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Abstract

The Feshbach-type reduction of the Hilbert space to the physically most relevant
“model” subspace is suggested as a means of a formal unification of the standard
quantum mechanics with its recently proposed P7 symmetric modification. The resul-
ting “effective” Hamiltonians Heg(F) are always Hermitian, and the two alternative
forms of their energy-dependence are interpreted as a certain dynamical nonlinearity,
responsible for the repulsion and/or attraction of the levels in the Hermitian and/or
PT symmetric cases, respectively. The spontaneous PT symmetry breaking is then
reflected by the loss of the Hermiticity of He.g while the pseudo-unitary evolution law
persists in the unreduced Hilbert space.

1 Introduction

Bender and Boettcher [1] tentatively attributed the reality of spectra in non-Hermitian
models to the commutativity of the Hamiltonians with the product of the complex conju-
gation 7 (which mimics the time reversal) and the parity P,

H =PTHPT = H*. (1.1)

An acceptability of this conjecture is supported by the growing empirical experience with
the similar models [2] and by the analysis of many examples (1.1) which are partially [3] or
completely [4] exactly solvable. In the physics community, a steady growth of acceptance of
the PT symmetric models can be attributed to their phenomenological relevance in solid
state physics [5], statistical physics [6], population dynamics [7], in the many-body [8]
and supersymmetric [9] context and, last but not least, within the general quantum field
theory [10]. A reason why the PT symmetric models could eventually prove useful in these
applications has been sought in the reality of their spectrum.

The latter argument is slightly misleading and has been criticized recently [11] but the
debate proves inspiring, involves many separate issues and, apparently, may be expected to
continue. In what follows, we intend to join it, emphasizing that the concept of extended,
non-Hermitian quantum mechanics with real spectra and PT symmetric Hamiltonians
exhibits multiple parallels with the standard textbook quantum mechanics.
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The material is organized as follows. Firstly, Section 2 reviews several features of
the symmetry breaking within the standard quantum mechanics. It emphasizes that the
commutativity of the Hamiltonian with the parity P enables us to split the Hilbert space
into two subspaces. The loss of this commutativity interrelates these two subspaces but
one can still stay within one of them at a cost of the replacement of the Hamiltonian H
by its Feshbach’s [12] energy-dependent (so called effective) equivalent form H.g(F).

In Section 3 we return to the non-Hermitian models and stress some of their most
important specific properties. In particular, the reasons for the introduction of an indeter-
minate inner product are recollected. We show that in spite of the non-Hermiticity of H,
the related pseudo-unitary character of the time evolution represents a good reason for
introduction of a certain pseudo-norm.

In Section 4 we formulate the core of our present message and show that the Fesh-
bach’s reduction of the PT symmetric operators H = H* is Hermitian. As an immediate
consequence, at least a part of the spectrum may be real, and its full reality may be ex-
pected to occur at least in the case of a certain sufficiently weak non-Hermiticity. Such
an idea is also shown to inspire an immediate generalization of the concept of the PT
symmetry. An analogy between Hermiticity and PT symmetry is established, in spite of
the fact that the effective Schrodinger equation must be understood as slightly nonlinear.
This nonlinearity is “weak”, mediated merely by the energy-dependence of the reduced
Hamiltonians Heg(F).

Section 5 contains the discussion of several related questions. We pay some attention
to the so called spontaneous PT symmetry breaking and to the loss of the reality of the
energies, not accompanied by any loss of the pseudo-unitarity of the time evolution.

Finally, Section 6 summarizes all our results and emphasizes that the PT symmetric
quantum mechanics with real spectra might admit the standard probabilistic physical
interpretation of the wave function on a suitably reduced Hilbert space.

2 A short detour to the standard quantum mechanics

2.1 A parity-preserving oscillator example

The quadratic plus quartic one-dimensional Hamiltonian
H(g) =p*+a* + g (2.1)

is extremely popular in perturbation theory where its mathematical study admits the
complex couplings g and, therefore, an explicit breakdown of Hermiticity. This qualifies
this model as a guide which appears in the standard quantum mechanics [13] as well as in
its PT symmetric alternative [14].

In the former, purely Hermitian case, all the coupling constants in eq. (2.1) are real
and the spectral representation of our anharmonic oscillator Hamiltonian (which commutes
with the parity P) may be split in the even- and odd-parity eigenstates | n(¥)(g)),

H(g) =Y nM(g)) P (g) (M ()| + D [m T (9)) ) (g) (mT(g)l, g =>0.
n=0 m=0
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The parity conservation annihilates some matrix elements between the g = 0 basis states
denoted by the symbols | s,) = |n(+)(0)) and |t,) = |n{7)(0)),

($m| H(g) | tn) = (tm| H(g) | sn) =0, m,n=0,1,.... (2.2)

This induces the so called super-selection (s,,|¥(7)) = (t,,,| (1)) = 0 and splits the varia-
tional Schrodinger equation in the two separate infinite-dimensional matrix sub-problems
with a definite parity,

Z]:mk <5k|¢(+>:E <8m"¢(+)>7 m=0,1,..., fmk:<sm‘H(g)|5k>7
k=0

> Gk el 0T) = E (| ¥)), m=0,1,..., G = (tm| H(g) | ).
k=0

This means that the matrix form of H(g) is the direct sum of the two different matrices F
and G, precisely in the spirit of the Schur’s lemma [15].

2.2 Parity-breaking terms and the effective Hamiltonians
For a more general anharmonic oscillator
H(f,g) =p* +a* + fa® + ga®¥

the parity P ceases to be a useful symmetry due to the presence of the spatially asymmetric
cubic term whose non-vanishing elements form a matrix Q,,; = (t,,| f 2® | s;). Each wave
function in Ly(R) must be expanded in the full basis,

[0y = Isn) BN+ D [t B (2.3)
n=0 m=0

Schrodinger equation acquires the partitioned matrix form

F—EI QT A+ 0
Q G-FEI B ) T

where we may eliminate the Feshbach’s [12] “out-of-the-model-space” components

- 1 .
() _ _ Q5
h Al

and get the reduced Schrodinger equation containing the effective Hamiltonian which is
(presumably, not too manifestly) energy dependent,

. - 1
Hg(E)h™) =B, HgE)=(F-aF Q). (2.4)
g—FEI
The energy-dependence of Heg(FE) causes rarely a problem. In numerical context one
fixes a trial energy o in Heg(o) and solves the linearized Schrodinger equation giving
a one-parametric family of auxiliary spectra { E,,(0)}. A return to the exact and nonlinear
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eigenvalue problem (2.4) is then mediated by the selfconsistent determination of the best
parameter,

0= En(@) (25)
Sufficient precision is mostly achieved via the linear approximation
He(0) R = ER™), (2.6)

with a single value of ¢ adapted to the practical evaluation of a set of several neighboring
energy levels FE.

3 PT symmetric formalism

An interest in the commutativity (1.1) of H with PT (let us repeat that P means parity
and 7 denotes time reversal) grew from several sources. The oldest root of its appeal is
the Rayleigh—Schrodinger perturbation theory. Within its framework, Caliceti et al [16]
have discovered that a low-lying part of the spectrum in the cubic anharmonic potential
V = 22 4 g3 for some purely imaginary couplings g is real. This establishes an analogy
between the Hermitian and some non-Hermitian oscillators, extending the family of the
eligible phenomenological potentials.

A non-perturbative direction of analysis has been initiated by Buslaev and Grecchi [17]
who were motivated by the physical relevance of non-Hermitian models in field theory.
They employed parallels between Hermiticity and PT symmetry during their solution of
an old puzzle of spectral equivalence between apparently non-equivalent quartic interac-
tion models. Bender and Milton [18] underlined in similar context that an ambiguity in
boundary conditions exists and is essential for the clarification and consequent explanation
of the famous Dyson’s paradox in [18]. These studies opened new mathematical as well as
interpretation problems. Some of them will be discussed here.

3.1 Modified inner product

In PT symmetric quantum mechanics the Hamiltonians are non-Hermitian and one often
discovers (or, at worst, assumes) that their spectrum is real, discrete and non-degenerate.
Even under this assumption, their left eigenvectors (let us denote them by the symbol ((|)
need not necessarily coincide with the Hermitian conjugates (1| of their right eigenvector
partners. The Hermitian conjugation must be replaced by its modification,

(W] = (W] = (¥| P

Originally, such a replacement has been made and used in the non-degenerate perturbation
theory [19] where the Rayleigh—Schrodinger formalism leads to the recursive definition of
the products E®) . (1] P| (). They contain the energy correction E®*) multiplied by
the unperturbed pseudo-norm which vanishes precisely at the boundary of the applica-
bility of the non-degenerate perturbation formalism. At this boundary a real Bender—
Wu singularity is crossed [20] so that (| P| () — 0 and a pair of the energy levels
merges [21, 22, 23].
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At the two different real energies Fy # FE5 the comparison of the left and right PT
symmetric equations H|yq) = Eili1) and ((¢o| H = ({12 E5 leads to the orthogonality
({(¢2| 11) = 0 so that the inner product with metric P and with the so called quasi-parity
Qn = £1 [21, 22] is the natural option. Formally, the disappearance of the self-overlap
(1| P|¢) = 0 does not imply that the vector |¢) itself must vanish so that the requirement

(Un|Pltom) = Qndmn, m,n=0,1,.... (3.1)

merely “pseudo-normalizes” the solutions (cf. also ref. [24]). A further development of the
theory requires the notion of the completeness of the bound states,

Z |¢n> Qn<wn|7) =1

n=0

as well as an innovated spectral representation of a given non-Hermitian PT symmetric
Hamiltonian with real spectrum,

n=0

It admits various pseudo-Hermitian alternatives and generalizations [25].

3.2 The pseudo-unitarity of the evolution in time

Evolution of bound states in quantum mechanics is mediated (generated) by their Hamil-
tonian, [1)[t]) = exp(—i H t) [1[0]). In the models with Hermitian H = H' the availability
of solutions of the time-independent Schrodinger equation simplifies this rule since all the
eigenvalues E,, remain real and the time-dependence of the separate eigenstates becomes
elementary,

W}n[tb =e ' Bnt Wn[OD

Although a fully consistent and complete physical interpretation of the general pseudo-
Hermitian Hamiltonians is not at our disposal yet, many of their formal features are
not entirely new, mimicking the models with indefinite metric in relativistic physics etc.
Another significant source of insight are particular examples. In many of them, whenever
the real energies F,, are attributed to a non-Hermitian, PT symmetric Hamiltonian with
the property (1.1), we may infer that

[t]) = e PH0]) = [4hn) e En Ot (3, [PL[0]).
n=0

This formula means that the conservation law concerns the innovated scalar product,

(W[][Pl[t]) = (L0]P[¥[0])

so that the time evolution of the system is pseudo-unitary.
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4 An explanation of the reality of spectra

Any eigenstate of H = H' = PHP (e.g., of H(g) in paragraph 2.1) satisfies the same
Schrodinger equation even when it is pre-multiplied by the parity P. Both the old and
new eigenstates belong to the same real eigenvalue E which cannot be degenerate due to
the Sturm—Liouville oscillation theorems. One of the superpositions [i) £P|i) must vanish
while the other one acquires a definite parity. This is the essence of the mathematical proof
of the above-mentioned Schur’s lemma. The wave functions are even or odd and the P
symmetry of wave functions cannot be spontaneously broken, P|n(#)(g)) = £|n() (g)).

The rigidity of the latter rule is lost during the transition to the PT" symmetric models
where any quantity exp(ip) is an admissible eigenvalue of the operator PT since its compo-
nent 7 is defined as anti-linear, 7¢ = —i. In more detail, every rule PT|¢) = exp(ip) |¢)
implies that we have

PTPT|y) = exp(—ip) PT|Y) = |1))
as required. The Schur’s lemma ceases to be applicable. In the basis with the properties

PT|S) = |S) and PT|L) = —|L), the general expansion formula

H = (ISm) Finn(Snl + [Lin)GmnLn| + i[Sm)Cmn(Lnl + @ |Lm)Dm.n(Snl)

m,n=0

contains four separate complex matrices of coefficients. Once it is subdued to the require-
ment H = PTHPT, we get the necessary and sufficient condition demanding that all the
above matrix elements of H = HY must be real,

]:m,n = f:;z,nv gm n — g:;@’ny Cm,n = C:n,na Dm,n = D;kn,n (41)

As long as the similar trick has led to the superselection rules for the spatially symmet-
ric Hamiltonians, we may conclude that the PT symmetric analogue of the direct-sum
decompositions and superselection rules (2.2) is just the much weaker constraint (4.1).

4.1 Re-emergence of Hermiticity via effective Hamiltonians

Whenever we have a state with the PT-parity equal to exp(iy), we may try to shift the
phase and introduce the new state |x) = exp(if)|p). The action PT |p) = e¥|p) is
modified,

PT|x) = PTeP|p) = e OPT ) = ! @=2 |y)

and the PT parity has changed by —23. Via the renormalization § we may achieve that
the new PT phase is zero. Such a normalization convention means that

) = Z |8n) pgj) +1 Z |tm.) pgr:)a
n=0 m=0

where all the coefficients are real. This revitalizes the analogy with formula (2.3). Our
next illustration,

H(z’f,g):p2+a:2+if:n3+g$4
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may use the same matrix elements Q,,; = (t;,| f 23| s;) as above and becomes tractable
by the mere replacements 2 — 7 (2, h;“ — pﬁﬁ and hgf) — 1 pgf)

real Schrodinger matrix equation

F-EI QT P 0
Q G-EI g )T

and the very similar partial solution

. This gives very similar,

1
(=) 4~ o)
D —I—g_EIQp .

We have to emphasize that the final, effective Schrodinger equation is Hermitian,

Ha(0)f™® = B 5, Halo) = <5f Lar ﬂ) (42)

G—ol
In comparison with the recipe of paragraph 3.2 the only difference is in the sign of the
correction term. This makes the connection between the Hermiticity and PT symmetry
particularly tight. Both the Schrodinger equations (2.4) and (4.2) are Hermitian and give
the (different) real spectra E(p) at any p. Both these reduced Schrodinger equations
prove insensitive to the change of the sign of the coupling matrix €2 but a return to the
original Schrédinger equations reveals that the replacement 2 — —( is not an equivalence
transformation as it changes the wave functions.

4.2 The generalized metric operators P

One has to impose the selfconsistency condition (2.5) but it is clear that this cannot give
any complex roots E(FE) in the Hermitian case. In contrast, they may freely emerge in
the non-Hermitian setting so that the PT symmetry is less robust than Hermiticity.

All the other parallels between the Hermitian an PT symmetric models are more
straightforward. Once we work just with the effective Hamiltonian (which is always
Hermitian), many phenomenologically oriented conclusions concerning the Hermiticity or
pseudo-Hermiticity of the full, original Hamiltonian will only depend on the subtle details
of an overall energy or rather p-dependence of our model-space Hamiltonian Heg(0). In
this sense, the PT symmetry may be considered to be just a very special case of the
pseudo-Hermiticity.

Let us now return to our original problem once more. Why do the PT" symmetric
Hamiltonians have real energies? The above explanation relies on the Hermiticity of
Hq(0), guaranteeing that all the auxiliary E,(¢) are real. The discussion is reduced
to the selfconsistency (2.5) and to the reality/complexity of its roots. In this sense the
whole parallel between the Hermitian and non-Hermitian coupling of the individual sub-
Hamiltonians F' and G is based on the mere matrix structure of the Schrodinger equation.
Its partitioned form

F-FI aA U
< Af G—E1>'<u7>_ (4.3)
represents simply the Hermitian case at a = 1 and the PT symmetric case at a = —1.

Thus, the operator P need not be parity. As long as our previous analysis did not depend
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on this interpretation, the real energies may be expected to emerge, following the same
idea of the effective Hermitization, from the other matrix structures of H.

We may admit, for example, that the block A is not a real matrix at all. One can imagine
that the complez (and Hermitian or even merely PT symmetric) sub-Hamiltonians F' and G
would also lead to the real spectra, at least in the limit of the sufficiently small complex
coupling matrices A.

Another type of generalization was present in the original Feshbach’s proposal [12]
where the upper partition F' is the most relevant part of the Hilbert space (called “model”
space) spanned just by a few most important elements of the basis. The other partition
is usually expected to contribute to the observable quantities as a correction. Thus, one
might work with the two partitions of different size, dim F' # dim G.

Last but not least, one could consider a triple or multiple partitioning which would
generalize eq. (4.3). An explicit construction of this type may be found, e.g., in our recent
remark [26].

5 Discussion

5.1 What happens after a spontaneous breakdown of PT symmetry

A puzzle emerges when the non-Hermiticity grows and certain doublets of real energies
merge and form, subsequently, complex conjugate pairs. Explicit examples of such a pos-
sibility range from the PT symmetric square well on a finite interval [27] up to many
quasi-exactly solvable models [28] and virtually all the shape invariant potentials on the
whole real line [29].

Let us recollect the harmonic oscillator example H = p? +12+ G /r? of ref. [21] and the
two possible forms of its energy spectrum. At G > —1/4 one encounters the purely real
and discrete levels Ey =4n+2—-2Q~ withy = /-G —1/4>0and n=0,1,.... These
levels (distinguished by their quasi-parity Q = +1) are to be compared with the complex
conjugate pairs Ey = 4n+ 2 — 24 Q) § which replace the above set at the strongly negative
coupling G < —1/4in § = /—G — 1/4 > 0. We see that once we remove the constraint
G > —1/4, the PT symmetry of the wave functions breaks down for all the levels at once,
at G = —1/4 [29].

In such a context let us now assume that the solution of a given non-Hermitian
Schrodinger equation gives at least two energies which are mutual complex conjugates,

Hppy) = Eloy),  Hlpo) = E*[v_). (5.1)

We may re-write these two Schrédinger equations in their respective Hermitian conjugate
form with Hf =P H P acting to the left,

(4| PH =E"(4|P,  (W-|PH=E({Y_|P.
Out of all the possible resulting overlaps, let us now recollect the following four,

(el PHpy) = E* (4| Plyg), Q4| PHIPy) = E ([ Ply),
(W |PH[p-) =E* - |Ply-),  @-|PH[P-)=E-|[Plp-).
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Their comparison suggests that for £ # E* the self-overlaps must vanish,

(V4| Plpy) =0, (W_|Plp_)=0.

We must extend the above rule (3.1) and complement it by an off-diagonal pseudo-
normalization

(Wi Plo-) =T W-|Plp-) " =c (5:2)

with any suitable ¢ € C.

5.2 The pseudo-norm and its conservation

For the sake of simplicity let us assume that the PT symmetry is broken just at the two
lowest states (cf. the examples [27, 14]). Besides the above-mentioned modification of the
orthogonality relations, one has to change the first two terms in the decomposition of unit,

T=lpe) 2 W IP + [90) — alP + 3 ) QulinlP.
n=2

This is a new form of the completeness relations. The parallel spectral decomposition of
the Hamiltonian in question contains the similar two new terms,

E E* >

n=2

Finally, the pseudo-unitary time dependence of wave functions acquires the following new
compact form,

i) = e ol = (1) B P )+ (1) L P

+ ) [wn) e B O (4, [Pl[0]).

n=2

The value of the scalar product is conserved in time,

(WIEPY[E]) = (L[0]P[[0]).

A weakened form of the Stone’s theorem could be re-established for the pseudo-unitary
evolution allowing non-Hermitian Hamiltonians H = H*. We see that this may be done
not only in the PT symmetric systems characterized by the real spectra but also in the
domain of couplings where this symmetry is spontaneously broken. A parallel to the
unbroken case is established. As long as the vanishing self-overlaps ((¢)[)) = 0 cease to
carry any information about the phase and scaling of [¢), the complexified pseudo-norm
may be re-introduced via the off-diagonal rule (5.2) if needed. In the light of egs. (5.1)
which indicate that we may choose [¢)_) = PT|t4), we may drop the unit operators
P? =1 from all the overlaps and conclude that our definition of the inner product should
be rewritten in the form

((Wly') = (W T W), (5.3)
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where the superscripted arrow indicates that the antilinear operator 7 should be under-
stood as acting, conventionally, to the right. This makes this more universal definition
a bit clumsy. Fortunately, whenever the PT symmetry is not broken, this new prescription
is equivalent to the old one and can replace it in the orthogonality relations (3.1) etc.

6 Summary

In the current literature we are witnessing an increase of interest in the non-Hermitian
Hamiltonians exhibiting PT symmetry and combining promising features (e.g., a “non-
robust” existence of real spectra) with several unanswered questions. We motivated our
present considerations, mainly, by the apparent lack of any clear probabilistic interpreta-
tion of wave functions.

Mathematically, it is reflected by the non-unitarity of the time evolution and by the
concept of quasi-parity ¢ = 41 introduced via a few examples and specified as a cer-
tain “analytic continuation” of the ordinary quantum number of parity. On the spiked
harmonic oscillator we illustrated its role of a physical criterion which distinguishes be-
tween the quasi-odd and quasi-even solutions. In a parallel to the Hermitian picture we
eliminated the latter states from the “relevant” Hilbert space using the standard Feshbach
projection method.

A formal support for the latter conjectured transition H — H.g may be seen in a ne-
cessity of suppression of the indeterminate character of the pseudo-norm within physical
space. This has been amply rewarded. A deep connection between the Hermitian and
PT symmetric H has been found in the shared Hermiticity of their projected forms Heg.
The Heg of the respective Hermitian and PT symmetric origin differs just by the sign
«a = +£1 of the correction term.

We hope that we have answered our original question: The non-Hermitian PT symmet-
ric quantum mechanics seems to find, in its specific and Hermitian projected form, a fairly
natural interpretation. We have reached a new level of understanding of what happens
in the non-Hermitian systems. There seems to exist a certain natural boundary of the
domain D of parameters in H. In its interior the energies stay real. In the other words,
the “non-obligatory” PT symmetry of the wave functions themselves becomes (people
usually say spontaneously) broken on the boundary of D. The algebraic manifestation of
the crossing of this boundary (the pseudo-norm vanishes) is reflected by the disappearing
roots in the selfconsistency or graphical rule (2.5).
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