

Comparison of Modernization Approaches: With and Without the Knowledge
Based Software Reuse Process

Meena Jha
CQUniversity andThe University of New South Wales,

Sydney NSW 2052, Australia
m.jha@syd.cqu.edu.au

Liam O’Brien
Geoscience Australia,

Canberra, ACT 2609, Australia
liamob99@hotmail.com

Abstract—The ever increasing demand for improvements in
software maintainability and modernization cannot be met
through traditional techniques of software development and
modernization. Most approaches to software development and
modernization do not explicitly address software reuse
however new approaches that address issues and concerns of
software reuse must be developed. The benefits of software
reuse are widely accepted by software engineers and
developers. However based on our previous work in software
reuse for the modernization of legacy systems, we have
identified the need to build a knowledge based software reuse
process and a reuse repository that manages reusable
artefacts to enable software reuse to become an integral phase
in the legacy system modernization process. Our latest legacy
system modernization approach incorporates a reuse process
and repository, which we have called the Knowledge Base
Software Reuse (KBSR) Process and the KBSR Repository.
The KBSR Process and Repository aim to give software
engineers easy access to reusable software artefacts and
reusable components within a defined process. We have
applied two modernization approaches: one which the KBSR
Process and one without the KBSR Process to modernize the
same legacy system. In this paper we compare the two
modernization approaches on different attributes which have
been identified from our previous work as major issues in
software reuse. We argue that knowledge based software
reuse should become an integral part of the software
development and modernisation life cycle.

Keywords-Legacy Systems, Software Modernization,
Software Reuse, Knowledge Based Software Reuse Repository,
Knowledge Based Software Reuse Process.

I. INTRODUCTION
Design pattern and generic programming can be

employed to take the advantage of legacy systems. Legacy
systems are mostly written in 3GL programming languages
such as COBOL, RPG, PL1, FORTRAN, BASIC,
PASCAL, C, etc. [14]. Changing technology is pushing the
modernization of legacy system in several ways.One of the
reasons that the situation is changing so rapidly is the
emergence of integratinginfrastructures. With improved
integration we have seen the World Wide Web (the
Web)and electronic commerce flourish. Where once
information systems were isolated anddifficult to access,
they can now be accessed using the Web and interfacing
software.Software reuse has identified as one of the best

strategies to handle complexities associated with
development and modernization ofcomplex legacy systems.

Most approaches to software development and
modernization do not explicitly address software reuse
however new approaches that address issues and concerns
of software reuse must be developed so that software reuse
becomes an integral part of software development and
modernization [1]. Based on the findings from our survey
and literature review [2], [3], [4], [5] and [6] we can state
that software reuse is widely believed to be one of the most
promising techniques to improve software quality and
productivity for legacy system modernization. However as
seen from the literature [7], [8], [9] and [10] and from the
surveys we’ve completed [2]and [3] there remain several
problems that still limit software reuse. These range from
the scarce availability of reusable components and other
software artefacts to the difficulty of retrieving,
understanding and adapting the required reusable software
artefacts and components. Software engineers find
difficulty in locating reusable software components (code
related) and reusable software artefacts (non-code related).
The results from our surveys support this finding.

It may not be possible to redevelop business critical
legacy systems, rather than modernize them, due to the
risks involved in doing so. Some of the major risks are:
• Current system may not be well documented and

specifications may need to be redeveloped and this may
introduce errors in the system;

• Current system’s documentation, design etc. may not
conform to the running system and any redevelopment may
create problems;

• Critical data and business logic may not be replicated;
• The size and complexity of the legacy system may have

grown beyond a comprehensible level to understand and
analyse.

With the changing paradigm of software development
software reuse is required for software development and for
modernization of legacy systems. To make software reuse a
complete phase in software development or in legacy
system modernization all reusable software artefacts,
components, assets etc. should be made easily available to
software engineers

This paper compares our software modernization
approaches based on software reuse. We have developed
two modernization approaches. The first “Reusing code for
modernization of legacy systems” which we term
Modernization Approach 1 (Modernizing for reuse) in the

2nd International Conference on Advances in Computer Science and Engineering (CSE 2013)

© 2013. The authors - Published by Atlantis Press 68

remainder of the paper [11].The second is “Modernization
with software reuse (Modernizing with reuse)” which we
term Modernization Approach 2in the remainder of the
paper [1]. In the Modernization Approach 1 we had no
software artefacts ready for reuse. In the process of
modernizing the legacy system using the Modernization
Approach 1 we identified/ restructured software artefacts
for reuse to modernize the legacy system. The
Modernization Approach 2 was built with software reuse as
an integral part. In the process of modernizing the legacy
system using Modernization Approach 2 we incorporated
our reuse process and repository, which we have called the
Knowledge Based Software Reuse (KBSR) Process and
KBSR Repository.

The remainder of the paper is structured as follows.
Section 2 describes the case study on which we applied our
two modernization approaches. Section 3 describes our
modernization approach “Reusing code for modernization
of legacy system” (Modernizing for reuse). Section 4
describes our modernization approach with KBSR Process”
(Modernizing with reuse). Section 5 compares the two
modernization approaches on different attributes which
have been identified from our previous work as major
issues in software reuse from different development
communities. Finally Section 6 concludes the paper.

II. THE CASE STUDY SYSTEM - ACRSS
The system used in the case studies is the Automatic

Cane Railway Scheduling System (ACRSS) [12]. ACRSS
is a computer-based system developed in 1987 to solve the
cane railway scheduling problem. ACRSS was developed
to schedule operations involved in the transport of cane
from field to factory. ACRSS uses data describing the cane
railway layout, harvesting patterns of the relevant growers
and some operational parameters to produce a schedule.
We could get some details of ACRSS from its
documentation and user’s guide. We also had an access to
the running program and its source code subroutines
written in FORTRAN 77. ACRSS consists of 194
subroutines and about 50,000 lines of code.

We applied our modernization approaches on the
ACRSS system in two separate case studies: One Reusing
code for modernization of legacy systems and another on
Modernization with KBSR Process. Below we discuss our
approaches to legacy system modernization. Each
modernization phases and activities are described.

III. Modernization Approach 1: Reusing code for
modernization of legacy systems

Our first modernization approach consists of 4 Phases
that were applied sequentially. These phases are:
• Phase 1: Analyse the legacy system
• Phase 2: Reconstruction of the legacy system
• Phase 3: Design structure :Restructuring
• Phase 4: Transformation (Procedural ->OOP)

Phase 1: This phase analyses legacy systems to capture
their structure and to identify problems caused by the past
development and evolution. This task includes gathering all

application artefacts such as source code, test cases, design
documents, DFD’s ERD’s, statistics about the size,
complexity, amount of dead code or unused code [1], and
amount of bad programming for each program such as dead
code, messy chaotic code, bad variable names, poor
documentation etc.. In the analysis the important part is to
create a description of each module and each data item.

Phase 2: This phase of the modernization discovers the
design of the legacy system. The Architecture
Reconstruction Mining (ARMin) tool [13] is used to
reconstruct the legacy system. Identifying all external
dependencies that a module has is important when
considering modernization. Of particular importance are
the dependencies between subroutines that are candidates
for restructuring.

Phase 3: This phase of modernization involves a
restructuring process which consists of a series of semantic
preserving decompositions and compositions of ‘processing
elements’. If functions are in the same logical unit then
throughabstraction and grouping of the functions within the
unit then ARMin can be used to generate a view that shows
the logical connection. Four types of relationships are
extracted using ARMin. They are:
• Common relation: a subroutine sends information to

another through a global component.
• Call relation: a procedure imports another subroutine’s

computation to execute its functions; a subroutine calls
another subroutine.

• Sequential relation: an output of a subroutine is passed
to another subroutine as an input; an output of a
subroutine is used as an input of another subroutine,
and

• No relation: two subroutines do not have any of above
relations

Phase 4: Once all the above phases are completed we
get Structured Object Model. Not all code can be turned
into OO because of some internal dependencies. Phase 2
has identified which modules are the suitable candidates for
restructuring. Phase 3 has restructured the selected modules
into Structured Object Model. The object can be viewed as
an abstract data type, encapsulating a set of data (i.e.
attributes) and a corresponding set of permissible actions
on the data (i.e. methods). After data item is defined for
each object, the next step isto define the methods, for each
object. The methods aredetermined using both the
invocation statements and thebodies of the subroutines. The
invocation statements are usedto provide the proper
mapping of formal parameters to actualparameters while
the bodies of the subroutine are consideredline-by-line to
define the actual methods. The objects generated are reused
in the modules to see the working/ running of the system.
The three independent subroutines generated as objects
from ACRSS system are SALE, PAY and PROFIT.
Objects in Object-Oriented programming (OOP) are
essentially data structures together with their associated
processing routines.For instance in our case subroutines are
the objects – a collection of data and the associated
statements.

69

IV. Modernization Approach 2: Modernization with
the KBSR Process

The growing concern in finding reusable software artefacts
and the complexity of managing these software artefacts for
reusability [2] and [3] has led us to devise the KBSR
Repository which reduces the complexity of identifying
and managing the software reusable artefacts. In this
modernization approach we have specifically included a
software reuse process, the KBSR Process with an
associated KBSR Repository for storing and managing the
reusable components and artefacts. The KBSR Process
involves two necessary software reuse phases to help
software engineers develop or modernize a software system
with reuse. These phases are:
• Phase 1: Develop the KBSR Repository (for reuse),

and
• Phase 2: Use the KBSR Repository in the

modernization of a system (with reuse).
Our modernization approach 2 incorporates the use of

the KBSR Repository in the KBSR Process. To develop the
KBSR Repository which is Phase 1 of our modernization
with KBSR Process, there are three activities involved.
These activities are:
• Activity 1: Identify Reusable Artefacts,
• Activity 2: Classify Reusable Artefacts,
• Activity 3: Store Reusable Artefacts in the KBSR

Repository.
• The products of each activity of developing the KBSR

Repository serve as an input to next activity. These
activities are developed to address the issues identified
by our survey respondents [2] and [3] such as: software
engineers cannot find what software artefact to reuse
and providing a repository in which to describe and find
reusable software artefacts.

V. Comparing Software Modernization Approaches
based on Software Reuse

In this section we compare the modernization
approaches we applied to our case study the ACRSS legacy
system on different attributes. The first time we
modernized the legacy system was without having any
KBSR Process or KBSR Repository. And then we again
took the same case study using the KBSR Process and
KBSR Repository once we had developed them and
incorporated them into our modernization approach.

We collected the set of attributes used for comparison
purposes from the outcome of our surveys so that the issues
and problems associated with reuse could be addressed.
The software reuse surverys were carried out within two
software development communities (Conventional
Software Engineering community and Software Product
Line community). Some of the major concerns shown
arelack of tool support,the Not-Invented-Here (NIH)
syndrome, case tools are not promoting reuse, no reuse
education, and no reuse repository and no systematic reuse
process [2] [3]. With the development of KBSR process we

have addressed the no reuse repository and no systematic
reuse process concern of our software development
communities. The comparison attribute “integration of
software reuse in modernization and SDLC process”
addresses the issue and concern for “software reuse
management and measurement”, the comparison attribute
“ad-hoc reuse, no strategy for software reuse” address the
issue and concern of “disadvantages of software reuse”, the
comparison attribute “domain based” address the issue and
concern for “is software reuse domain based?”, the
comparison attribute “Planning required”, addresses the
issue and concern for “ reuse planning”, the comparison
attribute “quality attributes maintainability,
understandability” addresses the issue and concern for
“reuse and software quality”, and the comparison attribute
“language specific” addresses the issue and concern for “is
software reuse language specific?”.

Modernization with the KBSR Process and KBSR
Repository has software reuse as an integrated phase as
software reuse components were already identified for
reuse. This modernization approach is based on with
software reuse. It saved us time and cost as software
reusable artefacts were already there in the repository.
While using modernization without KBSR Process and
KBSR Repository, we required extra time and effort to find
out what software artefacts are available to reuse. This
process is very resource intensive.

Table 1: Comparisons of Modernization Approaches: With and Without
KBSR Process and KBSR Repository

Comparison
Attributes

Approach 2:

Modernization with
KBSR Process and
KBSR Repository

Approach 1:

Modernization without
KBSR Process and
KBSR Repository

Integration of
software reuse in
modernization
and SDLC
process

Reuse was integrated as
we had components
identified for reuse. The
modernization approach
used software with
reuse.

We required extra time
and effort to find out
what software artefacts
are available to reuse. In
the process we
developed software for
reuse.

Ad-hoc reuse, no
strategy for
software reuse

No ad-hoc reuse was
done. Strategy was
followed to modernize
the system with reuse.

Strategy was followed to
identify reusable
artefacts. Again it was
time consuming and
human efforts were used.
Human efforts were
totally dependent on the
expertise the people have
and the complexity of
the legacy software.

Domain Based Reusable components
such as Employee
class from KBSR
Repository were used
in ACRSS and another
application, the
Theatre System, to
check the
functionality. So
Software reuse is not

Reusable components
were extracted to be
reused in the same
system.

70

necessarily domain
based.

Planning required We planned with
reuse.

We planned for reuse.

Quality attributes
Maintainability,
Understandability

Maintainability and
understandability of
the code was
enhanced.

Maintainability and
understandability of the
code was enhanced.

Language
specific

We used legacy
system written in
FORTRAN to
modernize. So
Software reuse is not
language specific

We used legacy system
written in FORTRAN to
modernize.

In modernization approach 2 no ad-hoc reuse was done.
Strategy was followed to modernize the system with reuse.
The comparison of modernization with KBSR Process and
KBSR Repository and without KBSR Process and KBSR
Repository is summarized in Table 1.

VI. Discussion of the Results and Conclusion
Legacy system modernization should be effective

andsemantic preserving. Webelieve that reusing software is
very important for softwaremodernization. From the
economic perspective, it has beenreported that reuse
strategy could save more than 20% of the development
cost . If existing software is to benefit fromadvances in
object-oriented methods, the software must bere-designed
and re-implemented using an object-orientationapproach.
This paper has compared software modernization
approaches based on software reuse. The Knowledge Base
Software Reuse Process applied for modernization in this
paper is based on understanding of issues and concerns of
software reuse. The reusable artefacts and reusable
components identified using architecture reconstruction are
stored in the Knowledge Base Software Repository. The
KBSR Process and Repository supports and saves the long
term investment done in the legacy system. The
development of a Knowledge Base Software Reuse Process
with an associated KBSR Repository systematizes the
software reuse process and provides the repository to store
the reusable components, reusable software artefacts and
capture current and past knowledge of software reuse with
the help of software architecture reconstruction.

In the KBSR Process reuse was integrated as we had
components identified for reuse. The modernization
approach used software with reuse and hence saved
development cost. No ad-hoc reuse was done. A strategy
was followed to modernize the system with reuse. Our
modernization approach with reuse suggests that software
reuse is not domain based as reusable component such as
an Employee class from the KBSR repository was used in
ACRSS and also reused in another application, the Theatre
System.

Our second approach also provides a mechanisms to
locate reusable software artefacts and components from
reuse repository, adapt them (if necessary) and even create
new ones making use of the information provided by other
similar software reusable components and software
reusable artefacts. Software engineers now know exactly
where to look for reusable software artefacts. This
addresses the major issues and concerns of software reuse
which was hindering software reuse from being a
systematic process and being incorporated into software
developed and software modernization approaches.

REFERENCES
[1] M. Jha, and L. O’Brien, “ Re-engineering Legacy Systems for

Modernization: The Role of Software Reuse”, Accepted paper in the
Second International Conference on Advancements in Computer
Sciences and Electronics Engineering 2013,23-24th February 2013,
Delhi, India.

[2] M. Jha, L. O’Brien, and P. Maheshwari, “Identify Issues and
Concerns in Software Reuse”, Proceedings of the Second
International Conference on Information Processing (ICIP’08),
Bangalore, India, 2008.

[3] M. Jha, and L. O’Brien, “Identifying Issues and Concerns in
Software Reuse in Software Product Lines”, 11th International
Conference on Software Reuse (ICSR), Virginia, USA 26-30
September 2009.

[4] M.L.Griss, and M. Wosser, “Making Reuse Work at Hewlett-
Packard”, IEEE Software,Vol12, No 1, Page(s):105-107, 1995.

[5] M. L.Griss, "Reuse Comes in Several Flavours," presented at the
Flashline white paper, 2003.

[6] R.W. Selby, “Enabling Reuse-Based Software Development of
Large Scale System”, IEEE Transaction on Software Engineering,
Vol 31, No 6, June 2005.

[7] C. McClure, “Software Reuse”, Wiley-IEEE Computer Society
Press,New York, 2001.

[8] Y. Kim and E. A. Stohr, "Software Reuse: Survey and Research
Directions " Journal of Management Information Systems, Volume
14, Page(s): 113-145, Spring, 1998.

[9] W.B. Frakes, and K. Kang, “Software Reuse Research: Status and
Future”, IEEE Transaction on Software Engineering, Vol 31, No 7,
July 2005.

[10] M. Morisio, M. Ezran, and C. Tully, "Success and Failures in
Software Reuse," IEEE Transaction on Software
Engineering,Volume 28, Number 4, Page(s): 340-357, April 2002.

[11] M. Jha, and P. Maheshwari, “Reusing Code for Modernization of
Legacy Systems”, Proceedings of IEEE Conference on Software
Technology and Practice 2005 Budapest, Hungary, 2005.

[12] A. J. Pinkney, An Automatic Cane Railway Scheduling System,
MSc Thesis, Department of Mathematics, JamesCook University of
North Queensland, Australia. December 1987.

[13] L. O’Brien, C. Stoermer, “Architecture Reconstruction Case Study”,
CMU/SEI-2003-TN-008, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA 15213, April 2003.

[14] N.H. Weiderman, J.K.Bergey, D.B.Smithand, S.R.
Tilley,“Approaches to Legacy System Evolution”. Report CMU/SEI-
97-TR-014, December 1997, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA 15213.

71

