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‡ Istituto Nazionale di Fisica Nucleare, sezione di Perugia, via Pascoli,
06123 Perugia, Italy

Received December 20, 2001; Revised March 26, 2002; Accepted April 10, 2002

Abstract

A one phase Stefan problem in nonlinear conduction is considered. The problem is
shown to admit a unique solution for small times. An exact solution is obtained which
is a travelling front moving with constant speed.

1 Introduction

One and two phase Stefan problems for the linear heat equation have been the subject
of many studies in the past [1, 2]. Indeed these problems have a great physical relevance
since they provide a mathematical model for the processes of phase changes [3, 4].

The boundary between the two phases is a free boundary: its motion has to be deter-
mined as part of the solution.

More recently the previous analysis was extended to nonlinear diffusion models. In [5, 6]
exact solutions were found in parametric form for a class of Stefan problems in nonlinear
heat conduction.

Moreover one and two-phase Stefan problems for the Burgers equation were solved
in [7, 8] and explicit travelling wave solutions were obtained.

It is the aim of this paper to formulate and solve a one-phase Stefan problem for the
nonlinear heat equation:

ϑt

ϑ2
= ϑxx, ϑ(x, t), t > 0, (1.1)

on the semiinfinite domain x ∈ (−∞, s(t)) characterized by the following set of initial and
boundary data

ϑ(x, 0) = ϑ0(x), x ∈ (−∞, b) (1.2a)

and , ϑ0(b) = β2 < 0, b > 0,

ϑ(−∞, t) = β1 > 0, t ≥ 0, β1>|ϑ0(x)| > |β2|, ϑx(−∞, t) = 0, (1.2b)
ϑ(s(t), t) = β2, t ≥ 0, with s(0) = b, (1.2c)
ϑx(s(t), t) = −ṡ(t). (1.2d)
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Equation (1.1) a well know mathematical model for heat conduction in solid crystalline
hydrogen for situations with one-dimensional spatial symmetry [9]. The one-phase Stefan
problem (1.1)–(1.2) is associated to a phase change (fusion) in such a system.

In the above relations β1, β2 and b are constants; the unknown function s(t) describes
the motion of the free boundary and has to be determined together with ϑ(x, t). Moreover,
equation (1.2d) is a condition on the flux at the free boundary, arising from heat balance
(energy) considerations.

In the following we assume ϑ0(x) to be a continuously differentiable function of its
argument.

Our analysis is based on the approach followed in [7] for the solution of a one-phase
Stefan problem for the Burgers equation.

In the next Section we reduce the problem (1.1)–(1.2) to a nonlinear integral equation
for the independent variable t.

In Section 3 we prove existence and uniqueness of the solution for small intervals of
time; in the last Section we show that the system admits an exact solution which travels
with a constant velocity proportional to the velocity of the free boundary.

Some details of the proof presented in the third Section are given in the Appendix.

2 Linearization

In order to linearize equation (1.1) we introduce the transformation

ψ(z, t) = ϑ(x, t), z = z(x, t), zx =
1
ϑ
, zt = −ϑx, (2.1)

whose compatibility zxt = ztxis easily proved via (1.1). Under this transformation equa-
tion (1.1) is mapped into

ψt = ψzz (2.2)

on the domain −∞ < z < z̄(t) with z̄(t) = z(s(t), t) and z̄(0) = b̄.
(2.2) is the linear heat equation for the dependent variable ψ(z, t) with initial datum

given by

ψ(z, 0) = ψ0(z0) = ϑ0(x), (2.3a)

where

z0 ≡ z0(x) =
∫ x

−∞
1

ϑ0(x′)
dx′. (2.3b)

The boundary conditions (1.2b) and (1.2c) take now the form

ψ(−∞, t) = ϑ(−∞, t) = β1,

ψz(−∞, t) = ϑx(−∞, t)ϑ(−∞, t) = 0 (2.3c)

and

ψ(z̄(t), t) = β2,

ψz(z̄(t), t) = −β2ṡ(t). (2.3d)
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The Stefan problem for the nonlinear equation (1.1) has then been mapped into a clas-
sical Stefan problem for the heat equation (2.2) with initial datum (2.3a), characterized
by the boundary conditions (2.3d) at the free boundary.

We say ψ(z, t), z̄(t) form a solution of the above Stefan problem for t < σ, 0 < σ <∞,
when: (i) ψ(z, t) is a solution of (2.2) satisfying (2.3), it exists and is continuous together
with its derivatives for −∞ < z < z̄(t), 0 ≤ t < σ; (ii) s(t) is a continuously differentiable
function for 0 ≤ t < σ.

In the following we outline a method to prove the existence and uniqueness of the
solution for small times, t < σ.

We first observe that by integrating the second relation in (2.3d) we get

s(t) = b− 1
β2

∫ t

0
ψz(z̄(t′), t′)dt′, (2.4a)

which in turn implies

z̄(t) = h(t) − 1
β2

∫ t

0
ψz(z̄(t′), t′)dt′, (2.4b)

with

h(t) =
∫ s(t)

0

1
ϑ0(x′)

dx′. (2.4c)

Next we turn our attention to the solution of (2.2). We introduce the fundamental
kernel of the heat equation

K(z − ξ, t− τ) =
1

2
√
π

1√
t− τ exp

[
−(z − ξ)2

4(t− τ)
]
, (2.5)

and integrate Green’s identity for the heat equation

∂

∂ξ

(
K
∂ψ

∂ξ
− ψ∂K

∂ξ

)
− ∂

∂τ
(Kψ) = 0, (2.6)

over the domain −∞ < ξ < z̄(τ), ε < τ < τ − ε and let ε→ 0. Using ψ(z̄(τ), τ) = β2 and
K(z − ξ, 0) = δ(z − ξ), we obtain

ψ(z, t) =
∫ b̄

−∞
K(z − ξ, t)ψ0(ξ)dξ − 1

β2

∫ t

0
K(z − z̄(τ), t− τ)ψz(z̄(τ), τ)dτ

− β2

∫ t

0
Kξ(z̄(τ), t− τ)dτ, (2.7)

with z̄(t) and h(t) given by (2.4b) and (2.4c) respectively.
In the right hand side of (2.7) ψz(z̄(t), t) is unknown; it is convenient to take the

z-derivative of both sides in (2.7) and evaluate it as z → z(t)−.
By putting ν(t) = ψz(z̄(t), t), we obtain:

ν(t) =
(

1 +
1

2β2

)−1
[
−ψ0(b̄)K(z̄(t) − b̄, t) +

∫ b̄

−∞
K(z̄(t) − ξ, t)ψ′

0(ξ)dξ

− 1
β2

∫ t

0
Kz(z̄(t) − z̄(τ), t− τ)dτ − β2

∫ t

0
Kτ (z̄(τ), t− τ)dτ

]
, (2.8a)
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with

z̄(t) = h(t) − 1
β2

∫ t

0
ν(τ)dτ. (2.8b)

Thus the solution of the Stefan problem (2.2), (2.3a), (2.3d) has been reduced to the
solution of the nonlinear integral equation (2.8a) and (2.8b) for the independent variable t.

Once the existence and uniqueness of the function ν(t) is established for 0 ≤ t < σ,
there follows via (2.7) the existence and uniqueness of ψ(z, t) (and of ϑ(x, t)) for 0 ≤ t < σ.

3 Contraction Mapping

In order to analyze existence properties of v(t) for 0 ≤ t < σ, we denote by SM the closed
sphere ‖ν‖ < M in the Banach space of functions ν(t) continuous for 0 ≤ t < σ with the
uniform norm ‖ν‖ = l.u.b. |ν(t)|. On the sphere SM define the transformation

w = Tν, (3.1)

where Tν coincides with the right hand side of (2.8a). We first prove that T is a mapping
of SM into itself. From (2.8b) we obtain

|z̄(t)| ≤ |h(t)| +
1

|β2|
∣∣∣∣
∫ t

0
ν(τ)dτ

∣∣∣∣ < M

|β2|
(

1 +
1

|β2|
)
σ ≡ B1σ, (3.2)

where (2.4c) have been used. From (2.8b) we also get

|z̄(t) − z̄(t′)| ≤ |h(t) − h(t′)| +
1

|β2|
∣∣∣∣
∫ t

0
ν(τ)dτ

∣∣∣∣
<
M

|β2|
(

1 +
1

|β2|
)
|t− t′| ≡ B1|t− t′|. (3.3)

We now turn our attention to the right hand side of (3.1). We first note that

|K(z̄(t) − b̄, t)| < B2σ, (3.4)

where B2 is an appropriate constant depending on b̄. Next we consider the integral terms
in the right hand side of (3.1). We can write:∣∣∣∣∣

∫ b̄

−∞
K(z̄(t) − ξ, t)ψ′

0(ξ)dξ

∣∣∣∣∣
≤ ‖ψ′

0‖
∣∣∣∣∣
∫ b̄

−∞
1

2
√
π

1√
t

exp
(
−(z̄(t) − ξ)2

4t

)
dξ

∣∣∣∣∣ ≤ ‖ψ′
0‖√
π

≡ A1, (3.5a)

and ∣∣∣∣β2

∫ t

0
Kτ (z̄(t), t− τ)dτ

∣∣∣∣ ≤ |β2| 1
2
√
π

1√
t

exp
[−z̄2(t)/4t

]
< |β2|B2σ. (3.5b)
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Moreover we get∣∣∣∣ 1
β2

∫ t

0
Kz(z̄(t) − z̄(t′), t− t′)ν(t′)dt′

∣∣∣∣
≤ M

2|β2|
1√
π

∫ t

0

|z̄(t) − z̄(t′)|
(t− t′) 3

2

dt′ <
M

|β2|
1√
π
B1

√
σ, (3.5c)

where (3.3) has been used.
We now use the inequality

(
1 + 1

2|β2|
)
> 1

2 and define M as M = 2A1 + 1. When (3.1)
is used together with (3.4) and (3.5) we get

‖w‖ ≤M (3.6)

provided we choose σ = min(σ1, σ2) with σ1 : (|β2|+|ψ0(b̄)|)B2σ1 <
1
4 and σ2 : MB1

√
σ2 <

|β2|√π
4 ; thus the mapping is closed.
Next we wish to prove that T is a contraction; i.e. given two solutions of (3.1) with

‖ν− ν̂‖ = δ, it follows that ‖tν− tν̂‖ = ϑδ with 0 < ϑ < 1. Using (2.8b) we have for small
enough δ

|z̄(t) − ˆ̄z(t′)| ≤ 1
|β2|δt

∣∣∣∣∣
∫ s(t)

ŝ(t)

1
ϑ0(x′)

dx′
∣∣∣∣∣ ≤ 1

|β2| δt
(

1 +
1

|β2|
)

≡ B3δt, (3.7)

where (2.4c) has also been used.
Similar estimates hold for ˙̄z(t), which will be useful in the following. From (2.8b) we

see that ˙̄z(t) is bounded

| ˙̄z(t)| ≤ |ḣ(t)| +
1

|β2| |ν(t)| ≤ M

|β2|
(

1 +
1

|β2|
)

≡ B3M, (3.8a)

moreover it is

| ˙̄z(t) − ˙̂z(t′)| ≤ 3
|β2| δ. (3.8b)

¿From (3.1) we now write

w − ŵ =
(

1 +
1

2β2

)−1 4∑
i=1

Hi (3.9a)

with

H1=ψ0(b̄)
[
K(ˆ̄z(t) − b̄, t) −K(z̄(t) − b̄, t)] , (3.9b)

H2 =
∫ b̄

−∞
ψ′

0(ξ)
[
K(z̄(t) − ξ, t) −K(ˆ̄z(t) − ξ, t)] dξ, (3.9c)

H3 =
1
β2

∫ t

0

[
Kz(ˆ̄z(t) − ˆ̄z(t′), t− t′)ν(t′) −Kz(z̄(t) − z̄(t′), t− t′)ν̂(t′)

]
dt′, (3.9d)

H4 = β2

∫ t

0

[
Kt′(ˆ̄z(t), t− t′) −Kt′(z̄(t), t− t′)

]
dt′. (3.9e)
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First we estimate H1. We use the mean value theorem together with (3.7) and (3.2) in
the right hand side of (3.9b); we get

|H1| ≤ ‖ψ0‖ 1
4
√
πt
B1B3δt <

‖ψ0‖
4
√
πt
B1B3

√
σ δ ≡ B4

√
σ δ. (3.10)

The estimate of H2 in (3.9c) is obtained by writing

|H2| ≤ ‖ψ′
0‖

1√
π

∣∣∣∣∣
∫ ˆ̄y

ȳ
e−y2

dy

∣∣∣∣∣ , (3.11a)

with ȳ = z̄(t)−b̄

2
√

t
and ˆ̄y =

ˆ̄z(t)−b̄

2
√

t
; we then obtain

|H2| ≤ ‖ψ′
0‖

1
2
√
π
|z̄(t) − ˆ̄z(t)| < ‖ψ′

0‖
2
√
π
B3

√
σ δ ≡ B5

√
σ δ, (3.11b)

where (3.7) has been used.
The estimate of H3 is somewhat more cumbersome; a detailed analysis is given in the

Appendix (see (A.1)–(A.6)).
There obtains

|H3| < B6

√
σ δ (3.12)

where B6 is defined in (A.7).
We finally turn our attention to the estimate of H4 in (3.9e). When (2.5) is used, we

get from the integral in the right hand side of (3.9e)

|H4| ≤ |β2|
2
√
πt

∣∣exp(−ˆ̄z2(t)/4t) − exp(−ˆ̄z2(t)/4t)
∣∣< |β2|

4
√
π
B1B3

√
σδ ≡ B7

√
σ δ, (3.13)

where use of the mean value theorem together with (3.2) and (3.7) has been made.
¿From (3.9a) we now write

|w − w̄| ≤ 2|β2|
1 + 2|β2|

4∑
i=1

|Hi|,

which in turn implies, when we combine together the estimates (3.10)–(3.13):

‖w − w̄‖
δ

<
√
σ

7∑
i=4

Bi ≡
√
σ B8; (3.14)

thus we conclude that if σ satisfies σ < min(σ1, σ2, σ3) where
√
σ B8 < σ (3.15)

it follows that T is a contraction operator on SM , which admits a unique fixed point
v = Tv in SM for 0 ≤ t < σ.

We have then proven the existence and uniqueness of the solution of the integral equa-
tion (2.8a) for a small interval of time.
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4 A Particular Solution

We now turn our attention to a particular solution of the Stefan problem (1.1), (1.2).
Namely, we consider a moving front solution of equation (2.2)

ψ(z, t) = β1

(
1 − e−V (z−V t)

)
, (4.1a)

with

V < 0, (4.1b)

which is travelling to the left with constant speed V and is compatible with the boundary
conditions (2.3c). We now impose on (4.1a) the Stefan boundary conditions (2.3d): the
first one implies

z̄ = b̄+ V t, (4.2a)

which in turn gives

˙̄z = V = −1
b

ln
(

1 +
|β2|
β1

)
. (4.2b)

The boundary z̄(t) and the front solution (4.1a) are then both moving to the left with
the same constant velocity.

When we next use the second boundary condition (2.3d), keeping into account the first
one, we obtain

ṡ(t) =
(β2 − β1)
β2

V, (4.3)

which shows that the moving boundary s(t) of the Stefan problem (1.1)–(1.2) is moving
to the left with constant speed ṡ = αV , α = β2β1

β2
> 1.

Finally, the solution of the one-phase Stefan problem for the nonlinear heat equa-
tion (1.1) is given by

ϑ(x, t) =
(
∂z

∂x

)−1

, (4.4)

where, in virtue of (2.1), z(x, t) solves

x =
∫ z

0
ψ(z′, t)dz′, (4.5)

with ψ(z, t) given by (4.1a) and the speed V specified by (4.2b).
We emphasize that the above solution is a very special solution of the Stefan prob-

lem (1.1), (1.2). Indeed, it corresponds to particular case when the nonlinear integral
equation (2.8) reduces to a linear integral equation of Volterra type in t, as implied by
substituting back (4.2a) into (2.8a).



On a One-Phase Stefan Problem in Nonlinear Conduction 453

Appendix

In order to estimate H3, starting from (3.9d) we write

H3 =
1
β2

[
−

∫ t

0
dt′ν̄(t′)

ˆ̄z(t) − ˆ̄z(t′)
t− t′ K(ˆ̄z(t) − ˆ̄z(t′), t− t′)

+
∫ t

0
dt′ν(t′)

z̄(t) − z̄(t′)
t− t′ K(z̄(t) − z̄(t′), t− t′)

]
, (A.1)

with K(z − ξ, t− τ) given by (2.5).
Next, we put

H3 =
1
β2

(J1 + J2 + J3), (A.2a)

J1 = −
∫ t

0
dt′

{
(ν̂(t′) − ν(t′))

ˆ̄z(t) − ˆ̄z(t′)
t− t′ K(ˆ̄z(t) − ˆ̄z(t′), t− t′)

}
, (A.2b)

J2 = −
∫ t

0
dt′

{
ν(t′)

[ ˆ̄z(t) − ˆ̄z(t′)
t− t′ − z̄(t) − z̄(t

′)
t− t′

]
K(ˆ̄z(t) − ˆ̄z(t′), t− t′)

}
, (A.2c)

J3 = −
∫ t

0
dt′

{
ν(t′)

z̄(t) − z̄(t′)
t− t′ K(z̄(t) − z̄(t′), t− t′)

×
[
1 − exp

{
−(ˆ̄z(t) − ˆ̄z(t′))2 − (z̄(t) − z̄(t′))2

4(t− t′)
}]}

. (A.2d)

By using (3.3) we estimate J1:

|J1| ≤ 1√
2π

∫ t

0
|ν̂(t′) − ν(t′)|

∣∣∣∣∣ ˆ̄z(t) − ˆ¯(t′)z
t− t′

∣∣∣∣∣ dt′√
t− t′ ≤

(
B1√
π

√
σ

)
δ. (A.3)

The estimate of J2 uses (3.8b) and the mean value theorem:

|J2| ≤ 1√
2π

∫ t

0
|ν(t′)|

∣∣∣∣ ˆ̄z(t) − ˆ̄z(t′)
t− t′ − z̄(t) − z̄(t

′)
t− t′

∣∣∣∣ dt′√
t− t′ δ

≤ M√
π

∫ σ

0
|ˆ̄z(ϑ) − ˙̄z(ϑ)| dt′√

t− t′ ≤
(

3
M√
π

1
|β2|

√
σ

)
δ. (A.4)

Finally, for the estimate of J3, we call

Q = −(ˆ̄z(t) − ˆ̄z(t′))2 − (z̄(t) − z̄(t′))2
4(t− t′)

=
[(z̄(t) − ˆ̄z(t′)) − (z̄(t) − z̄(t′))][(z̄(t) − z̄(t′)) − (ˆ̄z(t) − ˆ̄z(t′))]

4(t− t′) . (A.5a)

Then from (3.3) and (3.7) we have

|Q| < 1
4|t− t′| 4B1B3|t− t′|σδ,
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which gives

|Q| < B1B3σδ. (A.5b)

We also note that we can estimate Q via (3.3):

|Q| < 1
4|t− t′|

[
(ˆ̄z(t) − z̄(t′))2 + (z̄(t) − z̄(t′))2]

≤ 1
2
B2

1 |t− t′| <
1
2
B2

1σ < B
2
1 ,

σ

2
< 1. (A.5c)

Using
∣∣1 − e−Q

∣∣ ≤ |Q|e|Q| and (3.3) we estimate J3:

|J3| ≤ 1
2
√
π

∫ σ

0
|ν(t′)|

∣∣∣∣ z̄(t) − z̄(t′)t− t′
∣∣∣∣ 1√
t− t′

∣∣1 − e−Q
∣∣ dt′

<
M√
π
B2

1B3e
B2

1σ3/2δ <

( |β2|
4
B1B3e

B2
1
√
σ

)
δ, (A.6)

where the definition of σ following (3.6) has also been used.
Combining the estimates of J1, J2 and J3, we have from (A2.a)

|H3| =
1

|β2|
(
B1√
π

+
3M√
π

1
|β2| +

|β2|
4
B1B3e

B2
1

)√
σ δ ≡ B6

√
σ δ. (A.7)
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