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Abstract

In this work, we explain in what sense the generic level set of the constants of motion
for the periodic nonlinear Schrodinger equation is an infinite dimensional torus on
which each generalized nonlinear Schrodinger flow is reduced to straight line almost
periodic motion, and describe how neighboring generic infinite dimensional tori are
connected.

1 Introduction

We consider the Hamiltonian equation
ity + Ugy — |ul?u =0 (1)

of the periodic nonlinear Schrédinger equation, where u(z,t) is a complex valued func-
tion in the class of smooth period one functions. In this work, we explain in what sense
the generic level set of the constants of motion for the periodic nonlinear Schréodinger
equation is an infinite dimensional torus, why the solution of the Hamiltonian equation
is almost periodic in time, and describe how neighboring generic infinite dimensional tori
are connected. Bourgain [1] has solved the initial value problem for the periodic non-
linear Schrodinger equation. Ma and Ablowitz [2] have reduced the periodic nonlinear
Schrodinger equation to an inverse spectral problem for periodic potentials. They pro-
vide explicit formulas for the special class of N-soliton solutions of the periodic nonlinear
Schrodinger equation and found an infinite sequence of functionals that are in involution
and constant along solutions of (1). For the nonlinear Schréodinger equation, Batig et al [3]
and Schmidt [4] used the method of inverse spectral theory and integrated the equation
in the class of analytic [4] and smooth periodic functions [3]. They identified the generic
invariant set of the constants of motion with an infinite dimensional tori. Their study [2,
3] did not describe how neighboring tori are connected.
The nonlinear Schrodinger equation is an example of the Hamiltonian equation

K, 2
where K (u) is a nonlinear operator and u a complex valued function in the class of smooth
periodic functions. Let F,,,(u) denote functionals that are in involution and constant along
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solutions of (2). In [5], we give a proof of an infinite dimensional version of Liouville’s
theorem and explain in what sense the generic level set of the functionals F,,(u) is an
infinite dimensional torus on which the solution of (2) reduces to straight line motion that
is almost periodic in time. Furthermore, we explain in what sense neighboring generic
tori and solutions of (2) are connected. The approach in [5] is related to Lax’s [6] study
of finite-dimensional level sets of completely integrable partial differential equations and
is independent of the method of inverse spectral theory and the viewpoint of algebraic
curves. An application of the theorem in [5] to the nonlinear Schréodinger equation yields
a different proof of the result of Batig [3] and Schmidt [4]. In addition, the present work
describes how neighboring generic tori and the solutions of (2) are connected.

In the classical case

dv

— = K(v), ve RN

7 (v)

a theorem of Liouville [7] states that the system is completely integrable. If the involutive
constant functions Fy,,(v), m = 1,2,..., N are independent in the sense that their gradients

are linearly independent and if the N dimensional level set satisfying F,,(v) = F,(vo),
m=1,2,..., N is compact; in fact,

(a) the level set is an N dimensional torus on which the flow is quasiperiodic and

(b) neighboring Louville tori are diffeomorphic to one another.

The proof of the classical Liouville theorem is based on the inverse function theorem. It
verifies that the composition of the commuting flows associated with F,(v), m=1,..., N
identifies a neighborhood of RY with a neighborhood of the level set. The basic periods of
this map are used to identify a connected component of the level set with an /N dimensional
torus on which the Hamiltonian flow associated with each F),(v) is reduced to straight
line quasiperiodic motion.

In [5], we gave a proof of an infinite dimensional version of Liouville’s theorem. We were
unable to use the inverse function theorem. We introduced instead a local open mapping
theorem for certain types of nondifferentiable maps and established that the composition
of the commuting flows associated with F,,(u), m > 1 defines a continuous open map
from the Hilbert space Iy of square summable sequences onto a connected component
of a generic compact level set. This map is not locally diffeomorphic because I3 in not
locally compact. The periods of this mapping are contained in any neighborhood of [s.
A complete set of basic periods was used to identify a connected component of the level
set with an infinite dimensional torus on which the Hamiltonian flow associated with each
F(u) is reduced to straight line almost periodic motion. Furthermore we established that
the complete set of basic periods that characterized a generic level set may be continuously
extended to a complete set of basic periods that describe a neighboring generic level set.
We established a sense in which neighboring generic level sets are homeomorphic to the
standard infinite dimensional torus, and determined a sense in which these neighboring
level sets are connected. This present study of the periodic nonlinear Schrodinger equation
is an illustration of the result [5].
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2 Theorem

Let W, (n > 0) denote the usual Sobolev space of functions on [0, 1], of period one, having
derivatives of all orders up to n with norm

1
)2 =3 / |Diw(a) 2de.
j<n 0

The norm in the space Ls is denoted by ||wl||. For w € W,, and integers j, k, and p with
p > 2, it is known that

1
\// |Diw(x)|Pdx < 2722 || DFw|*|lw]*°,
0

where a = (j + % — %) /k and 1 < j < k < n. We denote by C}" the space of functions
of period one having continuous derivatives of order less than or equal n. The value of n
does not enter into the proof of the result [5]. The value of n specifies the class of solutions
for the nonlinear Schrédinger equation or generalized equations. The subscript of W, is
generally suppressed.

The Hamiltonian formulation of (2) is due to Gardiner [8] and Lax [6]. Let F'(u) denote
a functional whose argument is a smooth function of period one and let (-,-) denote the
scalar product in Lo. Then

lim €™ (F(u + ev) = F(u)) = (Gr(u),v)

for appropriate u and v defines Gp(u), the gradient of F' at u. Define the Poisson bracket
of F(u) with H(u) by

{F(u), H(u)} = (Gr(u), JGu(u),

where J is an antisymmetric operator independent of u. If K(u) = JGp(u), then the
equation (2) is said to be Hamiltonian. We denote by Spg(t)u the nonlinear operator
determining the solution of (2) on the basis of its initial values at t = 0: u(t) = Sp(t)up. If
{F, H} =0 for all u, then the solutions of (2) and of u; = JGp(u) commute: Sy (¢t)Sp(t') =
Sp(t')Sk(t) for all t and ¢

As for the nonlinear Schrodinger equation, Ma and Ablowitz have constructed explicitly
an infinite sequence of functionals I,,,(u) that are constant along the flow (1). The first
three are

1 ! 1
/ uu dz, —/ (Tuy, — uty) dz, / (|ux|2 + [Jult).
0 2.Jo 0

Let Gy, (u) denote the gradient of I,,, with respect to @ at u, and let

1
(u,v) = / (uv + vu) dz
0
denote the product in L. Then the Poisson bracket
{Im(u), In(u)} = (G, (u), JG1, (u))
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where the symplectic structure is introduced through J = i. It is known that

{Im(u), In(u)} =0

for all m and n and smooth periodic functions u. Therefore I,,(u) are constant along
solutions of

%—K}m<u)—JG[m<U), m>1

the generalized nonlinear Schrédinger equation, where m = 3 is equation (1). The nonli-
near Schrodinger equation (1) is of the form

Ut = [LaA])

where the operator L and A depend on u. The nonlinear Schrédinger flow preserves the
spectrum of L determined by

o= (2 5) () -0)

in the class of functions f[0,1) — C? with f(z + 1) = mf(x) for 0 < x < 1. The periodic
and antiperiodic spectra [m = £1] will be of special interest. Use of (3) and a direct calcu-
lation shows that the spectrum of L is real. Ma and Ablowitz determined that the periodic
and antiperiodic spectrum of L is comprised of simple and double eigenvalues A, with
eigenfunctions f = (f1,m, f27m)T, and that the functionals A, (u) are in involution. This
study concerns the general situation in which the spectrum of L is simple. The exceptional
case of mixed simple and double spectra offers no additional technical difficulties. Let M
denote the portion of the space W of smooth periodic functions for which the spectrum
of L is simple. For ug € M, we consider the level set

M(ug) = {u| Am(u) = A (ug), m > 1}

in W,. We prove that M) is generated by the sequence of the generalized nonlinear
Schrodinger flows and that the generic level set is identified with an infinite dimensional
torus on which each generalized nonlinear Schrodinger flow is reduced to straight line
motion that is almost periodic in time. Furthermore, we make precise the sense in which
neighboring generic level sets are connected.

To identify My,, with the standard infinite-dimensional torus 7°° = [0,1)*° we first
state the result in [5]. Consider the Hamiltonian equation (2), the sequence F,(u) that
are in involution and constant along solutions of (2), and the level set

My, = {u| Fp(u) = Fp(ug), m > 1}.

Let u be an element of M, and view the latter as a subset of Ly. Define G, (u) to be
the gradient of Fj,,(u) at u. G, (u) is a vector that is normal to M,, at u. Let N, be the
closure in Lo of the span of Gf,, (u) and assume that G, (u) is a basis of V,,; by which we
oo
mean a) each element G, in N, is uniquely expressible as G, = tG(u) = > t,,GF,, (u)
m=1
for ¢ in the Hilbert space I3 and b) G, admits the estimate

cr(u)ltl, < [tG ()| < ca(u)]tls,,
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where ¢; and ¢z depend continuously on v in M. N, is the normal space of M, at u
and, by our assumptions, no single gradient G, (u) lies in the closure in Lg of the other
gradients G, (u). The Poisson bracket of F,(u) and F,(u) vanishes for all m and n
and for u in the class of smooth period one functions. The functionals F),(u) generate
commuting flows

0
5 = Kp.(w) = JGr, (),  m=>1 (4)
on M,, and Fy(u), ..., Fn(u),...are constants of these motions. K (u) is tangent to M,

at u. Denote by T), the closure in Ly of the span of Kp,, (u). Suppose that K, (u) is a basis
oo
of Ty; each element K, in T, is uniquely expressible as K, = Y t,, Kp, (u) = tK(u) for
m=1

t in Iy, and

cr(w)ltly, < K (u)l] < ca(u)lth,, (5)

where ¢; and cs depend continuously on w in M. Assume that T, equals the orthogonal
complement of N,. T, represents the tangent space and every direction of Ly has been
accounted for. Let Sg, (tm)uo denote the nonlinear operator uniquely determining the
solution of (4) on the basis of its initial values at t = 0: u(t) = SF,, (tm)uo. For ¢ in lo we
show that

tyu = lim H Sr,, (tm

Naoo

in W, where S(t+t")u = S(t)S(t')u for ¢, t in Iy, and for t € Iy, S(t)u € Wy, is continuous
in ¢ uniformly in w on M,,,. Denote by dGr(u) the second derivative of F' defined by

lim e Y(Gp(u+ ev) — Gp(u)) = dGp(u)v.

€—

Let v(7), 7 > 0 be a curve in M, that satisfies di’i(:) = Ky with v(0) = v and let

dG o Ky(r) = dcf;T(T) admit the estimate

(dG Ky, K))

< |G|, (6)
G [

where K, € T, ¢ is independent of v(0) € M,,, and v = v(7) for small 7. Then S(t)ug is
an open map of Iy onto M, in W,,. Let L,, denote the set of ¢ in ly for which S(t)u = u
for all w in M,,. S is a homeomorphism of la/L,, onto M,, in W,,. la/L,, is compact
and may be identified as in [5] with the standard infinite-dimensional torus 7°°: in more

detail, there exist wy,, m > 1 from L,,, so that each ¢ of ly/L,,, is uniquely represented by
(o)
t= > Tmwm, where 0 < 7,, < 1 for all m. M, is an infinite-dimensional torus and the
m=1
solution Sg, (ty,)u is almost periodic on la/L,,, uniformly with respect to initial values
u € My,. The motion Sg,, (tm)u of each Hamiltonian equation related to Fy, is identified

with straight line motion on ly/L: in detail, for e, in the m-th coordinate direction in
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lo/L and @y, € lp with wy - @p = 0 m, then Sp, (4, )u is identified with straight line
o

motion in the direction »_ (€, - Wy )wm on ly/L.
=1

For the generalized n(r)TIlllinear Schrodinger flow, K7, (u) is an element of the closure in Lo
of the span of K _(u) and the flow of each generalized nonlinear Schrédinger equation is
identified with straight line motion that is almost periodic in time on ly/L.

We next identify as in [5], neighboring generic tori and then state a sense in which
they are related. Let F,,,(u) denote a sequence of analytic functions of u € W and suppose

[ee]

> F,(u)? is bounded uniformly in u on bounded sets in W. Let F(u) = (F1,..., Fp,...)

m=1
and | = F(M). Let vo € M and fo = F(vo) € . Write uyg, for vo. For f in a small
neighborhood of fy, there exists uy in M and f = F(us) and

|f = foliy 2 ellug = ugl,

where c is locally independent of uw € M and f € [. The curve that joins uy, to uy depends
uniquely on uy,. The curve is relatively short in the sense that the length of the curve in W
joining u g, with us is bounded by a fixed multiple of | f — fol;,. The torus M; = F~1(f) is
homeomorphic to the standard torus T°°. M, is characterized by basic generators wm(fo)
that are the periods of S(t)uy,, and for f in a small enough neighborhood of fy in I, the
wm(fo) may be continuously extended to the basic generators wy,(uy) that describe My, .

oo

My, = F~1(f) is identified with the set T of convergent sums 21 Tmwm (f), 0 < 7 < 1,
m=

which converge in [y uniformly in 7, and f. Furthermore, there exists a curve that is

o0 o0
continuous in Iy that connects > Tpwm(fo) with > 7w (f) and is relatively short
m=1 m=1

in the sense that the length of the curve in Iy is less than

) Tf is

i mem(fO)
m=1 lo

homeomorphic to Ty, and T} is uniformly close to T's,. M, is homeomorphic to M, and
to the standard infinite-dimensional torus 7°°. Furthermore, M, ; and M, 5, are connected
by a relatively short continuous curve in W that is contained in M except for a countable
number of elements. This leads to the result of this work on the nonlinear Schréodinger
equation.

Theorem. Let u € M and F,(u) = Ap(u) — Mp(0). Fp(u) is a sequence of analytic
functions of u € W that are in involution and the level set M, is bounded. The sequence
G (u) and Ky, (u) is a basis for Ny, and T,, respectively with N, ®T,, = Lo and dG admits
the estimate (dGy Ky, Ky) /|| Kull|| Kul| < ¢||Gul|, where ¢ is independent of w. Forug € M,
S(t)ug is a homeomorphism of la/ Ly, onto My, in W. la/Ly, is compact and identified
with an infinite dimensional torus: there exists a sequence wy, from Ly, for which each
o0
element of lg/LufO is uniquely represented by > Tmwm, 0 < 7, < 1 for allm. The flow of

m=1
each generalized nonlinear Schrodinger equation is identified with straight motion that is

almost periodic in time on lg/Lufo. Forw in M, F,,(u) is square summable uniformly in u
on bounded sets in W. For directions v transverse to M, at u, dGy,(u) admits the estimate
|[dGm(u)v]] < eml|v||, where ¢, is square summable independently of w and v. For f in
a small neighborhood of fo = F(uy,) in | there exists up € M satisfying F(uyg) = f that
admits the estimate |f — foli, > cllup — ugl|, where c is locally independent of w in M
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and f € 1. My, is homeomorphic to My, and to the standard infinite-dimensional torus.
Furthermore M, and M“fo are connected by a relatively short continuous curve in W
that is contained in M except for a countable number of elements.

This completes the statement of the Theorem.

A modification of the proof of Lemma 1 in [5] establishes that M,, and M, are
connected by a relatively short smooth curve in W that is contained in M except for
a countable number of elements. This verifies that M, is diffeomorphic to My, and to
the standard infinite-dimensional torus. The exceptional case of mixed simple and double
spectra can be solved by a slight modification of the approach taken in [5]. The application
of [5] to the Hamiltonian flow

ity + Uy + |ul?u =0

offers no additional technical problem. In this case the torus is of lower dimension.

3 Proof

In this section we prove the Theorem. We establish first the properties of M,,, and obtain
an apriori estimate of dG. For u in M, we verify that G,,(u) is a basis for N, and K, (u)
is a basis for T;, and that N, & T, = Lo.

Item 1. The functionals A, (u) are in involution and M,,, is bounded in W. For ug € M,
consider

Muyy = {u| Fn(u) = Am(u) = A(0) = Fn(uo), m =1}

and use the result in [2] or the periodic version of the result of Zakharov and Shabat [9]
to show that I,,(u) are directly related to A, and that I,,,(u) is constant on M,,. The
functional

1
L :/ |u|?dx
0

Jull < e

gives

Rearrange the functional

1
I = / (Juol? + [ul*) da
0
and estimate to find that

1
1
/ [ua*dr < e+ clua[[ull® < ¢ + cluall < e+ 5w,
0

where we have applied the general inequality |uleo < v/2||uz||'/?||u|'/? and previous

bounds. This leads to the estimate ||u,|| < ¢. The integral

o= [ el St = 2 ()
= U —|U — =z | —u — I|U u €T
5 0 TT 2 2 \ dx T



72 M Schwarz Jr

is estimated as follows:

1/3)1,,112/3

ltaa|* < cllua |2 [lul*? + clul3ua|* < c,

where we have used the general estimate |u|g < 2'/3|ug||*/?||u|[?/3 and previous bounds to
find

|z < e

For n > 4, the functionals I,, have weight 2n where the weight is a sum of the weights of
its factors and the weight of D"u is 1 + r. Use previous estimates to obtain

lulln < ¢

for any n. M, is bounded in W,,.

Item 2. For simple eigenvalue A, the gradient of \,, with respect to u equals

dAm - .
%:Zflbzsz-

Begin with the equation (3) for f; and fo. Let

1
(u,v):/ uv dz.
0

Let u¢ = u + ev and compute the derivatives

d d
—A and —A.

de de
Begin with the equation for f5 in (3) and compute the derivative with respect to e. Multiply
the resulting equation by f, and integrate with respect to x from zero to one. Integrate
by parts and use the equations once again and substitute (for, fo) and (U, f2) into the
previous expression, and find

iXFan f2) = (Forf1 +iMf2) + (i, fof1) + (u, Frfo) — iX(far fo),
ij‘(f?a?Q) = —(Jé%U?l - i>\?2) - @, f1?2) - (ﬂ’ ?Qfl) - i)‘(an?Q)'

The properties A\ = )\, fi = fo, and fo = f; follow directly from (3). Substitute these
identities into the previous equations with || fi|| = || f2|| = 1 and obtain

X + )‘ = (ﬁ7 if172) + (u7 i72f1)'
Use the inner product (u,v) and find that

ax = .
%Zlflfzzzflz'

Item 3. For v in M and v transverse to M, let u(7) = 7v + (1 — 7)u. Then

[ (W)]eo < ¢
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and

d o
‘Efl

[e.e]

at 7 = 0, where c is independent of u on bounded sets in M. Use that F,(u) is an analytic
functional of w in W to establish that the curve u(7), 0 < 7 < 1, remains in M except for
a countable number of values of 7. Begin with

fiz —ufo=—i\f1

and
fo,z —Uf1 = i\fo.

Multiply the equation for f; by f; and rewrite as
1 .
§3xf12 = ufifo — iAfT.

A similar calculation gives

1

50nf3 =i fy = A3,

Next multiply the equation for fi; by fo and combine with the equation for fo multiplied
by fi and find an expression for d,(fi f2). The function

fife= /Ox (ufs +uft) dx

satisfies the differential expression for f; fo. Substitute the above identity for f; f2 into the
preceding equation for f2 and f2 and find

—%@f% +u /0 C(uff s de = iAf} ()
and
%awﬁ —~ H/Ox (uf? +uf}) do = irf3.
Multiply (7) by exp(2iAz) and rewrite the first equation as
0 (e%’\xf12> = e /x (uf22 + ﬂf%) dzx.
Take the absolute value of this expression, use the inequality
0 (2% f2(@) | > 0]e™ 2 ()]

and then integrate in x and find that

x y
\f%<x>|s/ u/ (uf? +af?) dy

dxgyu@o/ (1£2] + |£2]) do.
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A similar calculation gives

@] <l [ (157 1)) do
Combine and form ‘ flg(x)} + ‘ 12 (x)}, use Gronwall and find that

|fi(@)| <c,

where ¢ is independent of u on bounded sets in W.
For u(7) = 7v + (1 — 7)u, differentiate (7) with respect to 7 at 7 = 0 and find that

o 1 A i [° _
ft oot =50 - 5 [ (st +usd)ay

and a similar expression for f2. Multiply the previous identity by exp(22i\) and write the
left hand side of the resulting expression as

B (em f'f) /20,
Next take the absolute value of the expression, use the inequality
< |o (e (@)

where we have used that A is an analytic functional of w in W and ¢ is an absolute constant.
Integrate the resulting expression in # and use the estimates

e i [N easm)| < [OH s
L ”H 1 +118e) < 75

Al
[ [ (it vas?)| < [ [ fudt vt

Moo [* (3] 4| v < o5 [ (3] |72])
%/”” (if2u—v) £ < lu = vlll A5 _ cllu—v]

Al TN
where we have used previous bounds and find that

e f2 () /20

0| f2w)| < 0

‘Hu o,

] < e S T (8] 4[]

A similar calculation gives

@] < e [ (]| 2])
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Combine and form |f2(z)| + | f2(z)| and use Gronwall to obtain
i 2

#20)] + ]| < L,

where ¢ is independent of u on bounded sets of M.

Item 4. For w in M, the normal vectors Gy, (u) = z'ffm and the tangent vectors
Ky, (u) = —f227m is a basis for N, and T, respectively and N, & T,, = Ls. Each G,

in NV, is uniquely G, = > t,,G,,, (u) and

m=1

ciltl, < < ety

> tmGh,, (u)
m=1

where ¢1, co are independent of v on bounded sets in M. Each element K, in the tangent

(o]
space is uniquely represented as K, = ) t,K),, (u) and

m=1

Cl|t‘l2 S S CQ‘t‘lga

Z th)\m (’LL)
m=1

where ¢1, ¢y are independent of v on bounded sets in M.

We modify an idea of Borg [10] and establish this result by comparing the sequence G,
and K, at u with the sequence at u = 0. The work of McKean and Trubowitz [11] used
a similar comparison in their study of the basis properties of the normal and tangent space
for the isospectral set of the periodic Korteweg-de Vries equation. For u = 0, we begin
with the periodic and antiperiodic spectrum Ay = nm and eigenfunctions fo,, = e,
Then G, = ie”?%m and K, = —e 2% n  For u = 0, the closure in Lo of the linear
span of G, and K, equals the closure in Lo of the linear span of

(an sin(2nmx) + by, cos(2nmz)) + i(ay, cos(2nmz) + by, sin((2nwx)),

a basis for the space of complex valued functions that are square integrable.
For u=0, G1,,(0) = g7, is orthogonal and admits the estimate

oo
2
g CmJ1,m

m=1

cilel, < < e2lcliy,

where c¢; and cp are absolute constants. We next establish an apriori estimate of f12m (u).
For w in M, define T' by

r (z cmg%,m) =S e (i) = ).
m m
Use of the estimate in item 3 confirms that

S ) = gl < 00
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and establishes that 7" is a bound linear operator and is Hilbert Schmidt. If ffm(u) is
minimal then (I 4+ T') is invertible and

= lewl? Hgim\f < el

m

I+T)7" Y enfim(u)

where we have used that (g%m,gin) = 0, m # n, the estimate of item 3, and ¢ is
independent of u on bounded sets from M. It follows that

> 61|C‘12, (8)

Z Cmf12,m (w)

where ¢ is independent of v on bounded sets in M.

We use the apriori estimate and establish that the basis g%’m may be continuously
extended to a basis ffm Let u(7) = Tu and use that F,(u) is an analytic functional of u
in W to establish that the curve u(7), 0 < 7 < 1 remains in M except for a countable
number of 7 and write

T d
Pl =gt = [ (o) ds.

Use the estimate of item 3 and find

T

[[Aml

where ¢ is independent of u on bounded sets of M. Use (7), the previous bound, and select
7 = 71 independently of u on bounded sets of M and find u; = 7yu in M, where

Hflz,m(Tu) - gimH <7 CH“H?

d
ot <

This estimate confirms that ff,, (u1) is a minimal sequence and that the closure in Ly of
the linear span of flzm(ul) equals the closure in Ly of the linear span of gim. Use of the
apriori bound (8) gives the estimate

> cileli,-

Z Cmflz,m (ul)

Iteration of this construction gives the result.

Item 5. For win M, dG, admits the estimate (dG, Ky, Ky) /|| Kull|| Kyl < ¢||Gul|, where
¢ is independent of u on bounded sets in M. For the direction v transverse to M, at wu,
dGp,(u) satisfies the estimate [|[dGp,(u)v| < ¢nllv]|, where ¢, is square summable uni-
formly in u and v on bounded sets in M.

Use of (3) and a direct calculation shows that A,,/m — 1 uniformly in v on bounded
sets in M as m — oo. Combine this result and the estimates of item 3 to obtain the
estimates of this section.

This completes the proof of the Theorem.
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