

An Energy-Efficient Data Placement Algorithm and Node Scheduling Strategies
in Cloud Computing Systems

Yanwen Xiao

Massive Data Computing Research Lab
Harbin Institute of Technology, HIT

Harbin, China
elvinhit@gmail.com

Yaping Li
Internet & Information Center

Harbin Institute of Technology, HIT
Harbin, China

LYP@hit.edu.cn

Jinbao Wang
Massive Data Computing Research Lab

Harbin Institute of Technology, HIT
Harbin, China

 wangjinbaosky@gmail.com

Hong Gao
Massive Data Computing Research Lab

Harbin Institute of Technology, HIT
Harbin, China

 honggao@hit.edu.cn

Abstract—With the rise of the cloud computing, saving energy
consumed by cloud systems has become a tricky issue
nowadays. How to place data efficiently and schedule the nodes
effectively in a cloud platform are very important issues from
the view of the energy-saving. However, the state-of-the-art
node-scheduling strategies can’t save large amount of energy
for the cloud computing platforms significantly. This paper
proposes a heuristic data placement algorithm and two node
scheduling strategies for cloud platforms to save energy with
tasks guaranteed. The Cloudsim is employed to simulate a
private cloud system. Energy-saving is achieved by turning on
minimum nodes to cover maximum data blocks. The problem
of covering data block with computing nodes is abstracted as a
set cover problem, and a greedy algorithm is utilized to solve
this problem. This approach is practical to any cloud
computing infrastructure. The designed experiment verifies
the efficiency of the data placement algorithm and node
scheduling strategies proposed in this paper.

Keywords-cloud computing; data placement algorithm; node-
scheduling strategies; energy efficiency

I. INTRODUCTION
Recently, with the development of cloud computing,

various cloud computing products have been tremendously
beneficial for network applications, such as Google cloud
platform, Amazon EC2, IBM Blue Cloud etc. However, data
centers are composed of thousands of servers which
consume a large amount of energy. Thus, energy-saving is a
critical issue for IT organizations. As addressed in [3] [4],
data centers in the U.S. consumed about 4.5 billion kWh in
2005, equaling roughly 1.2% of the total electricity
consumption and about 6.1 billion kWh in 2006, roughly 45
billion dollars. The storage energy consumption rate for all
IT equipment will increase more and more in the short time
because the amount of digital data is increasing quickly[5],
energy consumption has gradually beyond equipment
hardware costs[3]. The huge energy consumption has been
emphasized by lots of enterprises.

Enormous energy has been wasted due to idle resources.
A report of NRDC pointed that idle servers use 69% to 97%
of the total energy even if the power management function is
enabled[1]. As a result, shutting down idle server will save
large amount of energy. [9] is limited to the energy research
of Hadoop, and using HDFS internal architecture to optimize
data placement is too limited and is not applied to most of
the cloud computing environment. [15] [16] focus on solving
the problem of over-load scheduling and large resource
utilization.[17] proposes a novel approach which enables
application tasks placement dynamically with consideration
of energy efficient with the aim of minimizing the number of
the active nodes. Hence, how to place data in a cloud
platform is an important issue to reduce energy cost.

Recently, [2][10][11][12][13][14] present a lot of energy-
saving methods at the hardware level, such as voltage
settings, processor speed adjustment, enlarging memory and
using low power solid state hard drive etc. However, those
methods are only useful for PC or single computer and
cannot achieve maximum energy optimization. Because the
energy saved by these techniques such as scaling down the
CPU voltage is far less than turning off a computer.
Therefore, an efficient energy-saving approach for the whole
cloud platform is needed.

This paper proposes an energy efficient data placement
algorithm and node-scheduling strategies in cloud computing
systems. Data blocks are placed rational by data placement
algorithm to find minimum nodes sets that contains all the
data blocks collection, then the remaining nodes are turned
off by the node scheduling strategies to save energy.

The major contributions are summarized as follows：
We propose an energy-efficient data placement algorithm

which supports node scheduling strategy and optimizes more
space for node scheduling.

Two optimization goals for batch processing are
addressed: (1) Given power consumption upper bound,
minimizing the execution time of task requests by node
scheduling. (2) Given task request execution time upper
bound, minimizing power consumption of the set of active

2nd International Conference on Advances in Computer Science and Engineering (CSE 2013)

© 2013. The authors - Published by Atlantis Press 59

nodes by node scheduling. We show that the second
optimization problem is NP-complete by reducing to a
weighted set cover problem.

The remaining parts of this paper are organized as
follows. Section II introduces related works. Section III gives
backgrounds. A dynamic data placement algorithm is
devised in Section IV. Section V presents the definition of
the scheduling problem. Section VI reports evaluation results
by experiment and uses Cloudsim to verify the proposed
algorithm. Finally, we conclude the paper in Section VII.

II. RELATED WORKS
[6] [7] [8] are based on energy-saving strategies for disk

storage systems research. [6] proposes PDC (Popular Data
Concentration) algorithm, the idea behind PDC is to
dynamically migrate the popular disk data (i.e., the most
frequently accessed data on disk) to a subset of the disks in
the array, so that the load becomes skewed towards a few of
the disks and others can be sent to energy-saving mode.[7]
proposes a dynamic data reorganization algorithm and the
basic idea is the dynamic block exchange algorithm which
switches data between such units based on the observed
workload such that frequently accessed blocks end up
residing on a few “hot” units thus allowing the majority
nodes to experience longer idle periods. [7] proposes an
energy-saving strategy that the application layer and the
storage layer are both considered and using cache to make
storage nodes experience longer idle periods.

Currently there are some energy-saving articles in the
cloud computing platform, [9] [17] proposes a method that
turn off a certain number of nodes to save energy. [9] turns
on (turns off) cluster nodes based on the presently utilization
of the whole cluster nodes, this method uses HDFS
framework which can’t be fully used in a cloud computing
environment. [17] considers energy-saving in the application
layer perspective and proposes EnCloud algorithm which
minimize the number of the active nodes by allocating
resources for each application. But they did not consider
whether the data blocks in the active nodes satisfied the
applications. If data blocks meet applications request, it will
lead to turn on lots of redundant nodes and can’t save energy
efficiently. [18] proposes a cloud computing energy-saving
framework based on resources allocation, which gives a
virtual node placement strategy and decides to turn on some
physical nodes by the active virtual nodes, but they did not
consider data placement problem.

III. BACKGROUND

A. Assumptions and Notations
The infrastructure of cloud computing environment is

usually composed of hundreds or even thousands of server
nodes. Every server node consists of processor, memory.

We assume that the data are already prepared before
requests arrive and can be accessed any time in the beginning.
The initial deployment of data in cloud computing platform
is needed. Notations are shown in Table I.

TABLE I. NOTATIONS

Notation Description
D(set) data blocks set
S(set) cluster nodes set
S*(set) The min active nodes set
G(set) group set
gi(set） nodes in group i
Jrequest order request queue
N N stands for the number of nodes
K replica of data blocks
M M stands for the number of data blocks
p primary block of replica data blocks
Map the table of data block map to globe position
Tmax max execution time of job request
Pmax max power of cluster consume
Pavg stand for avgre power cost of each node
Pcluster power cost of active nodes
T schedule time
a the number of active nodes
JS job schedule strategy
γ(s) cover rate of node s
Uup node resource utilization threshold
Udown node resource utilization threshold
Us resource utilization of node s
B size of each data block

IV. AN DYNAMIC DATA PLACEMENT ALGORITHM

A. Initial Deployment of Data Blocks
Firstly, the data are partitioned into several blocks with

size of B, and then generate to the whole data blocks set D =
{d0, d1, d2,…, dM-1}. This paper uses the replica of data
blocks to ensure the reliability of data and define the number
of replica of each data block as replica factor K (K > 1).
Every data block di (0≤i≤M) has a primary replica block p
and K-1 slavery replica blocks h1,…, hK-1. We assume that
the primary replica block p will be accessed firstly unless
there are updates in p and updates will be transferred to other
blocks in the same time. Job requests will not access other
slavery replica until p overloads or has some errors.

Denote S = {s0, s1, s2, … , sN-1} as a storage nodes set.
Data blocks are placed as follows: firstly, partition all data
containing primary replica blocks and slavery replica blocks
into K groups, and each group equals the whole data set
which contains M data blocks. Secondly, store the K groups
into N/K nodes, and the node allocate to each group is
different. In each group, there is a map table which maps
data blocks to position of nodes and all map tables in each
group are stored in Map which is stored in the main console
model. Group set is defined as G={g0,g1,g2,…,gN/K-1}, where
gi stands for number i group，gi={…,sj,…sz,…}(0 ≤j≤N，

0≤z≤N，j ≠ z)，the element in set gi stands for cluster
nodes. From two aspects of the response time and energy
considerations, this paper adopts different arrangement
strategy and we use random mapping mode to map data
blocks to the nodes and store those information in the Map.

B. Dynamic Data Placement Algorithm
Definition 1：Each node s∈S, in node s q is the number

of data blocks , p is the number of data blocks which meet
the job requests , the definition of node cover rate γ(s) = p/q.

60

Definition 2: If node s and node st have the same data
block replica, then node s and node st are data-exchangeable.

The formula (1) is used to compute resource utilization of
nodes :

U=e ⋅Ucpu+(1-e) ⋅Udisk (1)
Ucpu stands for utilization of CPU, Udisk stands for

utilization of the disk, e is a scale factor. Dynamic data
placement algorithm is shown in Algorithm 1:

Algorithm 1 Dynamic Data Placement Algorithm
Input : Map
Output: Data placement strategy
1. Find Sutil in which resource utilization > Uup (<Udown) with Map
2. while Sutil≠ do
3. ∀ s∈Sutil, compute Us
4. If s∈Sutil and Us > Uup do
5. Find s’ data-exchangeable node st, where st meet s Ust < Uup
6. Turn on node st ,transfer p which overloads in node s to st
7. Scan Map, find s’ which meets Us’ >Uup and add s’ into Sutil
8. end if
9. If s∈Sutil and Us < Udown do
10. Find s’ data-exchangeable node st, where st meet Ust>Udown
11. Transfer p which belongs to node s into st, and turn off node st

12. Scan Map, find s’ which meets Us’ <Udown and add s’ into Sutil
13. end if
14. end while

V. SCHEDULING ALGORITHM
Energy-saving effect is influenced by the node

scheduling which is the key of research in cloud computing
platform. This paper proposes optimization algorithm for the
batch scheduling and the online scheduling.

A. Batch Scheduling Strategy
Job requests set is Jrequest={r0, r1, r2,…rw} (w > 0), assume

that job execution time of each node is Ti= Tcpu+Ti/o, Pavg is
average power of each node and Pcluster= aPavg (a stands for
the number of active nodes).

Algorithm 2-1 Batch Scheduling Algorithm –Optimization
Objective 1

Input : Map, Pmax, Jrequest

Output : JS= { JS | Jrequest→ S }
1. Compute γ(s) of all nodes in S by Map
2. Compute V = Pmax/Pavg
3. While Jrequest≠ � do
4. Turn on nodes that the range of γ(s) is from 1 to V
5. If ri is read operation (ri ∈Jrequest) do
6. Allocate ri to any active node， update JS
7. else
8. ri do some operation on P in active nodes， update JS
9. end if
10. If there are not job requests for the active node do
11. Find the node whose γ(s) is highest and turn it on
12. Turn off currently active node
13. end if
14. Call dynamic data placement algorithm
15. end while

Given the upper bound of power consumption .
Optimization Objective 1:

minimize Te= ∑
−

=

1

0

a

i
iT

subject to Pcluster ≤Pmax
Problem Definition 1:

Input: Map; Pmax; Jrequest = { r0, r1, r2,…rn } (n > 0)
Output: JS= { JS | Jrequest

→S }
Constraints: Pcluster ≤Pmax
As shown in Algorithm 2-1, we can compute the number

of active nodes V=Pmax/Pavg by Pavg, so the problem is
transformed to: given the number of available nodes V,
minimizing the execution time of all job requests Te by using
node scheduling strategy.

There is another situation that given the upper bound of
execution time Tmax, find the node set that minimizes Pcluster
which stands for power consumption of currently cluster
nodes.

Optimization Objective 2:
Minimize Pcluster

Subject to Te ≤ Tmax
 Problem Definition 2:
Given the problem of batch scheduling F(Jreuqest, S, T),

find the active node set S* whose amount is minimum.
Input: Map; T; Jrequest ={ r0, r1, r2,…rn } (n > 0)
Output: S*= min { |S* | | S*⊆ S }
We have the theorem as follows:
Theorem 1: The problem of F(Jreuqest, S, T) is equivalent

to the weighted set cover problem WSC(U,S#).
Proof: di ∈s, di meets ri and ri belongs to Jrequest. s is a

single node and s∈S. Jrequest can be abstracted as U, and S is
the set that contains all nodes and positions of all data blocks,
so S can be abstracted as S#. Because T is the limit of this
problem, so T can be viewed as the weight of finding min set.
Therefore, the above description accords the definition of set
cover problem, and the problem of F(Jreuqest, S, T) can be
abstracted as the weighted set cover problem.

Similarly, we can prove that the weighted set cover
problem can be abstracted as the problem of F(Jreuqest, S, T).

Algorithm 2-2 Batch Scheduling Algorithm –Optimization
Objective2

Input : U, S#, T, Jrequest
Output: S*

1. S*←
2. while Jrequest≠ do
3. Compute γ(s) of nodes in S#
4. while f(S*) < |U| and ∑

=

1-a

0i
iT < T do

5. f(S*)←∑ || is （ *i Ss ∈ ）

6. Chose the node s whoseγ(s) is max , add s to S* where s∈S*

7. end while
8. Turn on all nodes in S* to process job requests
9. Call dynamic data placement algorithm
10. end while

As shown in Algorithm 2-2, in WSC(U,S#) U stands for
the position of data blocks that job requests need in nodes ,
S# stands for the position of data blocks in nodes.

The greedy algorithm of WSC is an approximation
algorithm and proved the most possible to solve the set cover
problem in polynomial time.

61

VI. EXPERIMENT

A. Experiment Setup
The experimental environment of this paper consists of

four servers (Intel i5 2400 3.1GHz, 4G RAM, Linux 2.6.18).
We measure resource utilization and power cost of each
server with a power analyzer. A Voltech PM 1000+ power
analyzer is used to measure server energy consumption of
each part of the server. This paper uses Cloudsim toolkit to
simulate cloud computing environment for evaluating the
proposed approach in this paper.

B. Experiment Result
We compares the strategy that uses batch scheduling

algorithm to optimize objective 1 with that does not use to
optimize. The result is shown in Figure 1 and it verifies that
the execution time of the strategy using batch scheduling
algorithm is shorter than that does not use.

Figure 1 Result of Comparison Figure 2 Load Energy Consumption
Comparison.

The energy consumption is different for different types of
workloads. This paper tests energy consumption of the
computational load and I/O load and sets the number of the
computational load and I/O load to 3:1 and 1:3. Uup is set to
0.95 and Udown 0.05. Figure 2 shows energy consumption
comparison results. This paper omits the energy
consumption of the network and memory, considering only
the energy consumption of the CPU and the storage systems.
This result shows that the energy consumption of the I/O
load is three times larger than that of the computational load,
which is the same as the proportion of the number of two
workloads.

Figure 3 Execution Time Comparison Figure 4 Test Result of Optimization

Object 2

The execution time is different because of the
differences of energy consumption of different types
workloads. In this paper, the number of the computational
load and I/O load is set to 3:1 and 1:3 respectively with

other settings remain fixed. Given the power upper limit,
Figure 3 shows the result that the execution time of
computational load is faster than that of I/O load. Specially,
the execution time of I/O load is 1.25 times longer than that
of computational load. As shown in Figure 4, this paper uses
several Tmax to optimize objective 2.

VII. CONCLUSION
This paper proposes dynamic data placement algorithm

which effectively solve the problem of data placement in
cloud computing platform, and this algorithm makes use of
large optimization space for node scheduling strategies. The
batch scheduling optimization strategy not only achieves
energy-saving effect but also successfully solves the
constrained problems which are power-restraint problem and
time-constrained problem in cloud computing platforms. The
time-restraint problem is abstracted as a weighted set cover
problem. Finally, this paper uses Cloudsim toolkit to do a
series of simulate experiments which shows this approach is
effective in cloud computing platforms.

REFERENCES
[1] http://www.energystar.gov/ia/partners/prod_development/revisions/d

ownloads/computer/RecommendationsTierICompSpecs.pdf
[2] MeikelPoess, Nambiar, Raghunath Othayoth. Tuning Servers Storage

and Database for Energy Efficient Data Warehouses. IEEE, 2010,
1006-1017

[3] Koomey , J. G. Koomey. Estimating Total Power Consumption by
Servers in the US and the World. 2007

[4] Stavros Harizopoulos, MehulA.Shah, Justin Meza . Energy Efficiency:
The New Holy Grail of Data Management Systems Research. CIDR,
2009, January 4-7

[5] S.Worth. Green stroage - the big picture. Storage Networking World.
2011

[6] E. Pinheiro, R. Bianchini. Energy conservation techniques for disk
array based servers. ACM, 2004, (26):68–78

[7] E. Otoo, D. Rotem, S.-C.Tsao. Dynamic Data Reorganization for
Energy Savings in Disk Storage Systems. InSSDBM, (6187) :322–
341, 2010.

[8] Norifumi Nishikawa, Miyuki Nakano, Masaru Kitsuregawa. Energy
Efficient Storage Management Cooperated with Large Data Intensive
Applications. ICDE, 2012

[9] Nitesh, Maheshwari, Radheshyam. Dynamic Energy Effcient Data
Placement and Cluster Reconfguration Algorithm for MapReduce
Framework. FGCS , 2011

[10] Willis Lang, Jignesh M. Patel. Towards Eco-friendly Database
Management Systems. 2009

[11] Andreas Beckmann, Ulrich Meyer Peter, Sanders. Energy-Efficient
Sorting using Solid State Disks. DFG grant SA 933/3-2, 2010.

[12] Elnozahy, E.N., Kistler, M. Energy conservation policies for web
servers. In: USITS, 2003

[13] Elnozahy, Kistler, Rajamony. Energy-efficient server clusters.
Springer, 2003. 179–196

[14] Rao L, Liu X, Xie L. Minimizing electricity cost: Optimization of
distributed internet data centers in a multi-electricity-market
environment. In: INFOCOM , 2010

[15] Pengcheng Xiong, Yun Chi, Shenghuo Zhu . Intelligent Management
of Virtualized Resources for Database Systems in Cloud Environment.
ICDE, 2011

[16] Willis lang, Jignesh M.Patel, Jeffrey F. Naughton.On. Energy
Management, Load Balancing and Replication. SIGMOD, 2009

62

[17] Bo Li，Jianxing Li，Jinpeng Huai. EnaCloud : An Energy-saving
Application Live Placement Approach for Cloud Computing
Environments. IEEE, 2009

[18] Anton Beloglazova, Jemal Abawajyb, Rajkumar Buyyaa. Energy-
aware resource allocation heuristics for efficient management of data
centers for Cloud computing. Future Generation Computer Systems,
2012

63

