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Abstract

The classical (ARS) algorithm used in the Painlevé test picks up only those functions
analytic in the complex plane. We complement it with an iterative algorithm giving
the leading order and the next terms in all cases. This algorithm works both for an
ascending series (about a singularity at finite time) and a descending series (asymptotic
expansion for t → ∞). The algorithm introduces naturally the logarithmic terms when
they are necessary. The calculation, given in the first place for a system possessing
the two symmetries of time translation and self-similarity, is subsequently generalised
to the case in which this last symmetry is broken. The algorithm enlarges the class of
equations for which more explicit methods (Lie symmetries, Darboux and Carleman
invariants etc) should be applied with a certain hope of success.

1 Introduction

A common outcome of the modelling process is a system of ordinary differential equations,
the solution of which describes the behaviour of the model and, provided the modelling
has been sufficiently accurate, the reality underlying the model. The precise meaning of
the solution of a system of differential equations can be cast in several ways:

(i) A set of explicit functions describing the variation of the dependent variables with
the independent variable.

(ii) The existence of a sufficient number of independent explicit first integrals or conser-
vation laws.

(iii) The existence of a sufficient number of explicit Lie symmetries which permits the
reduction of the system of differential equations to a system of algebraic equations.
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A feature, central to each of these three not completely equivalent prescriptions of
integrability, is the existence of explicit functions, be they solutions, first integrals or the
coefficient functions of Lie symmetries.
There is another approach to the question of integrability which is not concerned with

the display of explicit functions, but with the demonstration of a specific property. This
is the existence of a Laurent series for each of the dependent variables. The series may
not be summable to an explicit form, but does represent an analytic function. The es-
sential feature of this Laurent series is that it is an expansion about a particular type of
movable singularity, videlicet a pole. Consequently the existence of these Laurent series is
intimately concerned with the singularity analysis of differential equations initiated about
a century ago by Painlevé, Gambier and Garnier [16] and continued since by many workers
including Chazy [5], Bureau [4] and Cosgrove et al [7].
The connection of this type of singular behaviour and the solution of partial differential

equations by the method of the Inverse Scattering Transform was noticed by Ablowitz et
al [1, 2, 3] who developed an algorithm, called the ARS algorithm, to test whether the
solution of an ordinary differential equation was expressible in terms of a Laurent expan-
sion. If this was the case, the ordinary differential equation was said to pass the Painlevé
test and was conjectured to be integrable. Under more precise conditions Conte [6] has
shown that the equation is integrable. The test can also be, mutatis mutandis, applied to
partial differential equations, but, for the purposes of the present exposition, we confine
our attention to ordinary differential equations.
In a recent review of integrable systems Ramani et al [21] provide a listing of the process

of implementation of the ARS algorithm. In the positive sense of the algorithm the polelike
nature of the movable singularity is identified, the appearance of arbitrary constants of
integration is determined and the consistency of the proposed Laurent expansion with the
ordinary differential equation identified.
Failure of the algorithm at any one of these steps leads to rejection and the equation

is deemed to be nonintegrable. We emphasise that this nonintegrability is at the level
of a function, represented by a Laurent series, analytic in the complex plane with the
exception of singularities which are movable poles.
The manner in which the algorithm is presented by Ramani et al [21] is for its imple-

mentation by the practitioner who seeks a ready answer to the question of integrability in
terms of analytic functions. In this paper we are concerned not so much with the answer
to the question of a particular equation’s integrability as with understanding the process
of the analysis of an equation in terms of its singularities. To this end we present an
approach, different in philosophy to that of the ARS algorithm, which provides a greater
understanding of the underlying approach, explains why certain things can go wrong and
leads to a better appreciation of the succinct nature of the ARS algorithm.

2 Singular and next to singular behaviour

We detect possible singular behaviour in the solution of a differential equation by means
of the leading order analysis of the differential equation. Suppose that we have an au-
tonomous ordinary differential equation (any nonautonomous ordinary differential equa-
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tion can be rendered autonomous by an increase in order)

x(n) = E
(
x, ẋ, . . . , x(n−1)

)
. (2.1)

To determine the leading order behaviour we set

x = ατp, (2.2)

where τ = t − t0 and t0 is the location of the supposed movable singularity, substitute
this into the ordinary differential equation and look for two or more dominant terms. The
detection of which terms are dominant is identical to the determination of which terms in
an equation are self-similar, ie invariant under the action of the symmetry

G2 = −qt
∂

∂t
+ x

∂

∂x
, (2.3)

where q is a parameter. As we are concerned with just this process, we assume the
differential equation to be invariant under both (2.3) and time translation. In § 5 we see
what happens when the conditions are relaxed. The equation is composed of the variables

ẋ

xq+1
,

ẍ

x2q+1
,

...
x

x3q+1
, . . . , (2.4)

which are the simultaneous invariants of the two symmetries. The general second order
ordinary differential equation of this form is

ẍ+ x2q+1f

(
ẋ

xq+1

)
= 0 (2.5)

and, when (2.2) is substituted, we obtain

p(p − 1)τp−2 + α2qτ (2q+1)pf

(
pτp−1

αqτ (q+1)p

)
= 0 (2.6)

from which it is evident that the terms balance for general f if

p = −1
q
,

1
q

(
1 +

1
q

)
+ α2qf

( −1
qαq

)
= 0, (2.7)

ie the nature of the singularity is determined by the value of q and the coefficient, α, by
the functional form of the differential equation. The only exception is when q is arbitrary,
ie the equation is separately invariant under the two homogeneity symmetries

G21 = t
∂

∂t
, G22 = x

∂

∂x
. (2.8)

Then the coefficient, α, is arbitrary and the equation determines the value of p. A simple
example of this is found in the generalised Kummer–Schwarz equation [8, p. 224]

ẋ
...
x + kẍ2 = 0. (2.9)
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The exponent, p, of the leading term is the solution of

p2(p − 1)(p − 2) + kp2(p − 1)2 = 0,
ie

p = 0, 1,
k + 2
k + 1

. (2.10)

In the case of the usual Kummer–Schwarz equation k = −3/2 and we find that the leading
order behaviour is a simple pole.
Once the leading order of the solution to an equation is found, we seek the behaviour

of the next to leading order term. In the philosophy of the ARS algorithm we require
that this, and all subsequent terms, be compatible with the Laurent series imposed by the
analycity criterion. This requirement can lead to problems. Consider the equation

ẍ+ xẋ+ kx3 = 0 (2.11)

which is of the type of (2.5) and which has attracted attention due to its divers provenan-
ces [14, 9, 17] and interesting properties [19, 18]. The leading order behaviour is

x = ατ−1, 2− α+ kα2 = 0, (2.12)

ie the movable singularity is a simple pole. Evidently our Laurent series starts at τ−1.
Following a standard procedure we substitute

x =
∞∑
i=0

aiτ
i−1 (2.13)

(a0 = α) into (2.11) to compute the a1, a2, . . . through the equation of coefficients of like
powers of τ to zero in

∞∑
i=0

ai(i − 1)(i − 2)τ i−3 +
∞∑
i=0

∞∑
j=0

aiaj(i − 1)τ i+j−3

+ k
∞∑
i=0

∞∑
j=0

∞∑
k=0

aiajakτ
i+j+k−3 = 0. (2.14)

That this is satisfied for τ−3 is guaranteed by (2.12). At τ−2 we require

a1(3ka0 − 1)a0 = 0

so that either a1 is zero or k = 1/9 and a1 is arbitrary. In the latter case we have the next
to singular behaviour. In the former case we move to τ−1 and find

ka0

(
a0a2 + a2

1

)
= 0

which gives an arbitrary a2 only if k = 0 since a1 = 0. If this not be the case, we must
take a2 = 0 and at τ0 we find that a3 is arbitrary only if k = −1.
The process outlined above can be repeated indefinitely. At each power k is required to

have a specific value for that power to begin the rest of the Laurent series and to represent
the next to singular behaviour. Otherwise we must continue. In other words except for
a set of precise values of the parameter k in the equation we are going to obtain zero for
all of the coefficients in the Laurent expansion. Clearly, if we are interested in the next
to singular behaviour of the solution of the equation, the imposition of a Laurent series is
not the way to determine this behaviour for general values of the parameter k.
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3 Next to singular behaviour through perturbation

Instead of imposing a Laurent series commencing at the power indicated by the singularity
found by the leading order analysis we can determine the next to singular behaviour by
writing

x(τ) = ατp + g(τ). (3.1)

We can always write x(τ) in the form (3.1). To make the process useful we require that
the first term be the leading order term, ie τ−pg(τ)→ 0 as τ → 0 (⇔ t → t0).
We return to the specific example of (2.11) and obtain, after taking into account (2.12),

g̈ + ατ−1ġ − ατ−2g + gġ + k
(
3α2τ−2g + 3ατ−1g2 + g3

)
= 0

which can be rearranged as

τ2g̈ + ατġ + (3kα − 1)αg + (τg)(τ ġ) + 3kα(τg)g + k(τg)2g = 0. (3.2)

In the neighbourhood of t0 we can linearise (3.2) since τg ≈ 0. We have

τ2g̈ + ατġ + (3kα − 1)αg = 0, (3.3)

when (2.12) is taken into account, which is an equation of Euler type for g with the solution

g(τ) =

{
K1τ

−2 +K2τ
3−α, α �= 5,

(K1 +K2 log τ)τ−2, α = 5,
(3.4)

where K1 and K2 are arbitrary constants. The only solution compatible with τg(τ) → 0
as τ → 0 is g(τ) = K2τ

3−α provided α < 4. We return to the implications of the other
solution in § 4.
Now that we have the term next to the singular behaviour we could contemplate ex-

amining the following term by putting

x(τ) = ατ−1 +K2τ
3−α + g(τ) (3.5)

for the case α < 4 and by imposing the condition that τα−3g(τ) → 0 as τ → 0. We sub-
stitute (3.5) into (2.11) and, after eliminating terms according to the assumed behaviour
of g(τ), obtain the nonhomogeneous equation

τ2g̈ + ατġ + (3kα − 1)αg = −K2
2 (3− α+ 3kα)τ7−2α (3.6)

with particular solution

g =
K2

2

(
α2 − 6α+ 6)

α(2α − 9)(α − 4) τ
7−2α (3.7)

since α < 4. The complementary solution is as given in (3.4). Clearly the procedure can
be continued indefinitely.
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We note that the powers in the expansion thus far are τ−1, τ3−α and τ7−2α. This
suggests that

x(τ) = τ−1f
(
τ4−α

)
. (3.8)

Taking as new variable τ = τ4−α and substituting (3.8) into (2.11) we find that only
the argument τ appears which justifies the ansatz of (3.8). However, the second ordinary
differential equation satisfied by f as a function of τ4−α is not so simple, being

(4− α)2τ2d
2f

dτ2
+ (4− α)(1− α)τ

df
dτ

+ (4− α)τf
df
dτ

+ 2f − f2 + kf3 = 0. (3.9)

In terms of σ = log(τ4−α), equation (3.9) becomes autonomous in σ and is

(4− α)2
df
dσ2

− 3(4− α)
df
dσ

+ (4− α)f
df
dσ

+ 2f − f2 + kf3 = 0. (3.10)

We note that (3.10) is an autonomous equation in what seem to be the natural variables
of the problem and is of Gambier’s Type 5 [8, p 495]. It is also a member of the Riccati
hierarchy as is more obvious when it is written as

(4− α)2
[
d2f

dσ2
+ f

df
dσ

+
k

4− α
f3

]
− 3(4− α)

[
df
dσ

+
f2

3(4− α

]
+ 2f = 0.

The procedure outlined in some detail above to the example of (2.11) can be applied
generally. For an equation of type (2.5) we simply calculate the linearisation by considering
the introduced g function as a perturbation about the singular solution. For the first order
invariant, ẋ/xq+1, we have

ξ =
ẋ

xq+1
=

−1
qαq

[
1− q

α
τ

1+ 1
q ġ − (q + 1)

α
τ

1
q g

]
(3.11)

and for the second order invariant

η =
ẍ

x2q+1
=
(q + 1)
q2α2q

[
1 + q2τ

2+ 1
q (q + 1)αg̈ − (2q + 1)

α
τ

1
q g

]
(3.12)

so that (2.5) becomes

(q + 1)
q2α2q

(
1 + q2τ

2+ 1
q (q + 1)αg̈ − (2q + 1)

α
τ

1
q g

)

+ f

( −1
qαq

[
1− q

α
τ

1+ 1
q ġ − (q + 1)

α
τ

1
q g

])
= 0

after we expand f as a Taylor series about the singular point

ξ0 =
−1
qαq

, η0 =
q + 1
q2α2q

. (3.13)

The linearised equation is

τ2g̈ + αqf ′
( −1

qαq

)
τ ġ −

[
(q + 1)(2q + 1)

q2
− (q + 1)

q
αqf ′

( −1
qαq

)]
g = 0 (3.14)
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which is again of Euler type and has solution

g(τ) = K1τ
λ1 +K2τ

λ2 , (3.15)

where λ1 and λ2 are the roots of

λ2 + λ

(
αqf ′

( −1
qαq

)
− 1

)
−

[
(q + 1)(2q + 1)

q2
− (q + 1)

q
αqf ′

( −1
qαq

)]
= 0, (3.16)

or

g(τ) = (K1 +K2 log τ) τλ (3.17)

in the case that λ1 = λ2 = λ.
Evidently the procedure may be continued to higher orders, at the price of increasing

complexity of calculation. As in the preceeding specific calculation one of the roots of (3.16)
is λ1 = −1− 1

q and the corresponding term in (3.15) must be discarded.

4 Asymptotic expansions

The solution of the next to singular behaviour of (2.11) given in (3.4) contained terms which
were not acceptable because they were more singular than the leading order behaviour in
the vicinity of the pole. However, in an equation invariant under both time translation and
self-similarity the leading order behaviour could also be that as τ → ∞, ie the asymptotic
behaviour of the solution. Since this behaviour is far from the movable singular point,
there is no loss of generality in looking at the behaviour in terms of powers of t rather
than τ = t − t0. We again use (2.11) to establish in a precise context our ideas about the
next to asymptotic behaviour of the solution.
Let

x(t) = αt−1 + g(t), (4.1)

where we require tg(t) → 0 as t → ∞. The substitution of (4.1) into (2.11) gives (3.2)
with τ replaced by t. When t → ∞, we recover (3.3) so that

g(t) =

{
K1t

−2 +K2t
3−α, α �= 5,

(K1 +K2 log t)t−2, α = 5,
(4.2)

where again K1 and K2 are arbitrary constants. Since we require that tg(t)→ 0 as t → ∞,
both solutions are now acceptable provided α > 4. We note that the coefficient of t−2 is
always arbitrary. In the case α = 5 (k = 3/25) a logarithmic term must appear.
We may continue this asymptotic expansion to any desired number of terms by piece-

wise solution. More generally we can consider the asymptotic solution of (2.5) or of an
equation of higher order with the same symmetries. The procedure should be evident
from the foregoing. However, all equations are not invariant under the two symmetries
of time translation and self-similarity. As we can always maintain invariance under time
translation by a simple increase of order, we need only consider the effect of the loss of the
self-similarity symmetry. (Also here again an increase of order could be used, in principle,
to maintain this.)
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5 Symmetry-breaking

For an equation invariant under time translation and (2.3) all terms contribute to the
leading order behaviour. The addition of a term (or terms) which does not share the sym-
metry (2.3) can be considered as a symmetry-breaking term. In the ARS algorithm such
terms are neglected until the final test of compatibility is undertaken. In the perturbative
approach we adopt here such a term is introduced from the beginning and its rôle will
develop naturally. We illustrate our approach with a variation of (2.11), videlicet

ẍ+ xẋ+ kxs = 0 (5.1)

for s �= 3, where three is the value for which (2.3), with q = 1, is a symmetry. Suppose
that s = 0. Substitution of x = ατp gives the three exponents p − 2, 2p − 1 and 0 so that
the singularity remains a simple pole due to the balancing of the first two terms and the
coefficient is α = 2. Let

x(τ) = 2τ−1 + g(τ). (5.2)

Then (5.1) becomes

τ2g̈ + 2τ ġ − 2g = −kτ2 (5.3)

when the property τg(τ)→ 0 as τ → 0 is invoked. The solution is

g(τ) = K1τ
−2 +K2τ +

1
4
kτ2. (5.4)

The first term must be abandoned because it does not satisfy the criterion of behaviour
required of g(τ). Since the nonhomogeneous contribution is at a power higher than that
of the second term, we cannot have confidence in the accuracy of its coefficient and only
the second term can be kept so that the solution including the first contribution next to
the leading singular behaviour is

x(τ) = 2τ−1 +K2τ. (5.5)

The next contribution is found from setting

x(τ) = 2τ−1 +K2τ + g(τ), (5.6)

where, in the neighbourhood of τ = 0, g(τ) satisfies (5.3) and the solution is now

x(τ) = 2τ−1 +K2τ +
1
4
kτ2, (5.7)

ie the K2τ term does not affect the next level of behaviour.
If we consider the asymptotic behaviour of the solution of (5.1) with s = 0, there

is no possibility to balance terms as the single constant term dominates the other two.
The presence of this symmetry-breaking term precludes the development of an asymptotic
expansion. This is the case in general as the less singular term can never be balanced in
the asymptotic expansion.
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If we take s = 6 in (5.1), the indices for the leading order behaviour are p−2, 2p−1 and
6p. The first two terms balance with p = −1, but then the third term is more singular in the
neighbourhood of t0. One must take the first and third terms (thereby making symmetry-
breaking more like symmetry-snatching) so that p = −2/5 and α = (−14/25)1/5. Set

x(τ) = ατ− 2
5 + g(τ), (5.8)

where τ2/5g(τ)→ 0 as τ → 0. Then the linearised equation reduces to

τ2g̈ − 84
25

g =
2
5

(
− 14
25k

) 1
5

(5.9)

which has the solution

g = K1τ
− 7

5 +K2τ
12
5 − 5

44

(
− 14
25k

) 2
5

τ
1
5 . (5.10)

The nonhomogeneous solution describes the next to singular behaviour, the term with
coefficient K1 is discarded as too singular and that with coefficient K2 cannot yet be
regarded as reliable. Further perturbations would have to be taken to see if one or more
correction terms occur between τ1/5 and τ12/5. We note that as a rule of thumb we discard
all terms except the one closest to the one already obtained.
If we now consider the asymptotic behaviour of the solution for s = 6, the first two

terms must be taken and we have the leading order behaviour 2t−1 as t → ∞. We set

x(t) = 2t−1 + g(t), (5.11)

where tg(t)→ 0 as t → ∞. The linearised equation for g is

t2g̈ + 2tġ − 2g = −64kt−4 (5.12)

with solution

g = K1t
−2 +K2t − 64

10
t−4. (5.13)

The second term must be discarded and the third treated with suspicion. This suspicion
is justified when we set

x(t) = 2t−1 +K1t
−2 + g(t) (5.14)

and find that the leading term of g(t) is −1
2K2

1 t−3. It is only at the next iteration that
the correct coefficient of t−4 is found. Contrast this result with that for s = 0.
We see that symmetry-breaking can have several effects. One is to make our procedure

unworkable, as in the case of the asymptotic expansion of (5.1) when s = 0. Generally the
symmetry-breaking terms introduce a nonhomogeneous term (or terms) into the equation
for g. The nonhomogeneous term may or may not give rise to the next to leading behaviour
term. In the case of (5.1) with s = 6 this was the case in the neighbourhood of the finite
singularity, but was not the case for the asymptotic expansion.
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6 Intermediate terms for higher order equations

For second order equations with symmetry breaking terms the nonhomogeneous contribu-
tion to the g function may interpose itself between the leading order term and the second
(acceptable) solution given by the homogeneous part or it may not. In fact this variation
in behaviour is not confined to equations containing a symmetry-breaking term. However,
one must go to a higher order equation. The general third order ordinary differential
equation invariant under time translation and the self-similarity symmetry (2.3) is

...
x + x3q+1f

(
ẋ

xq+1
,

ẍ

x2q+1

)
= 0. (6.1)

A specific instance of (6.1) is the generalised Chazy equation

...
x + |x|qẍ+ k|x|q ẋ2

x
= 0 (6.2)

which has, for various values of k, attracted attention over the past century [5, 4, 12].
The behaviour of the solution of (6.2) is affected by the relationship between the values
of the parameters k and q. Two interesting cases are k = q and k = q + 1 [13]. By way of
example we consider q = 2 and k = 3, ie the equation

...
x + x2ẍ+ 3xẋ2 = 0 (6.3)

for which the leading order behaviour, when all terms are dominant, is ατ−1/2 with α2 =
5/4. We set

x(τ) = ατ− 1
2 + g(τ) (6.4)

with τ1/2g(τ)→ 0 as τ → 0. The linearised equation for g is

τ3 ...g +
5
4
τ2g̈ − 15

4
τ ġ +

45
16
= 0 (6.5)

with solution

g = K1τ
− 3

2 +K2τ
3
4 +K3τ

5
2 , (6.6)

where K1, K2 and K3 are arbitrary constants. We reject the term in K1 as too singular,
accept that in K2 and cannot be confident that the next correction is only at τ5/2 in
accordance with the rule of thumb stated above. We now substitute

x(τ) = ατ− 1
2 +K2τ

3
4 + g(τ) (6.7)

and find that the linearised equation for g(τ) is

τ3 ...g +
5
4
τ2g̈ − 15

4
τ ġ +

45
16

g =
21
16

K2
2ατ2 (6.8)

so that

g = K1τ
− 3

2 +K2τ
3
4 − 3

5
K2

2ατ2 +K3τ
5
2 . (6.9)
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Since the last term in (6.9) is suspicious, we now have

x(τ) = ατ−1 +K2τ
3
4 − 3

5
K2

2ατ2. (6.10)

In (6.10) we still do not have the third arbitrary constant. We can expect it at the next
iteration. Given the spacing between the powers one would not anticipate the need to
introduce a logarithmic term at τ5/2, but this would have to be checked by specific cal-
culation. Thereafter the additional terms will always be rational powers if no logarithmic
term has to be included previously. If one has, then one would expect the logarithm to
propagate though the perturbation terms.

7 Conclusion

In this paper we have sought to expand upon the detail behind the procedures of the
ARS algorithm. Although the wording of the algorithm, as presented in the review by
Ramani et al [21], does not state so explicitly, the algorithm is a no frills procedure for
deciding whether the solution of a given ordinary differential equation possesses a Laurent
expansion about a movable singularity. We have presented a broader approach and in so
doing make a statement based on our philosophy of the way differential equations should
be treated. We equally recognise that the subject of singularity analysis of ordinary
differential equations provides for different philosophies. These different philosophies are
also connected to the understanding of what integrability is.
There are those who require that the solution of an ordinary differential equation be

an analytic function. As soon as the ARS algorithm throws up a nonintegrer power, the
algorithm is terminated. A concession, implied by the qualifer “weak”, is to require that
the solution be analytic in part of the complex plane, ie rational powers, either in the
singularity or in the series expansion, are admitted. In stating that an equation passes
the weak Painlevé test a certain amount of common sense must be used to interpret the
utility of the result. The rational exponents involved cannot be permitted to have too large
a denominator or else the complex plane will be divided into unworkable parts, particularly
in the neighbourhood of the singularity. In a realistic scheme of things, where solutions
must in the end be computed, there is no numerical difference between an irrational
exponent and a rational exponent if the latter has a large demominator.
We are motivated by a need to understand the behaviour of solutions to equations

which are, in the main, going to be computed along the real axis. The analysis we have
presented provides information about the behaviour of the solution in the vicinity of
a movable singularity. It makes obvious the need for the introduction of logarithmic terms
because they arise naturally in the solution of the g equation.
Further the whole problem of compatibility, which in the ARS algorithm has some-

how become disconnected from the study of resonances (see Hua et al [15] for a coherent
approach to the determination of both as a single process), is put into a very plain perspec-
tive. In a sense compatability ceases to be a question since the g function always provides
the answer. One may not be happy with that answer when logarithms necessarily intrude,
but at least the procedure is transparent.
We suggest that the considerations proposed in this paper both complement and supple-

ment the ARS algorithm by contributing to a greater understanding of what can happen
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at each step of the algorithm. These benefits apply both to the conventional analysis
which leads to the existence of a right Painlevé series, which is a Laurent expansion in
a punctured disc about the singularity, and the more recently introduced left Painlevé
series [11, 20, 10] which is an asymptotic solution and may be regarded as a Laurent
expansion outside a disc centred on the movable singularity.
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