0.473 0.821 
Standing 0.354 0.704 
Walking 0.519 0.370 
Running 1.324 0.548 
Cycling 0.829 0.661 
Upstairs 1.511 0.341 

Downstairs 0.413 0.245 

B. Results of the Mono-exponential MET Estimation 
Equation 
In order to improve the accuracy of MET estimation 

generated by multiple MET regression models, a mono-
exponential MET estimation equation was proposed to 
estimate MET during non-steady state exercise. The mean 
and STD of MET estimation errors for the two methods are 

listed in Table IV each activity. We observe that average 
residual error and SEE for Method (3) is smaller than for 
Method (2). Overall, the accuracy of Method (3) outperforms 
Method (2). 

TABLE III.  COMPARISONS OF MET ESTIMATION BETWEEN METHODS 
(2) AND (3) 

MET estimation methods Mean errors STD of 
errors SEE 

Method (2) 0.613 0.709 0.912 

Method (3) 0.575 0.645 0.888 

 

The SEEs of ten participants generated by Method (3) are 
all smaller than by Method (2), and average SEE from 
Method (2) is 1.129 METs, while the average SEE of 
Method (3) was 0.680 METs. The improvement rates for 
each of the ten participants were above 30%. The 
improvement rate is expressed as follows:  

 

(7) 

 

V. CONCLUSIONS 
A wearable activity sensor system and two MET 

estimation methods have been presented in this paper. The 
activity sensor system can be used to measure and record the 
acceleration signals from daily physical activities. This study 
first developed traditional MET regression models, including 
a single MET regression model and multiple MET regression 
models. However, due to unsatisfactory estimation results by 
the MET regression models for non-steady states during 
exercise, a mono-exponential MET estimation equation was 
proposed to enhance the estimation accuracy for non-steady 
states. From the experimental results shown, the SEEs for the 
multiple MET regression models and the mono-exponential 
MET estimation equation were 0.912 and 0.888 METs 
respectively, and the mean(±STD) of estimated errors were 
0.613(±0.709) and 0.575(±0.645) METs. Therefore, the 
experimental results validate the effectiveness of the mono-
exponential MET estimation equation for the non-steady and 
steady states MET estimation. This result encourages us to 
further investigate the possibility of using our developed 
activity sensor system as an effective tool for long-term EE 
monitoring and health promotion applications. 
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