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Abstract

It is shown how the bilinear differential equations satisfied by Fredholm determinants
of integral operators appearing as spectral distribution functions for random matrices
may be deduced from the associated systems of nonautonomous Hamiltonian equations
satisfied by auxiliary canonical phase space variables introduced by Tracy and Widom.
The essential step is to recast the latter as isomonodromic deformation equations for
families of rational covariant derivative operators on the Riemann sphere and interpret
the Fredholm determinants as isomonodromic τ -functions.

1 Differential equations for Fredholm determinants
in random matrices

In the theory of random matrices, it is known that in suitably defined double scaling limits
the generating functions for spectral distributions are given by Fredholm determinants
of certain integral operators [14, 17, 18, 19]. For example, in the universality class of
the Gaussian Unitary Ensemble (GUE), in the bulk of the spectrum, the probability
of having exactly {m1, . . . ,mn} scaled eigenvalues in the sequence of disjoint intervals
{([a1, a2], . . . , [a2n−1, a2n]} is

E(m1, . . . ,mn) =
(−1)m̄

m1! · · ·mn!
∂m̄τS

∂λm1
1 · · · ∂λmn

n

∣∣∣
λ1=···=λm=1

, m̄ =
∑

j

mj , (1.1)

where τS is the Fredholm determinant

τS := det
(
1− K̂S

)
(1.2)

of the integral operator K̂s : L2(R,C)→ L2(R,C) with the sine kernel

(
K̂Sv

)
(x) =

n∑
j=1

λj

∫ a2j

a2j−1

sin(π(x− y))
π(x− y)

v(y)dy. (1.3)
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Rescaling at the (soft) edge of the spectrum, the corresponding quantity is given by the
Fredholm determinant

τA := det
(
1− K̂A

)
(1.4)

of the operator with the Airy kernel [18]

(
K̂Av

)
(x) =

n∑
j=1

λj

∫ a2j

a2j−1

Ai(x))Ai′(y)−Ai(y)Ai′(x)
x− y

v(y)dy, (1.5)

where Ai(x) is the Airy function. If the measure is taken to be the one associated with
either the Laguerre or Jacobi orthogonal polynomials, rescaling at the (hard) edge leads
to the Fredholm determinant

τB
α := det

(
1− K̂B

α

)
(1.6)

of the operator with Bessel kernel [6, 19]

(
K̂B

α v
)
(x) =

n∑
j=1

λj

∫ a2j

a2j−1

Jα(
√
x)
√
yJ ′

α

(√
y
) − Jα

(√
y
)√

xJ ′
α (

√
x)

2(x− y)
v(y)dy, (1.7)

where Jα(x) is the Bessel function with index α.
It was shown by Tracy and Widom [17, 18, 19], extending earlier results of the Kyoto

school [11], that all these Fredholm determinants can be computed by quadratures in terms
of solutions of certain associated nonautonomous Hamiltonian systems in which the end
points {aj} play the rôle of multi-time deformation variables. Moreover, these Fredholm
determinants may be interpreted as isomonodromic τ -functions [9, 16, 10, 5] in the sense
of [12, 13].
More recently, Adler, Shiota and van Moerbeke [2, 3] have shown that the Fredholm

determinants τA, τB
α satisfy hierarchies of bilinear differential equations with respect to

the endpoint parameters. These follow from combining Virasoro constraints satisfied by
certain associated KP τ -functions with the bilinear equations they also satisfy with repect
to the KP flow parameters {t1, t2, . . .}, evaluated at the zero values of these parameters.
The approach of [2, 3] was based on the application of vertex operators, integrated over
the intervals {[a2j−1, a2j ]}, to suitable “vacuum” KP τ -functions, effecting thereby a con-
tinuous version of Darboux transformations, yielding new KP τ -functions, such that the
Fredholm determinant equals the ratio of the two.
For the Airy kernel, the first equation in this hierarchy may be expressed as

D4
0F

A − 4D1D0F
A + 2D0F

A + 6
(D2

0F
A
)2
= 0, (1.8)

where

FA := ln τA (1.9)

and

Dm :=
2n∑

j=1

am
j

∂

∂aj
, m ∈ N, (1.10)
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while for the Bessel kernel, it is

D4
1F

B
α − 2D4

1F
B
α +

(
1− α2

)D2
1F

B
α +D2D1F

B
α

− 1
2
D2F

B
α − 4 (D1F

B
α

) (D2
1F

B
α

)
+ 6

(D2
1F

B
α

)2
= 0, (1.11)

with

FB
α := ln τB

α . (1.12)

No analogous equations were derived for the sine kernel, although in the special case where
the intervals [a2j−1, a2j ] are chosen symmetrically about the origin, the Fredholm determi-
nant τS may be expressed [14, 19] as a product τB

1
2

τB
− 1

2

of two Bessel kernel determinants.

In the case of a single interval, it is easy to see that equations (1.8) and (1.11) just give
the τ -function form of the Painlevé equations PII and PV , respectively, to which the Tracy–
Widom systems reduce in the case of the Airy and Bessel kernels. It seems reasonable to
expect that analogous results hold for the general case, involving an arbitrary number of
intervals. The purpose of this work is to show how the hierarchies of equations derived
in [2, 3] can in fact be deduced directly from the Tracy–Widom Hamiltonian systems
for both the Airy and Bessel cases, and to also apply this approach to the sine kernel
case. The main step is to recognize that the Hamiltonian systems imply isomonodromic
deformation equations for associated families of rational covariant derivative operators on
the Riemann sphere. It is known [12, 13] that such isomonodromic deformations give rise
to bilinear equations for indexed sets of isomonodromic τ -functions related by Schlesinger
transformations. The fact that for the systems associated with the Airy and Bessel kernels
such equations may be written in terms of a single scalar τ -function is due to the presence
of a pair of conserved quantities, allowing the elimination of the additional variables by
fixing the level sets of these invariants. In the sine kernel case this is not possible, and
the associated bilinear equations therefore involve coupled systems for τS together with
a pair of additional variables (τS

+, τ
S−).

In Section 2, equations (1.8) and (1.11) are first derived directly from the Hamiltonian
systems of [18, 19]. In Section 3, it is shown how the isomonodromic deformation equations
following from the associated Hamiltonian systems may be used to derive the full hierarchy
of τ -function equations for all these cases. In section 4, these results are related to the
rational classical R-matrix approach to isomonodromic and isospectral systems developed
in [1, 8].

2 Deduction of τ -function equations
from the Hamiltonian systems

To establish notation, following [17, 18, 19], we define the quantities:

x2j := 2i
√
λj(I − K̂)−1φ(a2j), x2j+1 := 2

√
λj(I − K̂)−1φ(a2j+1), (2.1a)

y2j := i
√
λj(I − K̂)−1ψ(a2j), y2j+1 :=

√
λj(I − K̂)−1ψ(a2j+1), (2.1b)

x0 := 2
n∑

j=1

λj

∫ a2j

a2j−1

φ(x)(I − K̂)−1ψ(x)dx, (2.1c)
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y0 :=
n∑

j=1

λj

∫ a2j

a2j−1

φ(x)(I − K̂)−1φ(x)dx, (2.1d)

where, for the case of the sine kernel K̂ = K̂S ,

φ(x) :=
sin(πx)

π
, ψ(x) := cos(πx). (2.2)

while for the Airy kernel K̂ = K̂A,

φ(x) := Ai(x), ψ(x) :=
dAi(x)
dx

, (2.3)

and for the Bessel kernel K̂ = K̂B
α ,

φ(x) := Jα(
√
x), ψ(x) := x

dJα (
√
x)

dx
. (2.4)

(An odd number of variables may also occur if we set one of the aj ’s equal to some
fixed constant, say 0 or ∞, and eliminate the corresponding pair (qj , pj).) As shown in
[17, 18, 19], the logarithmic derivatives of the associated Fredholm determinants are given
by:

GS
j :=

∂FS

∂aj
=

π2

4
x2

j + y2
j − 1

4

n∑
k=1
k �=j

(xjyk − yjxk)2

aj − ak
(2.5)

for the sine kernel,

GA
j :=

∂FA

∂aj
= y2

j +
1
4
(x0 − aj)x2

j − y0xjyj − 1
4

n∑
k=1
k �=j

(xjyk − yjxk)2

aj − ak
(2.6)

for the Airy kernel, and

ajG
B
α,j := aj

∂FB
α

∂aj
= y2

j − 1
16

(
α2 − aj + x0

)
x2

j

+
1
4
y0xjyj − 1

4

n∑
k=1
k �=j

ak(xjyk − yjxk)2

aj − ak
(2.7)

for the Bessel kernel.
For use in what follows, we also define the quantities

RS
m := DmFS =

2n∑
j=1

am
j GS

j , m ∈ N (2.8)

for the sine kernel case,

RA
m := DmFA =

2n∑
j=1

am
j GA

j , m ∈ N (2.9)
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for the Airy case and

RB
α,m := DmFB

α =
2n∑

j=1

am
j GB

α,j , m ∈ N (2.10)

for the Bessel case. For all three cases, we define the following sequence of bilinear forms

Pm :=
2n∑

j=1

am
j y2

j , Qm :=
2n∑

j=1

am
j x2

j , Sm :=
2n∑

j=1

am
j xjyj , m ∈ N. (2.11)

As explained below, the {GA
j }’s and {GB

α,j}’s may be viewed as sets of Poisson commu-
ting, nonautonomous Hamiltonians on an auxiliary phase space with canonical coordinates
{x0, y0, xj , yj}, such that the quantities defined in (2.1) satisfy the corresponding systems
of Hamiltonian equations. These equations will then be shown to imply equations (1.8)
and (1.11).

2.1 The Airy kernel system

The system of dynamical equations for this case is given [18] by

∂xj

∂ak
= −1

2
(xjyk − yjxk)xk

aj − ak
, j �= k, (2.12a)

∂yj

∂ak
= −1

2
(xjyk − yjxk)yk

aj − ak
, j �= k, (2.12b)

∂xj

∂aj
=
1
2

n∑
k=1
k �=j

(xjyk − yjxk)xk

aj − ak
+ 2yj − y0xj , (2.12c)

∂yj

∂aj
=
1
2

n∑
k=1
k �=j

(xjyk − yjxk)yk

aj − ak
+
1
2
(aj − x0)xj + y0xjyj , (2.12d)

∂x0

∂aj
= −xjyj ,

∂y0

∂aj
= −1

4
x2

j . (2.12e)

Viewing the aj ’s as multi-time parameters, and the quantities {x0, y0, xj , yj} as canoni-
cal coordinates, this is a compatible system of nonautonomous Hamiltonian equations
generated by the Poisson commuting Hamiltonians {GA

j } defined in (2.6). There is an
additional functionally independent Hamiltonian, defined by

GA
0 := y2

0 − x0 − 1
4
Q0, (2.13)

which also Poisson commutes with all the GA
j ’s. Since G

A
0 is not explicitly dependent on

the parameters {aj}, it follows that it is a conserved quantity. Since all the quantities
{x0, y0, xj , yj} defined in (2.1) vanish in the limit {aj → ∞, ∀ j}, the invariant GA

0 must
vanish on this particular solution. Therefore we may express x0 in terms of the other
variables as

x0 = y2
0 − 1

4
Q0. (2.14)
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The quantity RA
0 defined in (2.9) will just be denoted

R := RA
0 =

2n∑
j=1

GA
j = P0 − 1

4
Q1 +

1
4
y2
0Q0 − y0S0 − 1

16
Q2

0, (2.15)

where (2.14) has been used. In terms of R, equation (1.8) becomes

D3
0R− 4D1R+ 2R+ 6(D0R)2 = 0. (2.16)

It follows from the Poisson commutativity of the Hamiltonians {GA
j }j=1,...,2n that their

Hamiltonian vector fields applied as derivations to R give zero, and hence along any
integral surface of eqs. (2.12), the derivatives of R with respect to the aj ’s are just given
by its explicit dependence on these parameters. This just comes from the Q1 term in
expression (2.15), and therefore we have

∂R

∂aj
= −1

4
x2

j (2.17)

Comparing with (2.12e), this implies that

GA
∞ := y0 −R (2.18)

is a second conserved quantity. Since in the limit {aj → ∞, ∀ j}, both y0 and R vanish,
GA∞ must vanish for all values of the parameters, and therefore the invariant relation

y0 = R (2.19)

is satisfied by this solution. Applying the operators D0, D1 to R, it follows from (2.17)
that

D0R = −1
4
Q0, (2.20a)

D1R = −1
4
Q1. (2.20b)

Eqs. (2.12) also imply that application of D0 to {Q0, S0, x0, y0, Q1} gives

D0Q0 = 4S0 − 2y0Q0, D0S0 =
1
2
Q1 − 1

2
x0Q0 + 2P0, (2.21a)

D0x0 = −S0, D0y0 = −1
4
Q0, (2.21b)

D0Q1 = Q0 + 4S1 − 2y0Q1. (2.21c)

Further application of D0 and D1, using (2.20a), (2.21) and (2.14), therefore gives

D2
0R =

1
2
y0Q0 − S0, (2.22a)

D3
0R = −1

2
Q1 + 2y0S0 − 1

2
y2
0Q0 − 1

4
Q2

0 − 2P0. (2.22b)

Substituting (2.15), (2.20), (2.22b), into (2.16) and using (2.14) shows that all terms
cancel, verifying the equation.



536 J Harnad

2.2 The Bessel kernel system

In this case, the system of dynamical equations is given [19] by

∂xj

∂ak
= −1

2
(xjyk − yjxk)xk

aj − ak
, j �= k, (2.23a)

∂yj

∂ak
= −1

2
(xjyk − yjxk)yk

aj − ak
, j �= k, (2.23b)

aj
∂xj

∂aj
=
1
2

n∑
k=1
k �=j

ak(xjyk − yjxk)xk

aj − ak
+ 2yj +

1
4
y0xj , (2.23c)

aj
∂yj

∂aj
=
1
2

n∑
k=1
k �=j

ak(xjyk − yjxk)yk

aj − ak
+
1
8
(α2 − aj + x0)xj − 1

4
y0yj , (2.23d)

∂x0

∂aj
= −xjyj ,

∂y0

∂aj
= −1

4
x2

j . (2.23e)

This is again a compatible system of nonautonomous Hamiltonian equations generated
by the Poisson commuting Hamiltonians ajG

B
α,j defined in (2.7), provided the Poisson

brackets are defined by

{xj , yk} = 1
aj
δjk, {x0, y0} = −4. (2.24)

There again exist two additional conserved quantities for this case. The first is defined
by

GB
0 := x0 +

1
4
y2
0 + y0 +

1
4
Q1, (2.25)

as may be seen directly by differentiating with respect to the aj ’s, using (2.23). Since all
the quantities appearing in (2.25) vanish in the limit {aj → 0, ∀ j}, this difference must
vanish, and therefore the invariant relation

x0 = −1
4
y2
0 − y0 − 1

4
Q1 (2.26)

is satisfied for this solution. The second conserved quantity is

GB
∞ := y0 + 4

2n∑
j=1

ajG
B
α,j = y0 + 4RB

α,1

= y0 − 1
4

(
α2 + x0

)
Q0 +

1
4
Q1 + y0S0 + 4P0 +Q0P0 − S2

0 , (2.27)

Again, due to the Poisson commutativity of the Hamiltonians defined in (2.7), the Hamil-
tonian vector fields generating the aj deformations when applied to the term RB

α,1 give
zero, and therefore only the explicit dependence of this term upon the parameters need be
taken into account when verifying that differentiation of the sum gives zero. Since all the
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quantities appearing in (2.27) vanish in the limit {aj → 0, ∀ j}, the invariant GB∞ must
also vanish on this particular solution, and we therefore have the relation

y0 = −4RB
α,1 = −4D1F

B
α

=
1
4

(
α2 + x0

)
Q0 − 1

4
Q1 − y0S0 − 4P0 −Q0P0 + S2

0 . (2.28)

The quantities RB
α,1, R

B
α,2 are given by

RB
α,1 = D1F

B
α =

2n∑
j=1

ajG
B
α,j

= − 1
16

(
α2 + x0

)
Q0 +

1
16

Q1 +
1
4
y0S0 + P0 +

1
4
Q0P0 − 1

4
S2

0 , (2.29a)

RB
α,2 = D2F

B
α =

2n∑
j=1

a2
jG

B
α,j

= − 1
16

(
α2 + x0

)
Q1 +

1
16

Q2 +
1
4
y0S1 + P1. (2.29b)

It again follows from the Poisson commutativity of the Hamiltonians {GB
α,j} that the

derivatives of RB
α,1 and RB

α,2 with respect to the parameters are given by their explicit
dependence on these parameters, and hence

D2
1F

B
α = D1R

B
α,1 =

1
16

Q1, (2.30a)

D2D1F
B
α = D2R

B
α,1 =

1
16

Q2. (2.30b)

From (2.23), application of D1 to {Q1, S1, x0, y0} gives

D1Q1 = Q1 + 4S1 +
1
2
y0Q1, D1S1 = S1 +

1
8

(
α2 + x0

)
Q1 − 1

8
Q2 + 2P1, (2.31a)

D1x0 = −S1, D1y0 = −1
4
Q1. (2.31b)

Further application of D1, using (2.20a), (2.31), and (2.26) therefore gives

D3
1F

B
α =

1
16

(
1 +

y0

2

)
Q1 +

1
4
S1, (2.32a)

D4
1F

B
α =

1
16

(
1 +

α2

2
+

y0

2
+

y2
0

8

)
Q1

+
1
2
P1 +

(
1
2
+

y0

8

)
S1 − 1

64
Q2

1 −
1
32

Q2. (2.32b)

Substitution of (2.29b), (2.30), (2.32) into (1.11), and use of (2.28) to replace the term
−4D1F

B
α by y0, and (2.26) to eliminate x0, shows that all the terms cancel, verifying the

equation.
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3 Deduction of the τ -function equations
from isomonodromic deformations

In this section, we show how the full hierarchies of equations derived in [2, 3] may be
deduced from the Hamiltonian systems (2.12), (2.23) and also how the corresponding
hierarchy is deduced for the case of the sine kernel. The key step is to recast these
systems as isomonodromic deformation equations for an associated differential operator in
an auxiliary spectral variable z ∈ P

1, having rational coefficients with poles at the points
{z = aj}, and to interpret the Fredholm determinants τS , τA and τB

α as isomonodromic
τ -functions.

3.1 The Airy kernel isomonodromic system

The Hamiltonian system (2.12) implies that the compatibility conditions

∂Aj

∂ak
=
[Aj , Ak]
aj − ak

, j �= k, (3.1a)

∂Aj

∂aj
= [ajB + C,Aj ]−

2n∑
k=1
k �=j

[Aj , Ak]
aj − ak

, (3.1b)

∂C

∂aj
= [B,Aj ] (3.1c)

are satisfied for the following overdetermined system [9]

∂ΨA

∂z
= XA(z)ΨA, (3.2a)

∂ΨA

∂aj
= − Aj

z − aj
ΨA, j = 1, . . . 2n, (3.2b)

XA(z) := zB + C +
2n∑

j=1

Aj

z − aj
, (3.2c)

where ΨA(z, a1, . . . a2n) is a 2× 2 matrix, invertible where defined, and

Aj := −1
2

(
xjyj y2

j

−x2
j −xjyj

)
, (3.3a)

B :=
(
0 −1

2
0 0

)
, C :=

(
y0

x0
2

−2 −y0

)
. (3.3b)

This implies the invariance of the monodromy of the operator ∂
∂z −XA(z) under changes

in the parameters {aj}. In view of eq. (2.6), according to the constructions of [12, 13], the
Fredholm determinant τA is just the isomonodromic τ -function of the system (3.1)–(3.2).
Now define the sequence of 2× 2 matrices

Bm :=
2n∑

j=1

am
j Aj = −1

2

(
Sm Pm

−Qm −Sm

)
, m ∈ N, (3.4)
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where the quantities Pm, Qm, Sm were defined in (2.11). Expanding XA(z) for large z
gives

XA(z) = zB + C +
∞∑

m=0

Bm

zm+1
. (3.5)

Since

GA
j =

1
2
resz=aj tr

((
XA

)2
(z)

)
, (3.6)

and

GA
0 =

1
2
resz=∞

1
z
tr

((
XA

)2
(z)

)
, (3.7)

we have

1
2
tr

((
XA

)2
(z)

)
= z +GA

0 +
∞∑

m=0

RA
m

zm+1
, (3.8)

where

RA
m :=

2n∑
j=1

am
j GA

j = tr (BBm+1 + CBm) +
1
2
tr

m−1∑
k=0

BkBm−k−1 (3.9)

(with the last term absent if m = 0) are the quantities defined in (2.9).
Using the fact that the Hamiltonian vector fields generating the aj deformations give

zero when applied to the GA
j ’s, and hence also the RA

m’s, it follows that the effect of
applying the operators Dk to RA

m gives just the explicit derivatives,

DkR
A
m = (m+ 1) tr (BBm+k) +m tr (CBm+k−1) +

m−1∑
l=1

l tr (Bl+k−1Bm−l−1) (3.10)

(with the sum in the last term absent if m = 0 and the second term absent if m+ k = 0).
Applying the operator Dm to ΨA, using (3.2b) and (3.4) gives the sequence of equations

DmΨA = −
∞∑

k=0

Bm+k

zk+1
ΨA, m ∈ N. (3.11)

The compatibility of these equations with (3.2a) implies the following equations for the
matrices {Bm, C}.

DkBm = mBm+k−1 + [C,Bm+k] + [B,Bm+k+1] +
m−1∑
l=0

[Bl, Bm+k−l−1], (3.12a)

DkC = [B,Bk], k,m ∈ N (3.12b)

(where the first term of (3.12a) is absent if m+k = 0 and the last term is absent if m = 0).
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The strategy for deriving the hierarchy of equations for τA is to now choose a k-va-
lue (k1) in (3.10), (3.12) and use these equations, together with (3.9) to express all the
relevant matrix elements of the Bm’s for m ≤ k in terms of the Rk’s for k < k1 and
the corresponding Dk’s applied repeatedly to them. Equations (3.12), for k = k1 may
then be expressed entirely in terms of these quantities, and hence in terms of repeated
applications of the operators Dk to FA = ln τA. An essential step in this procedure is
to also eliminate the additional variables x0, y0 from the equations through use of the
invariant conditions (2.14), (2.19).
For example, choosing k1 = 1, we note that for m = 0, eq. (3.9) reduces to (2.15) while

for k = 0, 1 and m = 0, (3.10) reduces to (2.20) and for k = 0,m = 0, eqs. (3.12) give
(2.21a), (2.21b). Combining these with the invariant relations (2.14), (2.19) allows us to
express the relevant matrix elements of C, B0 and B1 as

x0 = D0R+R2, y0 = R, (3.13a)

Q0 = −4D0R, S0 = −2RD0R−D2
0R, (3.13b)

P0 =
1
2
R− 1

4
D3

0R−RD2
0R− 1

2
(D0R)2 −R2D0R, (3.13c)

Q1 = −2R− 6(D0R)2 −D3
0R. (3.13d)

Substituting these in eq. (3.12b) for k = 1 gives (2.16). Similarly, eq. (3.12a) for k = 1,
m = 0 and eq. (3.9) for m = 1 produce the following expressions for the relevant matrix
elements of B1 and B2.

S1 = −D1D0R−R2 − 3R(D0R)2 −RD3
0R, (3.14a)

Q2 = −2R1 −D1D2
0R− 2(D0R)(D1R)−RD0R− 3

2
RD1D0R− 3

2
(D0R)

(D3
0

)
R

+
1
2

(D2
0R

)2 − 3
2
R3 − 1

2
R2D3

0R− 7(D0R)3 − 9
2
R2(D0R)2. (3.14b)

Substitution of (3.14b) in eq. (3.12a) (or (3.10)) for k = 2,m = 0, thus gives

4D1R− 2R1 −D1D2
0R− 2(D0R)(D1R)−RD0R− 3

2
RD1D0R− 3

2
(D0R)

(D3
0

)
R

+
1
2

(D2
0R

)2 − 3
2
R3 − 1

2
R2D3

0R− 7(D0R)3 − 9
2
R2(D0R)2 = 0. (3.15)

as the next equation of the hierarchy. The remaining equations may similarly be expressed
in terms of the derivations Dk acting upon FA.

3.2 The Bessel kernel isomonodromic system

The Bessel kernel case is so similar to the above that only the pertinent equations will be
given, without repeating any details of the procedure. Define for this case, the matrices

XB(z) := B̃ +

Cα −
2n∑

j=1
Aj

z
+

2n∑
j=1

Aj

z − aj
, (3.16a)

B̃ :=
(
0 1

8
0 0

)
, Cα := −1

4

(
y0

1
2

(
x0 + α2

)
8 −y0

)
. (3.16b)

where the Aj ’s are again defined as in (3.3a).
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The Hamiltonian system (2.23) implies that the compatibility conditions

∂Aj

∂ak
=
[Aj , Ak]
aj − ak

, j �= k, (3.17a)

aj
∂Aj

∂aj
= [Cα + ajB̃, Aj ]−

2n∑
k=1
k �=j

ak[Aj , Ak]
aj − ak

, (3.17b)

∂Cα

∂aj
= [B̃, Aj ] (3.17c)

are satisfied for the system

∂ΨB

∂z
= XB(z)ΨB, (3.18a)

∂ΨB

∂aj
= − Aj

z − aj
ΨB, j = 1, . . . 2n, (3.18b)

where ΨB(z, a1, . . . , a2n) is again a 2 × 2 matrix, invertible where defined. This again
implies the invariance of the monodromy of the operator ∂

∂z − XB(z) under changes in
the parameters {aj}. In view of eq. (2.7), the Fredholm determinant τB

α is again an
isomonodromic τ -function for the system (3.17)–(3.18).
Defining the sequence of 2×2 matrices {Bm, m ∈ N} as in (3.4), and expanding XB(z)

for large z gives

XB(z) = B̃ +
Cα

z
+

∞∑
m=1

Bm

zm+1
, (3.19)

and

1
2
tr

((
XB

)2
(z)

)
= −1

4
z +

GB
0 −GB∞ + α2

4z2
+

∞∑
m=1

RB
α,m

zm+1
, (3.20)

where

RB
α,1 =

1
4

(
GB

∞ −GB
0 − α2

)
+
1
2
tr

(
C2

α + 2B̃B1

)
, (3.21a)

RB
α,m = t̃r

(
B̃Bm + CαBm−1

)
+
1
2
tr

m−2∑
k=1

BkBm−k−1, m ≥ 2 (3.21b)

are the quantities defined in (2.10) and GB
0 , G

B∞ are the conserved quatities defined
in (2.25), (2.27), which vanish on the particular solutions defined by (2.1).
The fact that the Hamiltonian vector fields generating the aj deformations give zero

when applied to the GB
α,j ’s, and RB

α,m’s again implies that the effect of applying the
operators Dk to the RB

α,m’s is to evaluate only explicit derivatives with respect to the
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parameters, giving

DkR
B
α,1 =

1
2
tr

(
B̃Bk

)
,

DkR
B
α,m = m tr

(
B̃Bm+k−1

)
+ (m− 1) tr (CαBm+k−2)

+
m−2∑
l=1

l tr(Bl+k−1Bm−l−1), m ≥ 2 (3.22)

(with the sum in the last term absent if m = 2).
Applying the operator Dm to ΨB, using (3.4) and (3.18b), again gives the sequence of

equations

DmΨB = −
∞∑

k=0

Bm+k

zk+1
ΨB, m ∈ N. (3.23)

whose compatibility with (3.18a) implies the following equations for the matrices {Bm, Cα},

DkBm = mBm+k−1 + [Cα, Bm+k−1] + [B̃, Bm+k] +
m−1∑
l=1

[Bl, Bm+k−l−1], (3.24a)

DkCα = [B̃, Bk], k,m ∈ N, m ≥ 1. (3.24b)

The hierarchy of equations for τB
α is derived in the same way as for the Airy case. For

example, eqs. (3.21) for k = 2 reduce to (2.29), while (3.22) for k = 1, 2, m = 1 reduces
to (2.30), and eqs. (3.24) for k = 1, 2, m = 1 give (2.31). Combining these with the
invariant relations (2.26), (2.28) allows us to express the relevant matrix elements of Cα,
B1 and B2 as

x0 = −4
(
D1R

B
α,1 +

(
RB

α,1

)2 − 4RB
α,1

)
, y0 = −4RB

α,1, (3.25a)

Q1 = 16D1R
B
α,1, (3.25b)

S1 = 8RB
α,1D1R

B
α,1 − 4D1R

B
α,1 + 4D2

1R
B
α,1, (3.25c)

P1 = RB
α,2 + α2RB

α,1 + 4
(
RB

α,1

)2 D1R
B
α,1 − 4

(D1R
B
α,1

)2

+ 4RB
α,1D2

1R
B
α,1 −D2R

B
α,1, (3.25d)

Q2 = 16D2R
B
α,1. (3.25e)

Substituting these in eqs. (3.24) for k = 2 gives (1.11). Similar calculations for higher
values of k yield the further equations of the Bessel hierachy.

3.3 The sine kernel system

For this case, the quantities defined in (2.1a)–(2.1b) satisfy the system of dynamical equa-
tions defined in [11, 17]

∂xj

∂ak
= −1

2
(xjyk − yjxk)xk

aj − ak
, j �= k, (3.26a)

∂yj

∂ak
= −1

2
(xjyk − yjxk)yk

aj − ak
, (3.26b)
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∂xj

∂aj
=
1
2

n∑
k=1
k �=j

(xjyk − yjxk)xk

aj − ak
+ 2yj , (3.26c)

∂yj

∂aj
=
1
2

n∑
k=1
k �=j

(xjyk − yjxk)yk

aj − ak
− π2

2
xj . (3.26d)

This is again a compatible system of nonautonomous Hamiltonian equations, generated
by the Poisson commuting Hamiltonians {GS

j } defined in (2.5). They imply that the
compatibility conditions

∂Aj

∂ak
=
[Aj , Ak]
aj − ak

, j �= k, (3.27a)

∂Aj

∂aj
= [BS , Aj ]−

2n∑
k=1
k �=j

[Aj , Ak]
aj − ak

, j �= k (3.27b)

are satisfied for the system

∂ΨS

∂z
= XS(z)ΨS , (3.28a)

∂ΨS

∂aj
= − Aj

z − aj
ΨS , j = 1, . . . , 2n, (3.28b)

where

XS(z) := BS +
2n∑

j=1

Aj

z − aj
, (3.29a)

BS :=
(
0 π2

2
−2 0

)
, (3.29b)

with the Aj ’s again defined as in (3.4). As in the previous cases, this implies the invari-
ance of the monodromy of the operator ∂

∂z − XS(z). In view of eq. (2.5), the Fredholm
determinant τS is an isomonodromic τ -function for the system (3.27)–(3.28).
Expanding XS(z) for large z gives

XS(z) = BS +
∞∑

m=0

Bm

zm+1
, (3.30)

with the matrices {Bm, m ∈ N} again defined as in (3.4), and

1
2
tr

((
XS

)2
(z)

)
= −π2 +

∞∑
m=0

RS
m

zm+1
, (3.31)

where

RS
m :=

2n∑
j=1

am
j GS

j = tr (BSBm) +
1
2
tr

m−1∑
k=0

BkBm−k−1, m ∈ N. (3.32)
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Applying the operators Dk to RS
m again just differentiates explicitly with respect to the

parameters, giving

DkR
S
m = m tr (BSBm+k−1) +

m−1∑
l=1

l tr (Bl+k−1Bm−l−1) (3.33)

(with the first term absent if k +m = 0 and the sum in the last term absent if m = 0).
Applying Dm to ΨS , using (3.30) and (3.28b), gives the sequence of equations

DmΨS = −
∞∑

k=0

Bm+k

zk+1
ΨS , m ∈ N, (3.34)

whose compatibility with (3.28a) implies the following equations for the matrices {Bm},

DkBm = mBm+k−1 + [BS , Bm+k] +
m−1∑
l=0

[Bl, Bm+k−l−1]. (3.35)

The hierarchy of equations for τS is derived in the same way as for the Airy and Bessel
cases, except that we no longer have two conserved quantities like GA,B

0 , GA,B∞ . To derive
a closed system of equations, we are obliged to include two further dependent variables τS±,
which we choose as the nonvanishing entries of the matrix [BS , B0]τS ,

τS
+ :=

(
2P0 − π2

2
Q0

)
τS , τS

− := S0τ
S . (3.36)

The remaining component of B0, which cancels in the commutator [BS , B0], is

RS
0 = tr (BSB0) = P0 +

π2

4
Q0 = 0, (3.37)

where the first equality follows from choosing m = 0 in (3.32). This provides a single
conserved quantity that vanishes for the particular solution defined by (2.1a)–(2.1b).
To derive the hierarchy of τ -function equations, we first combine eqs. (3.36)–(3.37),

which allows us to express the matrix elements of B0 as

Q0 = − τS
+

π2τS
, P0 =

τS
+

4τS
, S0 =

τS−
τS

. (3.38)

Eq. (3.35) for k = 0, m = 0 gives

D0P0 = −π2S0, D0Q0 = 4S0, D0S0 = 2P0 − π2

2
Q0, (3.39)

and substituting (3.37), (3.38) in (3.39) gives

D0τ
S = 0, (3.40a)

D0τ
S
− = τS

+, D0τ
S
+ = −4π2τS

−. (3.40b)
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These equations are the lowest ones in the sine kernel hierarchy; note that they are linear
because of the vanishing of the invariant RS

0 . To obtain higher, nonlinear equations, we
first note that eq. (3.32) for m = 1 gives

RS
1 = P1 +

π2

4
Q1 +

1
4

(
S2

0 −Q0P0

)
, (3.41)

while (3.33) for k = 0, 1, m = 1 reduces to

D0R
S
1 = R0 = 0, (3.42a)

D1R
S
1 = P1 +

π2

4
Q1. (3.42b)

The first of these just gives the equation

D0D1τ
S = 0, (3.43)

which already follows from (3.40a). The second, combined with eq. (3.41) and eq. (3.35)
for k = 1, m = 0 gives the further equation

τSD2
1τ

S − (D1τ
S
)2
= τSD1τ

S − 1
4

(
τS
−

)2 − 1
16π2

(
τS
+

)2
. (3.44)

Equation (3.35) for k = 1, m = 0 gives

D1S0 = 2P1 − π2

2
Q1, D1P0 = −π2S1, D1Q0 = 4S1. (3.45)

Solving these, together with (3.42b), gives the following expressions for the matrix entries
of B1:

Q1 =
2
π2

D1τ
S

τS
− 1
2π2

(
τS−
τS

)2

− 1
8π4

(
τS
+

τS

)2

− 1
π2

D1

(
τS−
τS

)
, (3.46a)

P1 =
1
2
D1τ

S

τS
− 1
8

(
τS−
τS

)2

− 1
32π2

(
τS
+

τS

)2

+
1
4
D1

(
τS−
τS

)
, (3.46b)

S1 = − 1
4π2

D1

(
τS
+

τS

)
. (3.46c)

Combining eq. (3.35) for (k = 1, m = 1) and for (k = 2, m = 0) gives

D2Q0 = D1Q1 −Q1, D2P0 = D1P1 − P1, D2S0 = D1S1 − S1, (3.47)

Substitution of (3.38), (3.46) into (3.47) gives the next equations of the hierarchy. Re-
peating this procedure for higher (k,m) values similarly generates the higher equations.

4 Classical R-matrix approach and relation
to isospectral flows

In [2, 3], a key step in deriving the hierarchies of equations for the Fredholm determi-
nants τA and τB

α was to begin with certain bilinear equations satisfied by KP τ -functions
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with respect to the flow parameters {t1, t2, . . .} and to then use Virasoro constraints to
replace the tm-derivations at vanishing t-values by the operators Dm. In this section, we
show how the classical R-matrix approach to the underlying isomonodromic deformation
equations developed in [8] provides a direct link with commuting isospectral flows in the
loop algebra s̃l(2), without the requirement that these arise as reduced KP flows. This fits
into the broader framework of commutative isospectral flows in loop algebras with respect
to the rational R-matrix Poisson (or Adler–Kostant–Symes) structure [15, 4, 1, 8] (and
allows us to include the sine kernel case, which does not appear as a reduced KP flow).
First we recall [8, 9] that the isomonodromic deformation equations (3.1), (3.17), (3.27)

may be viewed as Hamiltonian equations on the space of sets {Aj}j=1,...,2n of sl(2) ele-
ments, with respect to the Lie Poisson bracket, extended in the Airy and Bessel cases by
the canonical variables (x0, y0). (The particular form (3.3a) for the Aj ’s just represents
a canonical parametrization on the symplectic leaves for which the Casimir invariants
{trA2

j} all vanish.) The formulae (3.2c), (3.16a), (3.29a) define a Poisson embedding of
this space into the space s̃l(2)∗R of rational, traceless 2×2 matrices depending rationally on
the auxiliary loop variable z, with respect to the Lie Poisson bracket on s̃l(2) corresponding
to the Lie bracket:

[X,Y ]R :=
1
2
[RX,Y ] +

1
2
[X,RY ], (4.1)

where

R := P+ − P− (4.2)

is the classical R-matrix, given by the difference of the projection operators

P+ : s̃l(2)→ s̃l+(2), P+ : s̃l(2)→ s̃l+(2),
P− : X → X+, P− : X → X− (4.3)

to the subalgebras s̃l+(2), s̃l−(2) consisting respectively of the nonnegative and negative
terms in the Laurent expanson of X(z) for large z. The space s̃l(2)∗R is identified as
a subspace of s̃l(2) through the trace-residue pairing

〈X,Y 〉 := resz=∞ tr (X(z)Y (z)). (4.4)

In this setting, the isomonodromic deformation equations (3.1), (3.17), (3.27) may all
be expressed in the form

∂X

∂aj
= −[(dGj)−, X] +

∂(dGj)−
∂z

, (4.5a)

(dGj)− = − Aj

z − aj
, (4.5b)

where X denotes XS , XA or XB, and Gj denotes GS
j , G

A
j or G

B
α,J respectively. Viewing

the Hamiltonians {Gj} as spectral invariants defined on the space s̃l(2), eq. (4.5a) follows
from the Adler–Kostant–Symes theorem, in view of the relations

∂0X

∂aj
= −∂(dGj)−

∂z
, (4.6)
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where ∂0X
∂aj

denotes the derivative with respect to the explicit dependence on the parame-
ters {aj} only.
Rather than using the spectral invariants {Gj} as Hamiltonians, we consider the Hamil-

tonian equations generated by the linear combinations RS
m, R

A
m or RB

α,m defined in (2.8),
(2.9), (2.10), which are all of the form

DmX = −[(dRm)−, X] +
∂(dRm)−

∂z
, (4.7)

with the respective identifications for X and {Rm}. These are just equations (3.12), (3.24)
or (3.35), depending on the identification, since

Rm =
1
2
resz=∞zm trX2(z), (4.8)

and therefore dRm, viewed as an element of s̃l(2), is just

dRm = zmX(z) =
∞∑

k=0

Bk

zk−m+1
. (4.9)

implying

(dRm)− =
∞∑

k=0

Bm+k

zk+1
. (4.10)

If, instead of the nonautonomous systems occurring here because of the identifications
of the aj ’s as multi-time parameters, we consider the autonomous systems generated by
the same set of Hamiltonians {R0, R1, . . .}, denoting the corresponding flow parameters
{t0, t1, . . .}, the resulting equations have the isospectral form

∂X

∂tm
= ±[(dRm)±, X], (4.11)

where either of the projections (dRm)± may be used, since the differential dRm, given
by (4.10), commutes with X. Although these systems are generated by the same Hamilto-
nians as the nonautonomous systems (4.7), they of course do not generate isomonodromic
deformations of the operator ∂

∂z − X(z), and in fact are not even compatible with the
systems (4.7); however, they are compatible amongst themselves, generating commuting
isospectral Hamiltonian flows. The close relationship between the autonomous and as-
sociated nonautonomous systems implies a correspondence between the structure of the
resulting hierarchies.
To see this, we substitute the expressions (3.2c), (3.16a) and (3.29a) forX(z) and (4.10)

for dRm into (4.11) to obtain the systems

∂Bm

∂tm
= [C,Bm+k] + [B,Bm+k+1] +

m−1∑
l=0

[Bl, Bm+k−l−1], (4.12a)

∂C

∂tm
= [B,Bk], k,m ∈ N (4.12b)
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for X = XA,

∂Bm

∂tm
= [C,Bm+k−1] + [B̃, Bm+k] +

m−1∑
l=1

[Bl, Bm+k−l−1], (4.13a)

∂Cα

∂tm
= [B̃, Bk], k,m ∈ N, m ≥ 1. (4.13b)

for X = XB
α and

∂Bm

∂tm
= [BS , Bm+k] +

m−1∑
l=0

[Bl, Bm+k−l−1] (4.14)

for X = XS . These only differ from the equations (3.12), (3.24) and (3.35) by the absence
of the termmBm+k−1 in the right hand side of (4.12b), (4.13b), (4.14) and the replacement

Dm → ∂

∂tm
(4.15)

for the derivation on the left hand side. The procedure for deriving hierarchies for such
systems is well known in the isospectral context (see, e.g. [7] for details); the recursive
procedure used in Section 3 above is just the analog of this approach applied to the
isomonodromic systems (3.12), (3.24) and (3.35).
As a final point, it should be noted that almost nothing in the derivation of the τ -

function equations of Sections 2 and 3 depended on the fact that the specific τ -functions
involved were equal to the Fredholm determinants (1.2), (1.4), (1.6). Everything just
followed from the general form of the isomonodromic deformation equations (3.1), (3.17)
and (3.27), the only features specific to the identifications of τA, τB

α , τ
S as Fredholm

determinants being the fact that the matrix residues Aj were of rank 1 (as seen from
the parametrization (3.3a)) and the invariants GA

0 , G
A∞, GB

0 , G
B∞ vanished. By allowing

these invariants, as well as the constants {detAj}, to take arbitrary values, an identical
procedure leads to equations for the τ -functions of the general isomonodromic systems,
which only differ from the ones derived in Sections 2 and 3 by the nonzero constant values
of the two additional invariantsGA

0 , G
A∞ or GB

0 and G
B∞. For example, eq. (2.16) is replaced

in the general case by

D3
0R− 4D1R+2R+4

(
g2
∞ − g0

)D0R− 2g∞
(D2

0R+ 2RD0R
)
+6(D0R)2 = 0, (4.16)

where g0, g∞ are the values taken by the invariants GA
0 , G

A∞, respectively. The other
equations of these hierarchies may similarly expressed in a way that allows arbitrary
values for these constants.
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