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Abstract

The method of multiple scales is used to introduce a small-time scale into the non-
linear diffusion equation modelling the spreading of a thin liquid drop under gravity.
The Lie group method is used to analyse the resulting system. An approximate group
invariant solution and an approximation to the waiting-time is obtained. A mathe-
matical description of a spreading drop with non-infinite contact angle is obtained.
This application to determining an approximation to the waiting-time is novel as it
combines the method of multiple scales and Lie groups.

1 Introduction

The non-linear diffusion equation modelling the spreading of a thin viscous liquid drop
under the influence of gravity has been determined by Momoniat et. al. [14] and is given
by

∂h

∂t
=
1
3r
∂

∂r

(
rh3∂h

∂r

)
. (1.1)

If we let R(t) be the radius of the liquid drop at time t, then

R(t) =
(
1 +
16
9
t

) 1
8

(1.2)

where the group invariant solution, conserving the total volume of the liquid drop, admit-
ted by (1.1) is given by

h∗(t, r) =
1

R2(t)

(
1− r2

R2(t)

) 1
3

. (1.3)

The waiting-time is defined as the time taken for the free surface of a liquid drop to
rearrange itself before the drop begins to move. Waiting-time phenomena have been
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investigated by Kath and Cohen [12] using perturbation techniques. We note from (1.2)
that R(0) = 1. In this paper the waiting-time satisfies the condition

R∗(T ) = 1, (1.4)

i.e. the drop starts to move only when the radius is 1, where R∗(t) is a radius to be
determined. In order to investigate the waiting-time we introduce a smaller time scale
using the method of multiple scales (see e.g. [15]). We introduce new variables by defining

t0 = t, t1 = εt, ε� 1. (1.5)

The time-derivative can then be rewritten as
∂

∂t
=

∂

∂t0
+ ε

∂

∂t1
(1.6)

and (1.1) is recast as

∂h

∂t0
+ ε

∂h

∂t1
=
1
3r
∂

∂r

(
rh3∂h

∂r

)
. (1.7)

We use the Lie group method to determine an approximate solution admitted by (1.7) of
the form

h(t0, t1, r) = h0(t0, t1, r) + εh1(t0, t1, r) + · · · . (1.8)

Substituting (1.8) into (1.7) and separating by coefficients of ε we obtain the system

∂h0

∂t0
=
1
3r
∂

∂r

(
rh3

0

∂h0

∂r

)
, (1.9)

∂h1

∂t0
+
∂h0

∂t1
=
1
3r
∂

∂r

(
r
∂

∂r

[
h3

0h1

])
. (1.10)

The method of multiple scales is traditionally used to get rid of secular terms in a straight-
forward perturbation. Baikov and Ibragimov [3] have used the method of multiple scales
to extend the notion of approximate symmetries as introduced by Baikov et. al. [1, 2].
Another approach is that of finding approximate conditional symmetries admitted by the
model equation as presented by Mahomed and Qu [13]. In this paper we use the approach
adopted by Fushchich [10], M. Euler [7] and N. Euler [8, 9]. In this paper the application
of this approach is novel. We are using this method to introduce a smaller time scale into
the non-linear diffusion equation modelling the spreading of the liquid drop under gravity
only. This introduces a new parameter which will allow us to get an approximation to
the waiting-time. In Section 2 we use the Lie group method to solve the system given
by (1.9)–(1.10). An approximation to the waiting-time, T , is calculated in Section 3.
Concluding remarks are made in Section 4.

2 Lie group analysis

In this section we firstly discuss the application of the Lie group method to systems of
equations. A Lie point symmetry generator for the system (1.9)–(1.10) is given by

X = ξ1∂t0 + ξ
2∂t1 + ξ

3∂r + η1∂h0 + η
2∂h1 (2.1)
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where ξi = ξi(t0, t1, r, h0, h1), i = 1, 2, 3 and ηj = ηj(t0, t1, r, h0, h1), j = 1, 2. The
functions ξi and ηj are calculated by solving the determining equations

X [2]

(
∂h0

∂t0
− 1
3r
∂

∂r

(
rh3

0

∂h0

∂r

))∣∣∣∣
(1.9),(1.10)

= 0, (2.2)

X [2]

(
∂h1

∂t0
+
∂h0

∂t1
− 1
3r
∂

∂r

(
r
∂

∂r

[
h3

0h1

]))∣∣∣∣
(1.9),(1.10)

= 0. (2.3)

The second prolongation, X [2] of X is defined by

X [2] = X + ζ11∂h0t0
+ ζ12∂h0t1

+ ζ13∂h0r
+ ζ21∂h1t0

+ ζ23∂h1r
+ ζ133∂h0rr

+ ζ233∂h1rr
, (2.4)

where

ζ1i = Diη
1 − (Diξ

j)
∂h0

∂xj
, (2.5)

ζ2i = Diη
2 − (Diξ

j)
∂h1

∂xj
, (2.6)

ζ133 = D3ζ
1
3 − (D3ξ

j)
∂2h0

∂r∂xj
, (2.7)

ζ233 = D3ζ
2
3 − (D3ξ

j)
∂2h1

∂r∂xj
. (2.8)

The repeated index, j, in (2.5)–(2.8) implies summation where x1 = t0, x2 = t1 and
x3 = r. The total derivatives are given by

D1 = Dt0 = ∂t0 + h0t0
∂h0 + h1t0

∂h1 + ht0t0∂h0t0
+ · · · , (2.9)

D2 = Dt1 = ∂t1 + h0t1
∂h0 + h1t1

∂h1 + ht0t1∂h0t0
+ · · · , (2.10)

D3 = Dr = ∂r + h0r∂h0 + h1r∂h1 + ht0r∂h0t0
+ · · · . (2.11)

The interested reader is referred to [4, 16]. The determining equations given by (2.2)
and (2.3) can be separated out by derivatives of the dependent variables h0 and h1. We
find that the Lie point symmetry generators admitted by the system (2.2)–(2.3) are infinite
dimensional and given by

X = (t0B2 +A2(t1)) ∂t0 +A1(t1)∂t1 +B1r∂r − 13(B2 − 2B1)h0∂h0

+
(
1
3
h1(2B1 + 2B2 − 3A1t1

)− 1
3
h0A2t1

)
∂h1 , (2.12)

where Bi, i = 1, 2 are arbitrary constants and Aj = Aj(t1), j = 1, 2. To be able to proceed
further we make the assumption that

A1(t1) = 0, A2(t1) = A2 = const. (2.13)

The group invariant solutions for h0 and h1 corresponding to the Lie point symmetry
generator (2.12) are calculated by solving

X (hi − Φi(t0, t1, r))|hi=Φi(t0,t1,r) = 0, i = 0, 1. (2.14)
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The resulting first-order quasi-linear partial differential equations can be solved to give

h0(t0, t1, r) = (A2 + t0B2)
2B1−B2

3B2 F (k1, k2), (2.15)

h1(t0, t1, r) = (A2 + t0B2)
2(B1+B2)

3B2 G(k1, k2), (2.16)

k1 = t1, k2 = r(A2 + t0B2)
−B1

B2 . (2.17)

By substituting (2.15)–(2.17) into (1.9) and (1.10) we obtain the following system of
second-order non-linear partial differential equations:

k2(B2 − 2B1)F + 3k2
2B1

∂F

∂k2
+ 3k2F

2

(
∂F

∂k2

)2

+ F 3

(
∂F

∂k2
+ k2

∂2F

∂k2
2

)
= 0, (2.18)(

3k2
2B1 + F 3 + 6k2F

2 ∂F

∂k2

)
∂G

∂k2
+ k2

(
F 3∂

2G

∂k2
2

− 3 ∂F
∂k2

)

+G

(
−2k2(B1 +B2) + 6k2F

(
∂F

∂k2

)2

+ 3F 2

(
∂F

∂k2
+ k2

∂2F

∂k2
2

))
= 0. (2.19)

The Lie point symmetry generators admitted by the system (2.18)–(2.19) are determined
in a similar manner as indicated above. We find that the Lie point symmetry generator
admitted by this system is given by

Y =
(
M1 − 53k1M2

)
∂k1 −M2k2∂k2 −

2
3
M2F∂F +M2G∂G, (2.20)

where Mi, i = 1, 2 are arbitrary constants. The group invariant solutions F and G
admitted by the Lie point symmetry generator (2.20) can be determined by solving

Y (F − Γ1(k1, k2))|F=Γ1(k1,k2) = 0, Y (G− Γ2(k1, k2))|G=Γ2(k1,k2)
= 0. (2.21)

The resulting system of first-order quasi-linear partial differential equations can be solved
to give

F (k1, k2) = (5k1M2 − 3M1)
2
5P (z), (2.22)

G(k1, k2) = (5k1M2 − 3M1)−
3
5Q(z), (2.23)

z = k2 (5k1M2 − 3M1)
− 3

5 . (2.24)

Substituting (2.22)–(2.24) into (2.18) and (2.19) we obtain the system of second-order
non-linear ordinary differential equations

z(B2 − 2B1)P (z) + 3z2B1P
′(z) + 3zP (z)2P ′(z)2

+ P (z)3
(
P ′(z) + zP ′′(z)

)
= 0, (2.25)

−6zP (z)(M2 −Q(z)P ′(z)2
)
+ z(−2(B1 +B2)Q(z)

+ 3z(3M2P
′(z) +B1Q

′(z)) + P (z)3(Q′(z) + zQ′′(z))

+ 3P (z)2(2zP ′(z)Q′(z) +Q(z)(P ′(z) + zP ′′(z)) = 0. (2.26)
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We know from [14] that (2.25) admits a solution of the form

P (z) = a1

(
1− y2

) 1
3 . (2.27)

We look for solutions for Q(z) of the form

Q(z) = a2

(
1− y2

)a3 . (2.28)

The system (2.25)–(2.26) admit solutions of the form (2.27) and (2.28) provided

a3 = −2
3
, B1 =

2
9
a3

1, B2 =
16
9
a3

1, M2 = −8
9
a2

1a2. (2.29)

The group invariant solutions for h0 and h1 are then given by

h0(t0, t1, r) = a1V
−1(t0)W 2(t1)

(
1− r2

V (t0)W 6(t1)

) 1
3

, (2.30)

h1(t0, t1, r) = a2V
3(t0)W−3(t1)

(
1− r2

V (t0)W 6(t1)

)− 2
3

, (2.31)

V (t0) =
(
A2 +

16
9
a3

1t0

) 1
4

, (2.32)

W (t1) =
(
−40
9
a2

1a2t1 − 3M1

) 1
5

. (2.33)

We impose the condition lim
t1→0

h0(t0, t1, r)→ h∗(t0, r), then

a1 = 1, A2 = 1, M1 = −1
3
. (2.34)

Therefore

h0(t0, t1, r) =
(
R2(t1)
R1(t0)

)2 (
1− r2

R2
1(t0)R

6
2(t1)

) 1
3

, (2.35)

h1(t0, t1, r) = a2

(
R2

1(t0)
R2(t1)

)3 (
1− r2

R2
1(t1)R

6
2(t1)

)− 2
3

, (2.36)

R1(t0) = R(t0) =
(
1 +
16
9
t0

) 1
8

, (2.37)

R2(t1) =
(
1− 40

9
a2t1

) 1
5

. (2.38)

Equations (2.35)–(2.38) represent an approximate group invariant solution of the form
(1.8) admitted by (1.7).
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3 Approximation to waiting-time

To get an approximation to the waiting-time we substitute (2.35)–(2.38) into (1.8) and
then separate terms to first order in ε we find that an approximate group invariant solution
admitted by (1.7) is given by

h(t, r) =
1

R2(t)

[(
1− r2

R2(t)

) 1
3

+ εa2

(
1− r2

R2(t)

)− 2
3

]
. (3.1)

We firstly calculate the new radius R∗(t) such that

h(t, R∗(t)) = 0. (3.2)

We find that

R∗(t) = R(t)
√
1 + a2ε. (3.3)

Imposing (1.4) on (3.3) we find that

T =
9
16

(
(1 + a2ε)−4 − 1) . (3.4)

Taking (3.4) to first order in ε we obtain

T = −9
4
a2ε, a2 < 0. (3.5)

No restriction is placed on the constant a2. Since a2 < 0, (3.3) places a restriction on the
values that a2 can take, i.e.

−1
ε
< a2 < 0. (3.6)

The solution (3.1) is plotted in Fig. 1. The case when ε = 0 is plotted in Fig. 2. We
note that the introduction of a small-time has changed the height and slope of the free
surface. When the small-time is included the initial height of the drop is smaller than one.
Also, the angle

∂h∗

∂r

∣∣∣∣
r=R(t)

�= ∂h

∂r

∣∣∣∣
r=R(t)

. (3.7)

In fact

∂h∗

∂r

∣∣∣∣
r=R(t)

= −∞, ∂h

∂r

∣∣∣∣
r=R∗(t)

= − 2
√
1 + a2ε

(a2ε)
2
3R3(t)

. (3.8)
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4 Concluding remarks

The approach taken in this paper to determine an approximation to the waiting-time is
novel. It combined both the method of multiple scales and Lie groups. Three important
results are obtained in this paper. Firstly, we have found an approximation to the waiting-
time which is of concern in the engineering of coating flows. Delays in the flattening of the
drop need to be taken into account during manufacturing processes. Secondly, we have
found that the contact angle of the initial profile does not have to be infinite for the drop
to move. This is consistent with observations where not all spreading drops have infinite
contact angles (see e.g. [5, 6, 11]). Thirdly, the effect of waiting-time on the radius of
the liquid drop has been determined. The difference in radii has been plotted in Fig. 2.
The delay caused by the waiting-time significantly affects the radius of the liquid drop.
This can be seen from Fig. 2 where the difference between the two radii, (1.2) and (3.3),
increases over time. We have obtained a parameter a2 in our approximate solution (3.1)
and (3.3). This constant can be determined from experiment.

Figure 1. Plot of the (3.1) where a2 = −50 and ε = 0.01. T is calculated from (3.5) as T = 1.125.

Figure 2. Plot of R(t)−R∗(t) for t ∈ [0, 20].
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