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Abstract - In this paper, some new properties of compatibility 
classes of a finite set endowed with a suitable compatibility 
relation are described. An algorithm to compute maximal 
compatibility classes is constructed and an application of 
maximal compatibles to network segmentation and 
decentralization is demonstrated. 
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I. INTRODUCTION 

A relation on a set which is reflexive and symmetric is 
called a compatibility relation (CR)  It is difficult to trace 
since when the profound mathematics of compatibility 
relation came into existence. To our knowledge, Kurepa [12] 
seems to be the earliest full- blown mathematical exposition 
on the study of reflexive symmetric relations and graphs. 
Since then, a number of works ([16], [23], [15], [21], [5], [6], 
[7], [8], [11], [17], [4], [20], [14] and [19]; etc.), dealing 
with fundamentals of compatibility relation as well as its 
applications, have appeared. 

However, by now, it can be said that the actual import of 
compatibility relation has gone far beyond its ordinary 
linguistic connotation and even that of its mathematical 
characterization. It has found several applications in 
different fields of knowledge. Essentially, from application 
points of view, compatibility relation is useful in solving a 
class of minimization problems, particularly when the 
problems are incompletely specified: 

(a) In switching theory, particularly for incompletely 
specified problems [16, 19]; 

(b) In incompletely specified sequential machines 
(ISSM) for reduction of the number of internal states 
[6]; 

(c) In designing of a class of digital control Units [2, 7]; 
(d) In graph theory [8]; 
(e) In solving some combinatorial problems, such as 

scheduling of traffic control [6]; 
(f) In phonology [17]; 

just to mention a few. 

In this paper, we propose an alternative algorithm for 
computing MCCs and its application to network 
segmentation and decentralization. 

II. COMPATIBILITY AND ITS 
CHARACTERISTIC PROPERTIES 

Let  be a set with  elements, usually annoted - set. A 
family  of non- empty subsets of  is called a 
covering of if . A cover of a finite set  is 
called minimal if none of its proper subclasses covers S. 
Note that  are not necessarily disjoint and hence, it may 
not define a partition. 

Notationally, a compatibility relation is sometimes 
denoted . Also, if  be a compatibility relation on a set , 
then  are called R-compatible  or simply compatible 
to each other if  i.e., x is an R-relative of  y . Note that 

compatibility relation, not being necessarily transitive, may 
not define a partition. However, it does define a covering 
([18], for details). Essentially, a compatibility relation 
defined on a finite set decomposes the set into its possibly 
pairwise non-disjoint subclasses, henceforth called 
compatibility classes (CCs). It follows that the elements of a 
CC are pairwise compatible (PC). Note also that every 
subclass of  may not be a CC, that is, elements of such 
subclasses are non- pairwise compatible (NPC). 

Let  be an -set  and  a compatibility 
relation on . The ’s may be representing nodes in a 
network system or states in a finite machine or vertices in a 
graph. A subclass  is called a maximal compatibility 
class (MCC) if any element of  is compatible to its every 

other element and no other element of   is compatible 
to all the elements of . Equivalently, a compatibility class 
of  is maximal if it is not a proper subclass of any other 
compatibility class of .  Graphically, MCCs for a given 
compatibility relation  can also be viewed as the largest 
complete polygons in the graph of . A polygon in which 
every node is connected to its every other node is called a 
complete polygon.  A triangle is always a complete polygon 
and, for a quadrilateral to be a complete polygon, we need 
both the diagonals. Note that a complete polygon is a CC, 
which need not be an MCC, unless it satisfies the criteria of 

2013 International Conference on Information Science and Technology Application (ICISTA-13)

Published by Atlantis Press, Paris, France. 
© the authors 

114



being so. Also, any element of the set that relates only to 
itself is an MCC, and any two elements of  which are 
compatible to one another but to no other elements of  form 
an MCC. 

The following results hold: 

(i) There must exist a family  of non-
empty CCs of  such that .  

(ii) There must exist a family  of 
MCCs of  such that . Moreover, the 
least number of ’s that cover  constitute a 
minimal cover of . It is easy to see that the 
number of minimal covers  may be more than one. 

(iii) Every element of  must be an element of at least 
one of the MCCs of . Also, whenever , then 

 must be a subclass of at least one MCC of 

. Note, however that, in general, for a pair of 
compatible nodes, the inclusion of one of the 
nodes in an MCC does not necessarily imply the 
inclusion of the other. 

(iv) Only CCs can be MCCs. More explicitly, for any 
compatibility class of , either  itself is an 
MCC or  is a subclass of some other MCC of . 
It follows that a CC of  with a maximum 
cardinality is an MCC. Note that there may be 
more than one CC of the same cardinality and 
none or some or all of them are MCCs  

(v) Let  be a family of all MCCs of , 
then ’s are pairwise incomparable with respect 
to  (subsethood). 

(vi) has at least two MCCs if and only if, for 
 such that , , 

where  is an MCC of . 

(vii) 1  ≤ {MCCs}  ≤ n. , where # denotes cardinality 
of a set.  
Proof. The number of MCCs is exactly 1 or n 
according as all the nodes are connected to each 
other or no two nodes are connected.       

(viii) #{MCCs} is directly proportional to #{CCs}, and 
inversely proportional to #{connections amongst 
the states of an ISSM}. 
Proof follows from definitions given above       

(ix) #{MCCs}  ≤ #{CCs} ≤ #S=#{CMCCs}. 
Proof follows from definitions given above. 

(x) If there exist MCCs containing 1 or 2 elements 
alone, then they must be part(s) of every (minimal) 
cover.   
 

Let us consider an example to bring some of the aforesaid 
observations home. 

Let S be , and  be a compatibility 

relation on  whose  simplified graph of  is represented in 
figure1below. 

 

Figure 1: Simplified graph of  (Since  is reflexive and 
symmetric, loops at nodes are not drawn and only one 
of  and   is drawn). 

 It may be observed that .From 
the diagram, it follows that  

and { }  are the CCs or complete 

polygons of . The class , for example, is not a CC 
of . Clearly, and { } 
are the only MCCs or the largest complete polygons, and 
these classes define a unique minimal covering of . 
Observe that  holds, and  belongs to both and , 
but belongs to  and does not belong to . 

Theorem: Corresponding to every minimal cover, there 
exists a unique compatibility relation. 

Proof. Let R be a compatibility relation on an n-set S, and 

},..,.,{ 21 kMMM=Γ be a minimal cover of S. Now, 

since each element of Γ∈iM is R-related to every other 

element of iM , and not R-related to all the elements of 

jiM j ≠, , it follows that all the elements of ii MM × are 
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It is immediate to see that R is a compatibility relation. Let 
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after leaving out loops at each node and admitting only one 
of symmetric pairs. Moreover,  an MCC with a single 
element is to be included in the end.  

It is easy to see that the simplified graph of R is the figure1 
of section II. The converse of this results is not true can be 
seen from (ii). Note that this theorem has a precedent in 
partition calculus.  

 

III. THE COMPATIBILITY MATRIX (CM) OF A 
COMPATIBILITY RELATION R AND 
CONSTRUCTION OF AN  ALGORITHM TO 
COMPUTE CCs/ MCCs 

Abstracting from [16], [5] and [1], we present a simplified 
algorithm to compute CCs/ MCCs as follows. 

In order to construct the CM of , for each pair of nodes 
, a one (1) is assigned to it if  and, a zero  if it 

is not the case that . Consequently, the table for the 

CM has an all – 1 leading diagonal (due to reflexively of ). 
Moreover, since the CM of  is symmetric, it is sufficient to 
tabulate only the elements of its lower triangular parts. 
However, for a better comprehension, we will consider the 
complete matrix for discussion in this paper. 

Step1: Compute all CMCCs using matrix table (as in [1], 
but without columns for their generators and weights). 

Step2: Begin with the CMCC of row 1. If it is of cardinality 
1 or 2, list it in the column of CCs. The same holds for all 
other rows of the compatibility table. 

Step3: If the CMCC in consideration is of cardinality 
greater than 2, check whether or not there exists a zero (0) at 
any intersection of rows and columns of the submatrix 
generated by the constituent states of that CMCC i.e., the 
submatrix is an all-1 submatrix or not. If the submatrix is 
all-1, list it in the column for CCs. 

Step4: If the matrix in step 3 is not all-1, ignore the 
row(s)and column(s) containing the largest number of zeros  
and list the states which produce the truncated matrix, which 
is an all-1, in the column for CCs. If not, repeat step 4 until 
an all-1 matrix is obtained. In such cases, there may be two 
different CCs. 

Step5: Similar to all other existing algorithms, proceed as 
above for all the rows exhaustively. 

Step6: Once the column of CCs are completed, delete all 
CCs which are proper subsets of some other CC. Also, if 
repeated CCs occur, delete all such CCs except one of them. 
The remaining CCs are distinct MCCs. 

This approach takes care of deleting superfluous states of 
the system, and, in turn, makes the construction of (minimal) 
cover simpler. 

The significance of the proposed approach is many-fold. For 
example, a system designer would preferably work for a 
compatibility relation  on a given  which gives rise to a 
family of minimum number of MCCs that covers S. 

For an illustration of the above algorithm, let be a 
compatibility relation on a set defined 
by the compatibility matrix (CM) as follows (note that the 
elements of a CMCC may be PC or NPC): 
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or increase in the number of users sharing it. This can 
reasonably slow down the performance of the network 
[10]. 

More often than not, more data are required to be added to 
a shared network. As a result, performance deteriorates 
due to competition for Ethernet bus by users (competitors) 
of the shared network [3]. 

In the event of problems occurring with too many nodes 
in the same collision domain, suitable network 
segmentation is introduced to reduce collision, 
retransmission and contention for bandwidth [3]. Usually, 
in a segmented network, most of the communication 
activities are performed by the subnets. At times, the sub-
network gets flooded with messages reporting status and 
throughput statistics to the Network Monitoring Centre 
(NMC) programs, and as users’ traffic increases, larger 
network capacity is consumed. Not very frequently, lack 
of provision for coordinating and analyzing performance 
measures at terminals in the sub- network as well as at the 
host tell upon the efficiency of the network segmentation 
method (NSM). 

Network segmentation is an act of splitting a computer 
network into subnets comprehended as network segments 
or network layers. A segmentation of a congested network 
consists in its decomposition into smaller segments which 
give rise to a sort of partition. Essentially, a  physically 
separate path (not intersecting with another path) for each 
pair of communicating ends needs to be built, which tells 
upon efficiency as well as costing. 

 We propose that the notion of covering instead of 
partitioning a congested network may be applied to obtain 
a more compact and cost effective network. Thus, in order 
to achieve a competing segmentation of a congested 
network, a suitable compatibility relation, instead of an 
equivalence relation, needs to be defined. This, in turn, 
gives rise to a decomposition of the network into 
(maximal) compatibility classes (segments) whose union 
is its minimal covering. It is observed that this procedure 
does not disconnect any segment or sub-network from the 
entire network, since the pairwise intersection of these 
(maximal) subnets is non- empty. 

Essentially, a compatibility relation based segmentation 
procedure segments a congested network into subnets 
(maximal compatibility blocks). This, in turn, structures 
the network in such a way that no node of any given 
subnet communicates to every node of another subnet. As 
a result, the communicating network is reasonably 
minimized without adversely affecting its goal. In fact, 
when the network is segmented, there is a tradeoff 
between time and quality data. That is, if a particular node 

 in a subnet  does not relate to a node  in subnet , 

but needs information from node , then time is traded 

off to obtain that information from , whenever  relates 
to node  in . This is because the rate of packet delivery 
from  (source) to  (destination) is equal to the rate of 

packet delivery from  to  plus some time . 
However, there is a compensation for this delay. The 
compensation being that the maximal compatibility class 
(maximal subnet) through this node  (source) lowers its 

throughput to meet that of a (possible) congested path. 
This type of congestion control is similar to rate- based 
technique. 

Further, it is observed that  above is a link from subnet 
 to subnet . Therefore, such  in any subnet supports 

high bandwidth and low latency (the amount of time taken 
for a packet to travel from source to destination) between 
subnets  and , since  can be reached.  

A schematic representation of how a CR-based network 
congestion control procedure works: 

Let N be a network system on which a compatibility 
relation is defined with compatibility 

classes ,...,2,1; =kCk . 

Label  as (links) if for some compatibility classes 
and , we have , for some i, j, k. 

These ’s in N form its backbone. 

Now, the packets are routed through the network. It is 
important to observe that the performance measure of a 
refined network will be a function of the cardinality of the 
set of  ’s. 

Further, there exists at least one node in which 
maintains a separate queue for any other subnet , and a 

separate queue for nodes in itself. 

Denote the first queue as  and the second queue as . 
Then any node within a compatibility class (subnet)   
maintains a separate for each  in compatibility set  
and maintains q1 for nodes in any other compatibility 
class . Also, it follows that each  maintains  

for some  (i j) in N. Therefore, communication flow 

can be re-channelized and assigned to the appropriate ’s 
with the information about the network traffic and 
topology. In fact, accounting for the instantaneous queue 
length between ’s, controller (which implements the 
electronic circuitry required to communicate using a 
specific physical layer and data link layer standard, such 
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as Ethernet, Wi-Fi, etc.) allocates packets to the least 
congested link. 

The following diagram illustrates the concept described 
above. 

 

       
Fig.2:  

The diagram (fig. 2) represents the links and queues. 

 

 

 

V. APPLICATION OF MAXIMAL 
COMPATIBLES TO NETWORK 
DECENTRALIZATION 

In a decentralized network system, issues pertaining to 
distribution of control versus optimum communication 
flow have been drawing attention since long: 
manageability becomes constrained as the system grows 
larger ([9], [23]). 

A decentralized network is a scheme that allocates 
resources (both hardware and software) to each individual 
work station. It aims at connecting users and resources in 
a transparent, open, and scalable manner. This is 
achieved by creating multiple locations that support 
different operating systems in order to avoid occurrences 
of a complete neutralization caused by any form of attack 

([22] provides a diagrammatic description of a 
decentralized network). 

Usually, in a decentralized network, no node has complete 
information about the states. A node makes decision 
based only on local information it has. This, in turn, 
makes diagnosing problems somewhat difficult in the 
event whereby troubleshooting analysis requires 
inspecting communications between nodes. Moreso, the 
far- flung distribution of control tends to make 
decentralized network difficult to manage. 

It is possible that two nodes from different ends on the 
network could try to send data to one another. If no direct 
link exists between these nodes, the time taken to send 
one byte of data will depend on the distance between 
source and destination nodes. Therefore, in a 
decentralized network, wire delay is a bottleneck. Some 
disadvantages of a decentralized network are mentioned 
in [22]. 

In a decentralized network, different segments may 
control and maintain their various activities (work). It 
consists of configured systems such that multiple nodes 
(servers) in the network provide the services used by other 
nodes (clients) of the network. A typical example of a 
decentralized network is one in which nodes (clients) 
utilize different nodes (servers) to carry out their various 
functions ([13] provides many examples) of decentralized 
network. 

Schematically, the graph of a compatibility relation  of 
fig. 1 may be viewed as a decentralized network if, each 
node is a client and a server as well. It is observed that the 
symmetric property of a compatibility relation guarantees 
each node in the graph of  to assume client – server 
functions. Since the topology of , viewed as a 
decentralized network, is identical to a mesh topology, 
there is reasonably enhanced reliability and speed in a 
decentralized network. Also, it is observed that this 
advantage grows significantly when the decentralized 
network is configured with redundant servers (nodes) - 
multiple nodes providing the same service. 

Thus, by applying the notion of MCCs, the distribution of 
control to nodes would be reasonably minimized without 
adversely affecting the goal of network decentralization. 

VI. CONCLUDING REMARKS 

Concluding, it can be emphasized that in a foreseeable 
future, besides in hard sciences like Engineering, 
Computer sciences, etc., in order to model problems in 
soft sciences like biology, economics, sociology, etc., 
which are invariably supposed to deal with a large number 
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of incompletely specified interactions, applications of 
compatibility relation would play an important role. 
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