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E-mail: g.gaeta@tiscali.it, gaeta@roma1.infn.it

Received March 04, 2002; Accepted June 28, 2002

Abstract

We study a generalization of the familiar Poincaré map, first implicitely introduced by
N N Nekhoroshev in his study of persistence of invariant tori in hamiltonian systems,
and discuss some of its properties and applications. In particular, we apply it to study
persistence and bifurcation of invariant tori.

Introduction

The Poincaré map is a classical tool in the study of a dynamical system around a known
periodic solution (see e.g. [3, 7, 10, 11, 15, 16]).
Here we want to study a dynamical system around a multi-periodic solution (i.e. an

invariant torus T
k, k > 1): in this case the Poincaré map has several drawbacks, and it

would be more convenient to somehow quotient out the degrees of freedom corresponding
to motion along the invariant torus (and transversal to the dynamical flow). However,
such a quotient is in general terms ill-defined out of the torus itself.
In a paper [12] devoted to persistence of invariant tori in partially integrable hamil-

tonian systems with n degrees of freedom and k integrals in involution (1 < k < n),
N N Nekhoroshev devised a way to overcome this obstacle, and generalized the classical
Poincaré–Lyapounov theorem. The main nondegeneracy condition for this theorem was
expressed in terms of monodromy operators. Unfortunately, his discussion was very short
and somehow not easy reading, and – as far as I know – he never published a proof of this
result.
Here we note that the whole matter is better understood in terms of a generalization of

the Poincaré map, which in my opinion is implicitely introduced in [12] and which I will
call the Poincaré–Nekhoroshev map. This map is of interest per se, i.e. not just for the
Poincaré–Lyapounov–Nekhoroshev theorem.
The aim of the present note is to discuss in detail the Poincaré–Nekhoroshev map

(which can be defined also for non-hamiltonian systems), its geometry and its spectrum.
In particular I will discuss how this bypasses the obstruction to considering a symmetry
quotient (note that when such obstruction is not present, we can pass to the quotient
system and apply standard Poincaré theory there), i.e. how this can be applied without
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assuming regularity of global invariant manifolds near the invariant torus, and its relation
with monodromy.
The plan of the paper is as follows. In Section 1 we fix some basic notation and

recall background results concerning closed trajectories on tori. In Section 2 we recall the
definition of the standard Poincaré map, and provide a geometrical interpretation of it in
terms of a local fibration. Section 3 is devoted to defining the Poincaré–Nekhoroshev map,
which can now be seen geometrically as a direct generalization of the standard Poincaré
map; the subsequent sections deal with applications of the Poincaré–Nekhoroshev map.
In Section 4 we discuss the relation between fixed points of the Poincaré–Nekhoroshev
map and invariant manifolds, in particular tori. Section 5 is devoted to study persistence
of invariant tori in non-hamiltonian systems from a geometrical point of view; the same
question is discussed in Section 6 with the use of a coordinate system and thus providing
explicit formulas. The brief Section 7 discusses invariant tori in hamiltonian systems (i.e.
the subject of [12]) from the present standpoint. Finally, in Section 8 we discuss how
standard results for bifurcation of fixed points of maps are to be interpreted in this frame
as describing bifurcations from an invariant torus.

1 Notation and background

We consider a smooth n-dimensional manifold M (by smooth we will always mean Cr

with some fixed r, 1 ≤ r ≤ ∞, constant throughout the paper), and in this k independent
smooth vector fields Xi, i = 1, . . . , k, spanning a k-dimensional Lie algebra G. We are
specially interested in the case – and thus we assume – that G is abelian, i.e. [Xi, Xj ] = 0.
We denote by G the connected Lie group generated by G, and by G0 = {exp[εX], X ∈

G, −ε0 < ε < ε0} ⊂ G the local Lie group generated by G; local Lie groups are discussed
e.g. in [8, 13].
We stress that in general G is not compact, and we are not assuming it acts regularly

or with regularly embedded orbits in M .
Suppose now that there is a smooth compact and connected submanifold Λ ⊂M , which

is G-invariant (this means Xi : Λ → TΛ for all i = 1, . . . , k), and such that the Xi are
linearly independent at all points m ∈ Λ. As G is abelian and Λ is compact and connected,
necessarily Λ � T

k (the equivalence being a smooth isomorphism), see e.g. [2]. Note also
that the linear independence of the Xi at all points of Λ implies that they are linearly
independent in a tubular neighbourhood U ⊂M of Λ.
As the Xi are independent on Λ, we can choose coordinates (ϕ1, . . . , ϕk) on Λ (with

ϕi ∈ S1) such that Yi := (∂/∂ϕi), and the loops Γi corresponding to the ϕi coordinate
running from 0 to 2π while the others remain constant can be chosen as basis cycles in Λ.
The homotopy class of a loop γ, which we will denote as h(γ) = α = (α1, . . . , αk) ∈ Z

k

(we also write hi(γ) = αi), counts the winding of γ around the basis cycles of Λ; with
the choices mentioned above and this notation, αi = hi(γ) is just the increase of ϕi/(2π)
along the path γ.
The following lemma is well known, but we will however give a proof of it, also in order

to fix some notation.
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Lemma 1. Take any loop γ̃ and any point m ∈ Λ. Then there is a loop γ with h(γ̃) = h(γ),
which is the orbit through m of a vector field of the form

Xα =
k∑

i=1

ci(α)Xi (1)

with suitable ci(α) ∈ R.

Proof. The flow on Λ under the vector field

Xα = 2π
k∑

i=1

αiXi (2)

obeys the equations (dϕi/ds) = 2παi; these obviously have the solution

ϕi(s) = ϕi(0) + 2παis. (3)

For s ∈ [0, 1] this describes a loop γ in Λ with homotopy class h(γ) = α. Thus for
a given path γ̃ with homotopy class h(γ̃) = α, equation (2) gives the required vector field,
and equation (3) yields the homotopically equivalent path γ, mentioned in the statement.
Obviously there is such a path through any point m0 = (ϕ1(0), . . . , ϕk(0)) ∈ Λ. Note we
have also determined the coefficients ci(α) appearing in (1): they are just ci(α) = 2παi. �

The notion of monodromy operators is also well known, but we will quickly recall it,
again in order to fix some notation.
Let X be a vector field in M , and assume there is a nontrivial closed orbit γ for X

passing through m ∈ M and having finite period τ ; obviously we can always take τ = 1
by rescaling t or X, or both.
We consider then the total monodromy map TX = exp[τX], which maps the point

x = x(0) ∈M to the point x(τ) on the flow x(t) of X with x(0) = x at time τ . With our
assumption, TX(m) = m for all points m ∈ γ ⊂M .
Let us denote by A(X,m) the linearization of TX at m ∈ γ, i.e. A(X,m) := [DTX ]m. The

A(X,m) is also called the total monodromy operator.
Note that, as the X flow through m is periodic, A(X,m) will always have an eigenspace

tangent to X(m) ∈ TmM and corresponding to an eigenvalue one. We can thus – with no
loss of information – consider the projection of T and A (denoted by P and L respectively)
to a subspace transversal to X(m) in TmM ; we will call them transversal monodromy map
and transversal monodromy operator. (Note this terminology is not standard: in part of
the literature these are defined to be the monodromy map and monodromy operator; the
reader will easily avoid confusion by looking at the dimension of spaces involved.)
The eigenvalues λi of L(X,m) are called characteristic (or Floquet) multipliers; they

carry most of the information needed to study the dynamics defined by X around the
periodic orbit γ.
It is also customary to write L(X,m) = exp[τQ(X,m)]; the eigenvalues χi of Q(X,m),

having the obvious relation λi = exp[τχi] with those of L(X,m), are called, characteristic
(or Floquet) exponents.



54 G Gaeta

Remark 1. It is well known that monodromy operators at different points in γ are
conjugated, so that the spectrum of A(X,m) depends on γ but not on the point m ∈ γ.
Similarly, the monodromy operator based at m ∈ γ around a path γ depends only on the
homotopy class of γ, and not on the actual path. See [3, 7, 15] for details.

It will follow from this remark that in our subsequent discussion – where we will need
only the spectrum of monodromy operators – we can limit to consider vector fields of the
form (1) and correspondingly paths of the form (3), which also sets τ = 1; moreover it is
easy to see that different Xα orbits in Λ are conjugated by a G-action. Note also that the
monodromy map and operator are invariant under a rescaling of X and/or t (recall τ is
the period and hence changes accordingly). Thus when dealing with Xα we will simply
write Tα, Aα and Qα, and call Tα the “time-one map” under Xα.

2 The Poincaré map

Let M be a n-dimensional smooth manifold. As well known, the Poincaré map is defined
in the neighbourhood of (an arbitrary point on) a periodic orbit of the vector field. Let
γ be a nontrivial closed orbit through the point m ∈ M for a smooth vector field X.
Consider a local manifold Σ through m, transversal to γ in m (it is well known that the
Poincaré map does not depend on our choice of Σ, see e.g. [15]).
For Σ0 a suitably small neighbourhood of m in Σ, orbits through points x ∈ Σ0 ⊆ Σ,

x 
= m, first intersect Σ at a point x′, in general with x′ 
= x; the Poincaré map P is then
defined as P (x) = x′ [3, 7, 10, 11, 15, 16]. (We need the restriction to Σ0 ⊆ Σ as the orbit
through x could fail to meet again Σ if x is too far from m.)
For the present discussion it will be convenient to define the Poincaré map in a more

geometric way (see also [7]). We put again the period of the periodic orbit γ for the vector
field X equal to one (just rescale X or t if needed).
Consider a G-invariant neighbourhood U of m in M (note that a G-invariant neigh-

bourhood could fail to exist). As X(m) 
= 0, by the flow box theorem [3] we can choose
in U coordinates (ξ1, . . . , ξn), say with m = (0, . . . , 0), such that X = (∂/∂ξn).
We can, for the sake of simplicity, take Σ to be described by ξn = 0. Note that in

this way – or however identifying locally Σ with its tangent space at m, S ⊂ TmM – the
Poincaré map can also be thought as an application between (open sets in) linear spaces.
Consider then the time-one flow x �→ T (x) of points in Σ0 under X. The point m

is obviously mapped again, by construction, to itself: T (m) = m. Nearby points x =
(ξ1, . . . , ξn−1, 0) are in general not mapped to themselves, and not even mapped back
to Σ. Let π : U → Σ be the projection operator to Σ, given in the ξ coordinates by
π(ξ1, ξ2, . . . , ξn) = (ξ1, . . . , ξn−1, 0); it is clear that the Poincaré map P is described by

P (x) = π[T (x)].

Remark 2. In abstract terms, this description can be reformulated as follows. The
quotient by the X action is well defined in U ; the Poincaré map is nothing else than the
time-one flow map under X, modulo this quotient. This can also be seen as introducing
in U the structure of a fiber bundle (π : U → Σ) over Σ; the vector field X is vertical, and
the Poincaré map is the projection to the base space of the time-one flow under X.
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Let L be the linearization of the Poincaré map at the fixed point m, L = (DP )(m).
This is actually the transversal monodromy operator and, as well known and mentioned
above, the spectrum of L and that of the complete monodromy operator A = (DT )(m)
are closely related. Indeed, let {λ1, . . . , λn−1} be the eigenvalues of L; then the eigenvalues
of A are {λ1, . . . , λn−1;λn = 1}. The last eigenvalue λn = 1 corresponds to the eigenspace
spanned by X(m) in TmM (i.e. to the line ξ1 = · · · = ξn−1 = 0) and is always present, by
construction, in the spectrum of A.

3 The Poincaré–Nekhoroshev map

Let us now come back to consider the case of a G-invariant T
k submanifold Λ ⊂ M (as

this is closed and compact, G-invariance implies G-invariance). Choose a reference point
m ∈ Λ, and a smooth local submanifold Σ ⊂M , transversal to Λ in m.
Consider again a suitably small G-invariant neighbourhood U ⊆ M of m in M ; as

the commuting vector fields Xi (i = 1, . . . , k) are nonzero and linearly independent in m,
by the flow box theorem we can choose local coordinates (ξ1, . . . , ξn) in U such that the
vector fields Xi are written, in these coordinates, as Xi = (∂/∂ξr+i), for i = 1, . . . , k; here
and below, r := n − k. Again for ease of discussion, choose the Σ to be identified by
ξr+1 = · · · = ξn = 0.
We denote now by π : U → Σ the operator of projection to Σ, given in the (ξ1, . . . , ξr)

coordinates by

π(ξ1, . . . , ξr, ξr+1, . . . , ξn) = (ξ1, . . . , ξr; 0, . . . , 0).

The time-one flow under Xα will again define a local map Tα : Σ0 → U , where Σ0 ⊆ Σ
is a suitable small neighbourhood of m in Σ.

Definition. The Poincaré–Nekhoroshev map Pα,m : Σ0 → Σ associated to the vector field
Xα and based at m ∈ Λ is defined in this notation as Pα,m(x) = π[Tα(x)].

Analogously to the standard Poincaré case, this description can be reformulated in
abstract terms.
The quotient by the G action is well defined in U ; the Poincaré map is nothing else

than the time-one flow map under Xα, modulo this quotient.
This can also be seen again as introducing in U the structure of a fiber bundle (π : U →

Σ) over Σ; the vector fields Xi are vertical, and the Poincaré map Pα,m is the projection
to the base space of the time-one flow under Xα.

Remark 3. The key point in this construction is that if we consider a tubular neighbour-
hood N of Λ in M and the Lie group G generated by G, the quotient N/G is ill-defined
except in situations where the G action is known apriori to be pretty simple (regular
orbits); in this case a G-invariant neighbourhood is known to exist, and moreover one can
simply consider the quotient system and apply on this the standard Poincaré theory. On
the other hand, restricting to a neighbourhood of the local smooth manifold Σm we can
always consider the quotient by the local Lie group G0.

Remark 4. Let Z be a contractible neighbourhood in Λ, and define transversal mani-
folds Σm through any point m ∈ Z ⊂ Λ; their union is a open set W . Inside this there
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is a G-invariant neighbourhood W0 ⊆ W of Z which can be seen as a trivial fiber bundle
(µ : W0 → Z) over Z; the vector fields Xi are horizontal in W0 and thus define a field
of horizontal k-planes, i.e. a connection in W0. By Frobenius’ theorem, there are local
smooth k-manifolds in W0 which are everywhere tangent to this field of k-planes and thus
G-invariant.
Remark 5. It should be stressed that the Poincaré–Nekhoroshev map can also be seen as
the composition of two maps in a slightly different way: time-one flow under Xα and the
flow (for a time tb(x) which we do not need to determine) under a vector fieldXb =

∑
i biXi:

indeed, any two points on the same fiber π−1(x) can be joined in this way. It is immediate
from this that the Poincaré–Nekhoroshev map is the composition of two smooth maps,
and is thus itself a smooth map.

We will now consider the linearization Lα,m of the Poincaré–Nekhoroshev map Pα;m

around the fixed point m; we are specially interested in its spectrum.
It turns out that this spectrum is independent of the base point ϕ0 ∈ Λ, i.e. depends

only on the homotopy class α; moreover, it is simply related to the spectrum of the total
monodromy operator Aα,m := (DTα)(m) for Xα.
It is clear that Aα,m always has k eigenvalues equal to one; these correspond to

eigenspaces spanned by the Xi (that is, tangent to Λ) at m. In the ξ coordinates, these
span the subspace ξk+1 = · · · = ξn = 0.
This observation shows immediately the relation between the spectra of Aα,m and of

Lα,m: if the spectrum of Aα,m is given by {λ1, . . . , λr; 1, . . . , 1} (r = n − k), then the
spectrum of Lα,m is given by {λ1, . . . , λr}, and viceversa. (This of course also establish
a relation between the spectra of Lα,m and that of the transversal monodromy operator.)

Lemma 2. Given any two points ϕ0 and ϕ1 in Λ, and any homotopy class α ∈ π1(Λ),
the matrices Lα;ϕ0 and Lα;ϕ1 are conjugated; hence their spectra coincide.

Proof. As recalled above, the spectra of monodromy operators Aα,m only depend on α,
not on m; hence the same holds for the spectra of the linearized Poincaré–Nekhoroshev
maps Lα,m, see above. �

4 Invariant tori

In this section we discuss – to the extent needed for our goals – the relation between
invariant tori and fixed points of the Poincaré–Nekhoroshev map.
We assume that there is a G-invariant submanifoldM0 ⊆M , with Λ ⊆ M0; we denote

by L(0)
α,m and P(0)

α,m the restrictions of Lα,m and Pα,m to M0.

Lemma 3. If L(0)
α,m has no eigenvalue of unit norm, then Λ is an isolated G-invariant

torus in M0.

Proof. Assume there is a G-invariant torus near Λ in M0; it will intersect σm in some
point x 
= m nearm, and necessarily P(0)

α,m(x) = x. However, the condition on the spectrum
of L(0)

α,m implies it is an hyperbolic map, and thus the fixed point m is isolated in σm. This
in turn implies the lemma. �
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Needless to say, if the spectrum of Lα,m (no restriction to M0) does not contain eigen-
values of unit norm, then Λ is isolated in M and not just in M0.
The union of the stable and unstable manifolds for the torus Λ is obviously G-invariant.

Then we have immediately from Lemma 3 the

Corollary. Let H be the union of the stable and unstable manifolds for Λ; then there is
no G-invariant torus near Λ in H.
It is also obvious (and it has been used in the proof of Lemma 3 above) that a G-

invariant torus near Λ corresponds to a fixed point of the Poincaré–Nekhoroshev map;
let us discuss if fixed point of the map correspond to invariant manifolds, and sufficient
conditions for these to be tori.

Lemma 4. Let x ∈ Σm be a fixed point for the Poincaré–Nekhoroshev map Pα,m; then
there is a G-invariant smooth manifold through x.
Proof. If x = m the assertion is trivial, so assume x 
= m. By Remark 4, for Z a neigh-
bourhood of m in Λ there is a well defined local G-invariant manifold Y0 through x; with
the construction introduced there, call y(p) the point Y0 ∩ Σp, p ∈ Z (so y(m) = x).
Note that Pα,m[y(m)] = y(m) implies Pα,m[y(p)] = y(p) for all p ∈ Z. Consider now
an atlas {Zi} of Λ: there is a local G-invariant manifold Yi over each chart Zi, and by
considering Zi ∩Zj it is immediate to check that the transition functions are also smooth.
Hence the Yi blend together to give a smooth manifold Y , G-invariant by construction. �

Let us now consider the case where there is a G-invariant submanifoldMβ ⊂M ; define
σ

(β)
m := Σm ∩Mβ, and note that P[σ(β)

m ] ∩ Σm ⊆ σ
(β)
m . We can thus define the restriction

of the Poincaré–Nekhoroshev map to σ(β)
m , denoted as P(β).

Lemma 5. Let Mβ, σ
(β)
m and P(β)

m be as above, and let x ∈ σm be the unique fixed point
for P(β)

m . Then there is a G-invariant k-torus through x, smoothly equivalent to Λ.

Proof. This follows immediately from the construction used in previous lemma and the
unicity of x: in this case there is a smooth one-to-one correspondence between points of Λ
and points on the G-invariant manifold Y (x). As this is closed and compact, it is also
G-invariant. �

5 Persistence of invariant tori

We want to consider the case where the vector fields Xi depend smoothly on parameters;
we aim at local results in the parameter space, so we will denote these parameters as
ε ∈ E ⊆ E = R

p, and write X(ε)
i . In this case we deal with a smooth manifoldM = E×M ,

which is foliated into G-invariant smooth submanifolds Mε = {ε} ×M �M .
We assume Λ ≡ Λ0 is an invariant torus for all the X

(0)
i and wonder if – and under

which conditions – this persists under perturbation, i.e. if there is some torus Λε, near to
Λ0 and invariant under all the X

(ε)
i , for ε 
= 0 small enough.

Let us recall what is the situation for k = 1, i.e. for a single vector field X(ε) and
a periodic orbit γ0 of the vector field X(0). It is well known that, with an obvious extension
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of the notation considered in Section 2, the Poincaré–Lyapounov theorem states that if the
eigenvalues λi of the transverse monodromy operator L(0) associated to the path γ satisfy
|λi| 
= 1, then the periodic orbit γ is actually part of a continuous p-parameters family
of periodic orbits for X. This amounts essentially to using the implicit function theorem
(see [3, 15] or e.g. [1], or any text in nonlinear analysis) for the Poincaré map, in order
to ensure there is a p-parameters branch of fixed points for it, and recognizing that fixed
points of the Poincaré map corresponds to periodic orbits.
A similar result, the Poincaré–Lyapounov–Nekhoroshev theorem, was obtained

by Nekhoroshev [12] in the case of invariant tori, in terms of the spectra of the Poinca-
ré–Nekhoroshev maps associated to a generating set of homology cycles for the torus Λ.
Although his formulation was for hamiltonian dynamical systems, the theorem holds –
with simple modifications – for general ones, and we will discuss it in this general setting
(see Section 7 below for the hamiltonian case).

Theorem 1 (Nekhoroshev). Let M be a n-dimensional smooth manifold, and E = E0

a neighbourhood of the origin in E = R
p. Let X(ε)

1 , . . . , X
(ε)
k be k smooth vector fields on

M (1 ≤ k ≤ n), smoothly dependent on the p-dimensional parameter ε ∈ E, independent
for all ε ∈ E, and such that [X(ε)

i , X
(ε)
j ] = 0 for all ε ∈ E. We write M = E × M ,

Mε = {ε} ×M , and denote by G(ε) the Lie algebra spanned by the X(ε)
i .

Assume that:
(i) there exists a smooth k-dimensional torus Λ0 ⊂ M0 invariant under all the X

(0)
i ,

and that these are linearly independent at all points of Λ0;
(ii) there is a c ∈ Rk such that the vector field X(0)

c =
∑

i ciX
(0)
i has nontrivial closed

trajectories with finite period τ in Λ0;
(iii) the spectrum of the linear part L(0)

c of the Poincaré-Nekhoroshev map associated
to X(0)

c lies at a distance δ > 0 from the unity.
Then, in a neighbourhood V of Λ0 in M, there is a smooth submanifold N ⊂ V ⊂ M

which is fibered over the domain E with as fibers smooth tori Λε � T
k, smoothly equivalent

to Λ0 and G(ε)-invariant.

Proof. We will focus on a pointm ∈ Λ0; choose a smooth submanifold Σ ⊂ M transversal
to Λ0 in m. By choosing suitable coordinates – basically, those of the tangent space
TmΣ ⊂ TmM – we can identify a neighbourhood Σ0 of m in Σ to a neighbourhood S0 of
the origin in a linear space S.
We define the submanifolds σ(ε) := Σ∩Mε, and let σ

(ε)
0 := Σ0 ∩Mε. In the same way

as Σ0 can be identified with a neighbourhood S0 of the origin in the linear space S, the
manifold σ(ε)

0 can be identified with a neighbourhood U (ε)
0 of the origin in a linear space

Uε = {ε} × U � U ⊂ S.
As the X(ε)

i do not act on the value of ε, the submanifoldsMε are trivially G-invariant,
and by construction Pα,m : σ(ε)

0 → σ(ε). We denote by P(ε)
α,m the restriction of Pα,m to σ(ε)

0 .
It will also be convenient to separate the coordinates in E and those in U � Uε: a point

x ∈ S0 will be denoted by coordinates (ε, u) ∈ E0 × U0 ⊂ E × U = S. Thus we have
coordinates (ϕ, u; ε) with ϕ ∈ T

k, u ∈ U0 ⊂ R
(n−k), and ε ∈ E0 ⊂ R

p. We will write
N = k + r + p = n+ p.
By Lemma 1, we can consider Xα rather than Xc, where π1(c) = α. The discussion of

Section 4 shows that the theorem can be restated in terms of – and proved by studying –
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fixed points of the Poincaré–Nekhoroshev map Pα,m associated to α and based at an
arbitrary point m. We will think of α and m as fixed and omit indices referring to these,
for ease of notation.
As remarked above, we can actually consider the restrictions of the Poincaré–Nekhoro-

shev map to the submanifolds σ(ε); we will thus look for fixed points of P(ε).
Actually, it is convenient to slightly modify this formulation: considering the map

Φ : S0 → S defined by

Φ(x) := x− P(x),

fixed points of the Poincaré–Nekhoroshev map correspond to zeroes of Φ, and we know that
Φ(m) = 0. Passing to the (ε, u) coordinates, we deal with a smooth map Ψ : E0 × U0 →
E × U , defined by Ψ(ε, u) := (ε, u− P(ε)(u)), and its restriction to Uε is therefore

Ψ(ε)(u) :=
(
u− P(ε)(u)

)
.

Consider the r-dimensional linear operator B : U0 → U defined as

B := (
DuΨ(0)

)
m
= I − L(0).

By the implicit function theorem (see e.g. [1]), if Ψ(0)(u0) = 0 and B is invertible, then
there are neighbourhoods Ẽ ⊂ E0 of ε0 = 0 and Ũ ⊂ U0 of u0 = 0, and a smooth map
g : Ẽ → Ũ , such that Ψ(ε, g(ε)) = 0 for all ε ∈ Ẽ; and moreover Ψ(ε, u) = 0 with
(ε, u) ∈ Ẽ × Ũ implies u = g(ε).
In other words, if B : U0 → U is invertible, then there is a unique fixed point of P,

i.e. (ε, g(ε)), on each σ(ε), for ε ∈ Ẽ = E0.
Due to the results of Section 4, this means that there is an invariant torus Λε � T

k,
Λε ⊂ Mε, for each ε ∈ Ẽ, provided B is invertible. However, the eigenvalues βi of B and
λi of L(0) are simply related by βi = 1 − λi, so B is invertible provided λi 
= 1 for all
i = 1, . . . , n. This concludes the proof. �

Remark 6. Note that it is sufficient that there is one closed path with associated mon-
odromy operator satisfying the condition (iii) of the theorem to ensure persistence of
invariant tori.

Remark 7. The theorem and its proof are immediately generalized to the case of infinite
dimensions; see [5] for the hamiltonian case and an application to breathers.

Remark 8. If we consider the general case of M a N -dimensional smooth manifold,
E ⊂ M a p-dimensional manifold, and assume M is foliated by regular G-invariant sub-
manifoldsMε (ε ∈ E), with Λ0 ∈ M0, the theorem remains true. Indeed, our construction
is purely local and is still valid (with E the tangent space to E in ε0 = 0, M � M0).

6 The coordinate approach

So far our discussion has been mainly geometrical; in this section we will translate it into
explicit formulas, making use of the (ϕ, u; ε) coordinates defined above (recall that ϕ ∈ T

k,
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u ∈ U0 ⊂ U = R
r, ε ∈ E0 ⊂ E = R

p) in a neighbourhood V ⊂ M of Λ. We stress that we
do not assume V is G-invariant, nor we use G-adapted coordinates.
As the vector fields Xi ≡ X(ε)

i do not act on the parameters ε, their expression in these
coordinates will be

Xi =
k∑

j=1

f j
i (ϕ, u; ε)

∂

∂ϕj
+

r∑
µ=1

F µ
i (ϕ, u; ε)

∂

∂uµ
.

For ease of notation, from now on summation over repeated indices will be tacitly
understood; latin indices other than 9 will run from 1 to k, while 9 = 1, . . . , p, and greek
indices will run from 1 to r. We also write ∂i := (∂/∂ϕi) and ∂µ := (∂/∂uµ).
The torus Λ ≡ Λ0 corresponds to u = 0, ε = 0, and its invariance guarantees the

vanishing of F m
i (ϕ, 0; 0). Similarly, in Section 1 the coordinates ϕ were chosen so that on

Λ0 we had Xi = (∂/∂ϕi); hence f j
i (ϕ, 0; 0) = δ

j
i .

Expanding Xi at first order in ε and u around Λ, and considering then Xα = ci(α)Xi,
we get

Xα = ci∂i +
[
P̃ j

νu
ν + Q̃j

�ε
�
]
∂j +

[
Ãµ

νu
ν + B̃µ

� ε
�
]
∂µ + h.o.t., (4)

where h.o.t. denotes higher order terms in (u, ε), ci ≡ ci(α), and
P̃ j

µ := c
i (∂f j

i / ∂u
µ); Q̃j

� := c
i (∂f j

i / ∂ε
�);

Ãµ
ν := c

i (∂ψµ
i / ∂u

ν); B̃µ
� := c

i (∂ψµ
i / ∂ε

�). (5)

All partial derivatives are computed on Λ, so that the matrices Ã, B̃, P̃ , Q̃ are function
of ϕ ∈ T

k.
We write ϕi(t) = ϕi

0(t)+ϑ(t), where ϕ
i
0(t) = ϕ

i(0)+ cit and ϑ � O(ε, u). Therefore, as
we keep only first order terms in (ε, u) in the expression for Xα, see (4), we can consider
Ã(ϕ) � Ã(ϕi

0(t)) := Â(t), and similarly for the other matrices. Note that Â and the like
are explicit periodic functions of time.
The linearized flow around Λ under Xα is hence described by

u̇ = Âu+ B̂ε; ϑ̇ = P̂ u+ Q̂ε; ε̇ = 0. (6)

However, for the sake of discussing the Poincaré–Nekhoroshev map only the first equation
is relevant.
Our discussion in the previous section shows that we can actually consider just the

restriction of this dynamics to the space ε = 0, in which case we just deal with

u̇ = Â(t)u, (7)

i.e. a linear ODE in R
r with periodic coefficients. The method of analysis of such equations

is well known (see e.g. [10, 16]), and we briefly recall it.
One considers a fundamental matrix for P̂ (t) (this is built with a set of r independent

solutions); this matrix Θ(t) satisfies Θ̇ = ÂΘ. By Floquet’s theorem [16], it is always
possible to write Θ(t) = M(t) exp[Bt], with M a periodic and B a constant matrix.
Then one performs the change of variables u = M(t) v; using Θ̇ = ÂΘ, and thus Ṁ =
(ÂM −MB), and the existence of M−1, one gets v̇ = Bv.
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With a matrix R of eigenvectors for B, we can further write v = Rw, and get ẇ =
Dw, where D = R−1BR = diag(λ1, . . . , λr). The solution of this is obviously wi(t) =
exp[λit]wi(0) (no sum on i), which yields u(t) =M(t)R(exp[Dt])(R−1)(M−1)(0)u(0).
At time t = T we get u(T ) = Qu(0), where Q = M0R(exp[DT ])R−1M−1

0 , and M0 =
M(0) = M(T ). By definition, Q is the monodromy matrix for (7), and obviously the
spectrum of Q – which is the same as that of B – is just given by µi := exp[λiT ]. The µi

are the characteristic multipliers, and the λi are the characteristic exponents, for (7).

Remark 9. Note that the situation is rather different if we want to compute the Floquet
exponent for ε 
= 0: indeed in this case we deal with an equation of the form u̇ = Au+ b,
with A = A(t) a periodic matrix and b = b(t) a periodic vector function, bµ = B̂µ

� ε
�,

see (6). Proceeding as above we arrive at

ẇ = Dw + f(t), D = diag(λ1, . . . , λr);

here f(t), obtained by the action of periodic matrices on periodic vectors, is still periodic
with the same period T .
If the periods of small u oscillations for ε = 0 are different from T , i.e. if the cha-

racteristic multipliers µi computed above satisfy µi 
= 1, the solution will be of the form
wi(t) = exp[λit]wi(0)+F i(t) (no sum on i) with F i a periodic function; this does not affect
the period maps and the discussion remain valid with the same monodromy matrix Q.
On the other hand, if there is some characteristic multiplier µi = 1, solutions will not

be of the same form, and terms proportional e.g. to t exp[λit] will appear.

Remark 10. It should be stressed that, as clear from the discussion in this section, all
we need to know in order to ensure the conditions of the theorem are satisfied are the
matrices of partial derivatives (∂ψµ

i /∂u
ν) computed at u = 0, ε = 0; they concurr to

form Â, see (5).
This could be understood in a slightly different way: write z = (u, ε) ∈ R

r+p; then the
linearized evolution equations for z read ż =Wz, with

W =
(
Â B̂
0 0

)
;

the spectrum ofW is given by λ = 0 (with multiplicity p) and by the eigenvalues λ1, . . . , λr

of Â. Thus we just have to check these satisfy λi 
= 1.

7 The hamiltonian case

In the hamiltonian case, we consider a symplectic manifold (M2n, ω), and k independent
and mutually commuting hamiltonians H1, . . . , Hk (commutation is meant, of course,
with respect to the Poisson bracket {·, ·} defined by the symplectic form ω). Each of
these defines a (hamiltonian) vector field Xi by iX(ω) = dHi, and {Hi, Hj} = 0 implies
[Xi, Xj ] = 0. We denote by G the abelian Lie algebra spanned by the Xi, and by G its
Lie group.
Note that the (H1, . . . , Hk) are common constants of motion for any dynamics defined

by a linear combination of the Hi (equivalently, of the vector fields Xi), so that their values
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(h1, . . . , hk) can be seen as parameters. We denote the common level manifold Hi = hi by
H−1(h).
If there exists a G-invariant torus Λ0 ⊂ M, his is necessarily contained in H−1(h0) for

some h0 ∈ R
k; we write then hi = hi

0+ ε
i. We also assume the Xi are independent on Λ0.

We are thus exactly in the scheme discussed in previous sections, with p = k.

Remark 11. Note that, using freely the notation introduced above, the variables canon-
ically conjugated to the (ϕ1, . . . , ϕk) via the symplectic structure are proportional to the
(ε1, . . . , εk); this also implies that the characeristic multipliers relative to eigenvectors in
the space TΛE ⊂ TΛM are the same as those relative to eigenvectors in TΛΛ ⊂ TΛM,
i.e. are all equal to one.
However, this is no problem as far as Nekhoroshev theorem is concerned: the eigenvalues

relative to the parameter space do not affect the spectrum of the operator B, see Section 5.
Actually Nekhoroshev’s result [12] also include a second part, also referred to as the

Liouville–Arnold–Nekhoroshev theorem, concerning the possibility of defining action-angle
coordinates in the symplectic submanifold N ⊂ M fibered by invariant isotropic tori;
needless to say this second part is purely hamiltonian. Note that here we need that all
monodromy operators associated to basis cycles are to be nondegenerate in the sense
of (iii) in order to be able to extend action-angle coordinates (compare with Remark 6).
For a detailed discussion – and proof – of the Poincaré–Lyapounov–Nekhoroshev theo-

rem in the hamiltonian case the reader is referred to [4, 9].

8 Bifurcation from an invariant torus

The Poincaré–Nekhoroshev map can be discussed in the same way as the standard Poincaré
map (or any map between open sets in real spaces); this includes in particular its bifur-
cations when external parameters are varied. In this section we illustrate the picture
emerging from such a discussion when we deal with a single parameter ε ∈ E ⊆ R (thus
p = 1). Essentially we are just interpreting the discussion of [3] (section 34) on bifurcation
of fixed points of the Poincaré map in the present frame, so we will be rather sketchy.
We assume that there is a fixed point u0(ε) = 0 for all values of ε ∈ E0 ⊆ E , stable

for ε < 0 and loosing stability at ε > 0. This corresponds, for the full dynamics, to
a (parameter-dependent) invariant torus Λ0(ε) = T

k, which is transversally hyperbolically
stable for ε < 0 and looses stability for ε > 0. This implies that some eigenvalues µi(ε) of
the map P(ε) satisfy |µi(0)| = 1 .
Let us make standard bifurcation hypotheses, i.e.: (i) the existence of a dynamically

invariant neighbourhood of u0 for all values of ε ∈ E0; (ii) trasversality for the critical
eigenvalues µi(ε), i.e. d|µi|/dε 
= 0 at ε = 0; (iii) non-degeneracy of the spectrum of the
map at the critical point (for generic dynamics, this means that there is only a pair of
complex conjugate complex critical eigenvalues, or a single real one); (iv) split property
of the spectrum: non-critical eigenvalues lie at a finite distance δ > 0 from the unit circle
at ε = 0.
With these, it is known that there are three elementary types of bifurcation, charac-

terized by the value of the critical eigenvalues µi(ε), i.e. of the eigenvalues µi:

(a) µ(0) = −1;
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(b) µ(0) = 1;
(c) µ(0) = cos(α)± i sin(α) (α 
= kπ).

Case (a) corresponds to the appearance of two new (branches of) stable fixed points
u±(ε) for the map; these corresponds to a bifurcation of the invariant torus Λ0(ε) � T

k

into two new (branches of) stable tori Λ±(ε) � T
k. For ε → 0+, u±(ε) → u0(ε), and

similarly Λ±(ε)→ Λ0(ε).
Case (b) corresponds to the appearance of two period-two points u±(ε), such that P(ε) :

u±(ε)→ u∓(ε). This is a period-doubling bifurcation, and corresponds to the appearance
of a single invariant torus Λd(ε). For ε → 0+, u±(ε) → u0(ε), and Λd(ε) → Λ0(ε).
For ε > 0 sufficiently small, Λd(ε) lies near enough to Λ0 to make sense to consider its
intersection with the transversal local manifolds to Λ0, and it has two such intersections
on each σ(ε), given indeed by u±(ε).
Case (c) is the most interesting; we can consider 2π/α irrational, as the rational case

is structurally unstable (see e.g. the discussion in [3]). In this case we get a full circle of
fixed points uϑ(ε) (ϑ ∈ S1) for the Poincaré–Nekhoroshev map. This corresponds to the
appearance of a new stable torus Λ1(ε) � T

k+1, of dimension greater than that of the
original invariant torus. This is the analogue of the bifurcation of an invariant torus off
a periodic solution.

Remark 12. If we discuss the (nongeneric) symmetric case, i.e. if we assume that there is
an algebra – no matter if abelian or otherwise – of vector fields H commuting with G, then
the nondegeneracy assumption (iii) should be meant in the sense that only the degeneracy
imposed by the symmetry constraint is present in the critical spectrum, see [14]. In
this case there will be a multiplicity if critical eigenvalues which in case (c) can lead to
a bifurcation in which the new stable torus is Λ1(ε) � T

k+s with s > 1.
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