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Abstract

In this letter we present the set of invariant difference equations and meshes which
preserve the Lie group symmetries of the equation ut = (K(u)ux)x+Q(u). All special
cases of K(u) and Q(u) that extend the symmetry group admitted by the differential
equation are considered. This paper completes the paper [J. Phys. A: Math. Gen.
30, Nr. 23 (1997), 8139–8155], where a few invariant models for heat transfer equations
were presented.

1 Introduction

Symmetries are fundamental features of the differential equations of mathematical physics.
It yield a number of useful properties such as integrability of ODEs, symmetry reduction
of PDEs, existence of various types invariant solutions, conservation laws for the invariant
variational problems etc. Therefore, preserving symmetries in discrete schemes, we retain
qualitative properties of the underlying differential equations.

The purpose of this paper is to develop the entire set of invariant difference schemes
for the heat transfer equation

ut = (K(u)ux)x +Q(u), (1.1)

for all special cases of the coefficients K(u), Q(u) which extend the symmetry group
admitted by equation (1.1). This paper is based on the Lie group classification [4] (see
also [1]) of the equation (1.1) with arbitrary K(u) and Q(u). This classification contains
the result of L V Ovsyannikov [17] for equation (1.1) with Q ≡ 0 as well as symmetries of
the linear case K ≡ 1, Q ≡ 0, which were known by S Lie.

A few examples of the invariant difference schemes and meshes were considered in [2].
In the present paper we complete the paper [2] going through all cases of K(u) and Q(u)
identified in the group classification [4], we construct difference equations and meshes
(lattices) which admit the same Lie groups of point transformations as their continuous
limits.
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Lie group analysis of difference equations is a very active field of research where many
contributions were done, and various approaches were applied by several authors (see [18]).
In our approach which we are following in this paper we pose the question: How does one
discretize a differential equation while preserving all of its Lie point symmetries? Thus
a differential equation and its Lie group symmetry are a priory given but not a difference
model. One then looks for a difference scheme, i.e. a difference equation and a mesh, that
have the same symmetry group and the same Lie algebra. The basic steps in this direction
were done [5, 6, 7, 8, 9, 10, 11], which were summarized in a recent book [12]. The main
idea is that the invariant difference equations and meshes can be constructed with the
help of the entire set of difference invariants of the corresponding Lie group. In the next
section we explain how to construct difference models that conserve the whole group of
point transformations admitted by the differential equations.

The article is organized as follows. Section 2 provides a brief overview of the invariant
discretization procedure. In Sections 3, 4, 5 and 6 we consider the cases of an arbitrary
heat transfer coefficient K(u), the exponential heat transfer coefficient eu, the power heat
transfer coefficient uσ and the special case of power heat transfer coefficient: u−4/3 corres-
pondingly.

Section 7 is devoted to the linear heat conductivity with a source. In particular, this
section covers detailed study of the invariant difference scheme for the linear heat equation
without a source (Q = 0) including such aspects as superposition principle, reduction of
the invariant scheme on the optimal system of subalgebras and the way to transform the
moving mesh scheme into a stationary one. Notice that in the paper [19] there were
considered some difference approximations of the linear heat transfer equation, which
preserve its different symmetries on different meshes. In [19] a difference equation and
a mesh are a priori given, then it was shown that for some kind of the mesh there were
preserved some symmetries of the linear heat equation and another meshes preserve other
parts of the symmetries. Thus, there are no difference schemes which conserve the entire
set of symmetries in one difference model. In Section 7 we will develop the difference mesh
and difference equation, which conserve the complete set of original symmetries in the one
and the same difference scheme.

The same approach we will apply for some tens of other nonlinear models of heat
equation (1.1). Summarizing conclusions end up the consideration of the entire set of
invariant schemes for the equation (1.1).

2 Symmetry preserving discretization procedure

1. Let us briefly describe this method, which was called the method of finite-difference
invariants [6].

Let the differential equation

F (t, x, u, ut, ux, . . .) = 0 (2.1)

admit a known symmetry group Gn, whose Lie algebra is spanned by the operators
X1, . . . , Xn of the form

Xi = ξt
i

∂

∂t
+ ξx

i

∂

∂x
+ ηi

∂

∂u
, i = 1, . . . , n, (2.2)
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where the coefficients ξx, ξt and η are functions of t, x, u, since we consider Lie point
symmetries.

Then we would like to propose a discrete model

F (z) = 0,
Ω(z, h) = 0, (2.3)

where the first equation is the approximation of the initial differential equation and the
second one defines a difference mesh. Both of these equations a priori are not given and
we have to establish the invariant mesh, on which we should approximate the original heat
equation. We will show, that in all special cases of equation (1.1) one can construct the
system (2.3), starting from the entire set of finite-difference invariants of the corresponding
Lie group.

We denote by z in (2.3) a finite number of difference variables, which are used in the
considered difference stencil, i.e. a finite number of mesh points, which are needed for
the approximation of the differential equation (2.1). The equations (2.3) can be explicitly
connected with each other (if invariant mesh depends on solution) or not. In the last case
we can choose the invariant mesh firstly (for example, a fixed mesh) and then construct
the invariant approximation of the original equation. If a mesh depends on the solution,
all specifications of the mesh made in advance lead to restrictions on the symmetries which
may be admitted by the considered discrete models.

2. The idea of the method of finite-difference invariants springs from the invariant
representation of differential equations. In the continuous case for the group Gn we can
find the complete set of functionally independent differential invariants J = (J1, J2, . . . , Jk)
in the specified space which contains dependent and independent variables as well as the
set of derivatives up to the highest derivatives involved in the formulation of the PDE [15].
For the heat equation (1.1) we consider the space M ∼ (t, x, u, ut, ux, uxx). We prolong
the operator (2.2) on the variables of the space M

pr X = X + ζt ∂

∂ut
+ ζx ∂

∂ux
+ ζxx ∂

∂uxx
,

with

ζt = Dt(η)− utDt(ξt)− uxDt(ξx), ζx = Dx(η)− utDx(ξt)− uxDx(ξx),
ζxx = Dx(ζx)− utxDx(ξt)− uxxDx(ξx),

where Dt and Dx are the total derivative operators for time and space correspondingly.
Differential invariants are solutions of the system of linear equations

pr Xi Φ(t, x, u, ut, ux, uxx) = 0, i = 1, . . . , n,

and can be solved by standard procedure (see [15]).
Then we represent the invariant differential equation in terms of these invariants

F̃ (J1, J2, . . . , Jk) = 0.

The obtained equation is invariant with respect to the group Gn.
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3. In the discrete case the situation is more complicated. Any given differential equa-
tion can be approximated by means of infinitely many difference equations and meshes,
which have the original differential equation as its continuous limit. The requirement of
preservation of Lie group properties of the differential equation in its discrete counterpart
still leaves some freedom in the approximations. Thus, as it can be seen recently, at some
point we have to make a chose among the general family of invariant meshes.

The structure of the admitted group essentially effects on construction of equations and
meshes. Group transformations can break the geometric structure of the difference mesh
that influences approximation and other properties of difference equations. First steps to
the construction of the difference grids geometry based on the symmetries of the initial
difference model were done in [5, 6, 7, 9]. There were found classes of transformations
that conserve uniformity, orthogonality and other properties of the grids.

It was shown [5, 6, 7, 9] that a transformation defined by (2.2) conserves uniformity of
a mesh in t and x directions if and only if

D
+τ

D−τ
(ξt) = 0, (2.4)

D
+h

D
−h
(ξx) = 0, (2.5)

where D±τ
and D

±h
denote total difference derivatives in the time and space directions with

steps τ and h correspondingly.
For an orthogonal mesh to be conserved under the transformation, it is necessary and

sufficient that

D
+h
(ξt) = −D

+τ
(ξx). (2.6)

When condition (2.6) is not satisfied for a given group, the flatness of the layer of a grid
in some direction is rather important. For evolution equations it is significant to have flat
time layers. There is a simple criterion of the invariance of flat time layers under the
action of a given operator (2.2):

D
±h

D
+τ
(ξt) = 0. (2.7)

These condition specify invariant geometry of grids for the given Lie group symmetries.
If the operator coefficients ξt, ξx do not depend on solution, then we can choose the

invariant mesh as any solution of corresponding condition (2.4)–(2.7). Otherwise the
conditions (2.4)–(2.7) should hold on the solutions of the considered difference model. In
that case we can figure a mesh out starting from the set of difference invariants.

Further we choose a stencil which is sufficient to approximate all derivatives which
appear in the equation. We will consider six-point stencils which have three points on
each of two time layers. Such stencils allow us to write down both explicit and implicit
difference schemes. For different transformation groups we will consider different meshes:
orthogonal mesh which is uniform in space, orthogonal mesh which is nonuniform in space
and nonorthogonal in time-space mesh, i.e. moving mesh. The corresponding stencils
are different. Furthermore, the corresponding spaces of discrete variables are of different
dimensions so that they have different number of difference invariants I = (I1, I2, . . . , Il)
for the same Lie group Gn.
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For example, let us take an orthogonal mesh which is uniform in space. (We will
describe later for which groups this mesh can be considered.) The stencil of this mesh is
shown in Fig. 1.

�

� �

��

�
(x− h, t̂, û−) (x, t̂, û) (x+ h, t̂, û+)

(x− h, t, u−) (x, t, u) (x+ h, t, u+)

Figure 1. The stencil of the orthogonal mesh.

The corresponding discrete subspace is ten-dimensional: M ∼ (t, x, τ, h, u, u−, u+, û,
û−, û+), where τ = t̂− t. The prolonged operator (2.2) in this subspace has the form

pr X = ξt ∂

∂t
+ ξx ∂

∂x
+ (ξ̂t − ξt)

∂

∂τ
+ (ξx

+ − ξx)
∂

∂h

+ η
∂

∂u
+ η−

∂

∂u−
+ η+

∂

∂u+
+ η̂

∂

∂û
+ η̂−

∂

∂û−
+ η̂+

∂

∂û+
,

where we use time and space shifts notations f̂ = f(t + τ, x, u), f− = f(t, x − h, u),
f+ = f(t, x+ h, u). The number of functionally independent invariants is given by

l = dimM − rank Z, l ≥ 0, (2.8)

with dimM = 10 and the matrix Z composed by the coefficients of the prolonged on the
space M operators

Z =




ξt
1 ξx

1 (ξ̂x
1 − ξx

1 ) ((ξx
1 )+ − ξx

1 ) η1 · · · (η̂1)+
...
ξt
n ξx

n (ξ̂x
n − ξx

n) ((ξx
n)+ − ξx

n) ηn · · · (η̂n)+


 .

Having found the finite-difference invariants as the solutions of system of linear equa-
tions

pr Xi Φ(t, x, τ, h, u, u−, u+, û, û−, û+) = 0, i = 1, . . . , n,

we can use them to approximate the differential invariants

Jj = fj(I1, I2, . . . , Il) +O(τα, hβ), j = 1, . . . , k,

where α and β define some fixed order of approximation. Notice, that approximation error
O(τα, hβ) is invariant together with other terms in the above representation. Substitution
of difference invariants Ii instead of differential ones Ji into the function F̃ provides us with
an invariant difference scheme. Practically we can often omit the representation of the
differential equation in terms of its invariants and just approximate the original differential
equation by the finite-difference invariants. The use of finite difference invariants is the
main point in both ways.
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So, the first step in the invariant approximation is the choice of the invariant mesh.
The last step is the choice of the invariant discretization of the original equation on the
invariant mesh.

The described above method is algorithmic. We would like to stress that the invariant
approximation in our way is still not unique. For example extending the stencil (means
enlarging the number of mesh points involved in approximation) we can find invariant
approximations of any higher order.

3 An arbitrary heat transfer coefficient K(u)

Now we start to develop invariant schemes going throw all cases of the Lie group classifi-
cation [4]. Let us note that the group classification of the equation (1.1) was done in [4]
(see also [1]) up to equivalent transformations:

t̄ = at+ e, x̄ = bx+ f, ū = cu+ g, K̄ =
b2

a
K, Q̄ =

c

a
Q, (3.1)

where a, b, c, e, f and g are arbitrary constants, abc �= 0. These transformations do not
change differential structure of the equation (1.1), transforming an admitted group into
a similar group of point transformations.

1. We start from general case, when the coefficients K(u) and Q(u) are arbitrary.
Then the equation (1.1) admits a two parameter group of translations only. This group is
defined by the following infinitesimal operators:

X1 =
∂

∂t
, X2 =

∂

∂x
, (3.2)

which generate the translations of independent variables. In this case almost no limits are
imposed on a mesh and a difference equation. In particular, we can use an orthogonal
grid in the plane (x, t) which is regular in both directions, as the conditions (2.4)–(2.6)
are valid for the operators (3.2).

The group with operators (3.2) in the subspace (x, t, h, τ, u, u−, u+, û, û−, û+) corres-
ponding to the stencil shown in Fig. 1 has eight invariants:

τ, h, u, u+, u−, û, û−, û+.

That is why any difference approximation of the equation (1.1) by the above invariants
could give difference equation which admits the operators (3.2). For example, the explicit
model

û− u

τ
=

1
h

(
K

(
u+ + u

2

)
u
h

x −K

(
u+ u−

2

)
u
h

x̄

)
+Q(u), (3.3)

where K(u) and Q(u) represent any approximation of the corresponding coefficients by
invariants and u

h
x = u+−u

h , u
h

x̄ = u−u−
h are right and left difference derivatives, admits the

operators (3.2).
2. If K(u) is arbitrary function and Q(u) ≡ 0, the equation

ut = (K(u)ux)x (3.4)
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admits a three-parameter algebra of operators (see [17]):

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2t

∂

∂t
+ x

∂

∂x
. (3.5)

This case is almost analogous to the previous one. The operators (3.5) do not violate
conditions of invariant orthogonality (2.6) and invariant uniformity of a grid (2.4), (2.5).
Thus, in this case we could use the orthogonal grid shown in Fig. 1. Any approximation
of the equation (3.4) by the seven invariants

h2

τ
, u, u+, u−, û, û−, û+

gives an invariant model for the equation (3.4). In particular the explicit scheme (3.3)
with Q ≡ 0:

û− u

τ
=

1
h

(
K

(
u+ + u

2

)
u
h

x −K

(
u+ u−

2

)
u
h

x̄

)
(3.6)

can be used.

4 The exponential heat transfer coefficient K = eu

In this paragraph we consider three cases of group classification for K = eu, in accordance
with [4] and [17].

1. If Q = 0 then the equation

ut = (euux)x (4.1)

admits a four-dimensional algebra of infinitesimal operators:

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2t

∂

∂t
+ x

∂

∂x
, X4 = t

∂

∂t
− ∂

∂u
. (4.2)

As in the cases considered above, conditions of invariant uniformity and invariant or-
thogonality are valid. A difference model for the equation (4.1) can be constructed by
approximation of the differential equation with the help of difference invariants:

eu τ

h2
, (û− u), (u+ − u), (u− u−), (û+ − û), (û− û−).

An example is the simple explicit difference model:

û− u

τ
=

1
h

(
exp

(
u+ + u

2

)
u
h

x − exp
(
u+ u−

2

)
u
h

x̄

)
, (4.3)

but one has a lot of freedom to construct invariant schemes using the finite-difference
invariants.

2. For Q = δ = ±1 we have a possibility to exclude the constant source from the
equation

ut = (euux)x + δ (4.4)
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by change of variables:

ū = u− δt, t̄ = δ(eδt − 1). (4.5)

The equation (4.4) will be transformed into the equation (4.1) by this change, but the
uniformity of the grid in the t-direction is destroyed. The equation (4.4) admits the four-
dimensional algebra of infinitesimal operators:

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = e−δt ∂

∂t
+ δe−δt ∂

∂u
, X4 = x

∂

∂x
+ 2

∂

∂u
, (4.6)

and we can easily see that the operator X3 does not conserve uniformity of a grid in the
time direction. The finite-difference invariants:

eu(eδτ − 1)
h2

, (û− u− δτ), (u+ − u), (u− u−), (û+ − û), (û− û−)

permit us to construct the following variant of difference model for the equation (4.4):

δ(û− u)− τ

eδτ − 1
=

1
h

(
exp

(
u+ + u

2

)
u
h

x − exp
(
u+ u−

2

)
u
h

x̄

)
. (4.7)

Let us note that the change of variables (4.5) transforms the model (4.7) considered on
the orthogonal grid with the time interval [0, T ], given by the formula

tn = δ ln
(
1 +

n

k

(
eδT − 1

))
, n = 0, . . . , k, (4.8)

where k is the number of time steps of the grid, into the model (4.3) with uniform time
grid on the time interval

[
0, δ

(
eδT − 1

) ]
.

3. If Q = ±eαu, α �= 0 the equation

ut = (euux)x ± eαu (4.9)

admits 3 infinitesimal operators:

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2αt

∂

∂t
+ (α− 1)x

∂

∂x
− 2

∂

∂u
. (4.10)

These operators satisfy the conditions of orthogonality and uniformity of invariant grids
and we will consider the stencil of Fig. 1. Any approximation of the equation (4.9) by the
finite-difference invariants

τ
α−1
2α

h
, eαuτ, (û− u), (u+ − u), (u− u−), (û+ − û), (û− û−)

gives a variant of a difference model for the equation (4.9), admitting the symmetries
(4.10), for example, we obtain the following model:

û− u

τ
=

1
h

(
exp

(
u+ + u

2

)
u
h

x − exp
(
u+ u−

2

)
u
h

x̄

)
± eαu. (4.11)
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4. In accordance with group classification [4] we will also consider the case Q = ±eu+δ,
δ = ±1. As in the case 2 we have the possibility to exclude the constant source from the
equation

ut = (euux)x ± eu + δ (4.12)

by the change of variables (4.5). The equation (4.12) will be transformed into the equa-
tion (4.9). The equation (4.12) admits the following infinitesimal operators:

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = e−δt ∂

∂t
+ δe−δt ∂

∂u
. (4.13)

Finite-difference invariants of (4.13)

eu(eδτ − 1), h, (û− u− δτ), (u+ − u), (u− u−), (û+ − û), (û− û−)

permit to construct the following variant of the difference model

δ(û− u)− τ

eδτ − 1
=

1
h

(
exp

(
u+ + u

2

)
u
h

x − exp
(
u+ u−

2

)
u
h

x̄

)
± eu (4.14)

on the invariant grid (4.8). The model for the considered equation can be obtained from
the model (4.11) with the help of the transformation (4.5).

5 The power heat transfer coefficient: K = uσ, σ �= 0, −4
3

For K = uσ further classification depends on the source.
1. Let us start with the simplest case Q ≡ 0:

ut = (uσux)x. (5.1)

Symmetries of the equation (5.1) are described by the four-dimensional algebra of
infinitesimal operators (see [17]):

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2t

∂

∂t
+ x

∂

∂x
, X4 = σx

∂

∂x
+ 2u

∂

∂u
. (5.2)

With any σ the operators (5.2) conserve uniformity and orthogonality of a grid. The
finite-difference invariants corresponding to the stencil of Fig. 1 are

uσ τ

h2
,

û

u
,

u+

u
,

u−
u
,

û+

û
,

û−
û
.

They permit us to write, for example, the following variant of the difference model on the
orthogonal uniform mesh in both directions:

û− u

τ
=

1
h

((
u+ + u

2

)σ

u
h

x −
(
u+ u−

2

)σ

u
h

x̄

)
. (5.3)

Orthogonal grid is not the only possible way for discrete modeling. On the example
of the equation (5.1) we will show how to introduce a moving mesh of the form shown in
Fig. 2.
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✂
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✆
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✁
✁
✁

❇
❇
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❇
❇

❇❇
✁
✁
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✄
✄
✄

✆
✆
✆✆

❊
❊
❊❊

❊
❊
❊❊

� � �

� � �

t

x

Figure 2. A moving mesh with flat time-layers.

One can use an adaptive grid defined by an evolution equation (see also [3])

dx

dt
= ϕ(t, x, u, ux). (5.4)

In this case the heat transfer equation will take the form

du

dt
= (uσux)x + ϕ(t, x, u, ux)ux. (5.5)

Different requirements could be imposed on the function ϕ. If we require invariance
of the equation (5.4) with respect to the whole set of the operators (5.2), our freedom to
chose ϕ is limited by the function

ϕ = Cuσ−1ux, C = const.

Below we show how to introduce Lagrangian type of evolution dx
dt . Let us note that the

equation (5.1) has a form of the conservation law that presents the conservation of heat.
Hence we can search for a moving mesh of Lagrange type which evolves in accordance
with heat diffusion. We should find an evolution dx

dt which satisfies the equation

d

dt

∫ x2(t)

x1(t)
u dx = 0.

Since

d

dt

∫ x2

x1
u dx =

∫ x2

x1

∂u

∂t
dx+

[
u
dx

dt

]x2

x1

=
[
uσux + u

dx

dt

]x2

x1

we obtain the evolution dx
dt = −uσ−1ux. Note that this evolution is invariant with respect

to the operators (5.2). Our initial differential equation (5.1) can now be presented in the
form of the system

dx

dt
= −uσ−1ux,

du

dt
= uσuxx + (σ − 1)uσ−1u2

x. (5.6)
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Let us mention that the equation (5.1) has two conservation laws

ut = (uσux)x and (xu)t =
(
xuσux − uσ+1

σ + 1

)
x

.

For the evolution system (5.6) it is convenient to present the conservation laws in the
integral form

d

dt

∫ x2(t)

x1(t)
u dx = 0,

d

dt

∫ x2(t)

x1(t)
xu dx = − uσ+1

σ + 1

∣∣∣∣
x2

x1

. (5.7)

For difference modeling of the system (5.6) we can consider the stencil shown in Fig. 3.

✁
✁
✁
✁

�

� �

��

�
(x̂− ĥ−, t̂, û−) (x̂, t̂, û) (x̂+ ĥ+, t̂, û+)

(x, t, u) (x+ h+, t, u+)(x− h−, t, u−)

Figure 3. The stencil of the evolutionary mesh.

In the space of the variables (t, x, τ, h+, h−, ĥ+, ĥ−,∆x, u, u+, u−, û, û+, û−) correspon-
ding to this stencil there are ten finite-difference invariants:

uσ τ

h+2
,

û

u
,

u+

u
,

u−
u
,

û+

û
,

û−
û
,

h−

h+
,

ĥ−

h+
,

ĥ+

h+
,

∆x
h+

.

Approximating the system (5.6) by these invariants we can get, for example, the system
of two equations:

∆x
τ

= − 1
2σ

(
uσ

+ − uσ

h+
+
uσ − uσ−

h−

)
,

û+ û+

2
ĥ+ =

u+ u+

2
h+, (5.8)

where we approximated the heat conservation law to obtain the equation for the solution u.
The first equation of system (5.6) shows that the evolution of x depends on the solu-

tion. The system (5.8) may be inconvenient for computations because steplength will be
changed automatically and the nature of this process is not clear. In order to avoid this
indeterminacy we introduce a new space variable which values characterize the evolution
trajectories of x. Let us consider the variable s defined by the system:

st = uσux, sx = u.

It is easy to see that each trajectory of x is prescribed by a fixed value of s since

ds

dt
= st + sx

dx

dt
= uσux − u

1
σ
(uσ)x = 0.

In a new coordinate system with the independent variables (t, s) the equation (5.1) has
the form(

1
u

)
t

= −(uσus)s (5.9)
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and the former space variable x satisfies

xt = −uσus, xs =
1
u
. (5.10)

For discrete modeling of the equation (5.1) one can use the equation (5.9) in the new
independent variables (t, s) to describe the diffusion process and the first equation of the
system (5.10) to trace the evolution of the coordinate x. The equation (5.9) considered
together with the system (5.10) admits the following symmetries

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂s
, X4 = 2t

∂

∂t
+ s

∂

∂s
+ x

∂

∂x
,

X5 = (σ + 2)s
∂

∂s
+ σx

∂

∂x
+ 2u

∂

∂u
. (5.11)

In the new variables (t, s) the stencil becomes orthogonal so that there is no need to
consider a nonuniform grid in the variable s. There are following invariants for this set of
operators in the space (t, τ, s, hs, x, h

+
x , h

−
x , ĥ

+
x , ĥ

−
x ,∆x, u, u+, u−, û, û+, û−) corresponding

to the orthogonal stencil in (t, s) extended by additional dependent variable x:

uσ τ

h+2
x

,
û

u
,

u+

u
,

u−
u
,

û+

û
,

û−
û
,

h−x
h+

x
,

ĥ−x
h+

x
,

ĥ+
x

h+
x
,

∆x
h+

x
,

hs

h+
x
.

By means of these invariants we get an approximation of (5.9) which has the form of
a conservation law

1
τ

(
1
û
− 1
u

)
= − α

σ + 1

(
uσ+1

+ − 2uσ+1 + uσ+1
−

h2
s

)

− 1− α

σ + 1

(
ûσ+1

+ − 2ûσ+1 + ûσ+1
−

h2
s

)
, (5.12)

where 0 ≤ α ≤ 1. Note that in the coordinates (t, s) variable x is introduced by the
system (5.10) as a potential for the equation (5.9). Similarly we can introduce x as
a discrete potential with the help of the system

∆x
τ

= − α

σ + 1

(
uσ+1

+ − uσ+1
−

2hs

)
− 1− α

σ + 1

(
ûσ+1

+ − ûσ+1
−

2hs

)
.

h+
x

hs
=

1
2

(
1
u
+

1
u+

)
. (5.13)

In computations only the equation (5.12) and the first equation of (5.13) are needed.
The second equation of the system (5.13) is needed only to establish the connection bet-
ween solutions u(x) and u(s) for a fixed time. Given some initial data u(0, x) = u0(x), we
choose an appropriate steplength hs for the Lagrangian mass coordinate s. Then we can
introduce the mesh points xi in the original coordinates satisfying

xi+1 − xi

hs
=

1
2

(
1

u0(xi)
+

1
u0(xi+1)

)
,
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i.e., we use this equation to establish difference relation between the original space coor-
dinate x and the Lagrangian mass coordinate s. Computing the solution with the help of
the numerical scheme (5.12) and the first equation of (5.13), we preserve the relation

xi+1 − xi

hs
=

1
2

(
1
ui

+
1

ui+1

)
.

Introducing the mass type variable s, we can rewrite the conservation laws (5.7) as

∂

∂t

∫ s2

s1
ds = 0,

∂

∂t

∫ s2

s1
x ds = − uσ+1

σ + 1

∣∣∣∣
s2

s1

.

The proposed discrete model possesses difference analogs of these conservation laws

N−1∑
i=1

hs = const,

N−1∑
i=1

x̂i + x̂i+1

2
hs −

N−1∑
i=1

xi + xi+1

2
hs = − α

σ + 1

(
uσ+1

N+1 + uσ+1
N

2

)

− 1− α

σ + 1

(
ûσ+1

N+1 + ûσ+1
N

2

)
+

α

σ + 1

(
uσ+1
−1 + uσ+1

0

2

)
+
1− α

σ + 1

(
ûσ+1
−1 + ûσ+1

0

2

)
.

Let us mention that for computations we need to propose some method for the boundary
points.

2. Q = δu, δ = ±1. In this case the symmetry of the equation

ut = (uσux)x + δu (5.14)

is described by the following infinitesimal operators:

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = σx

∂

∂x
+ 2u

∂

∂u
,

X4 = e−δσt ∂

∂t
+ δe−δσtu

∂

∂u
. (5.15)

By the change of variables

ū = ue−δt, t̄ =
δ

σ
(eδσt − 1) (5.16)

the equation (5.14) is transformed into the equation (5.1).
The finite-difference invariants

uσ(eδστ − 1)
h2

,

(
δ ln

û

u
− τ

)
,

u+

u
,

u−
u
,

û+

û
,

û−
û

give the following possibility for an explicit difference model

σu

eδστ − 1

(
δ ln

û

u
− τ

)
=

1
h

((
u+ + u

2

)σ

u
h

x −
(
u+ u−

2

)σ

u
h

x̄

)
. (5.17)
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Let us remark that the change of variables (5.16) transforms this equation considered on
the orthogonal mesh with time layers

tn =
δ

σ
ln

(
1 +

n

k

(
eδσT − 1

))
, n = 0, . . . , k, (5.18)

which fill the time interval [0, T ], into the equation (5.3) on the uniform grid on the time
interval

[
0, δ

σ

(
eδσT − 1

)]
.

3. Q = ±uσ+1 + δun, δ = ±1. The equation
ut = (uσux)x ± un, σ, n = const, (5.19)

admits a three-parameter symmetry group. A possible representation of this group is by
the following infinitesimal operators:

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2(n− 1)t

∂

∂t
+ (n− σ − 1)x

∂

∂x
− 2u

∂

∂u
. (5.20)

The set (5.20) satisfies all the conditions (2.4)–(2.6). So we can use an orthogonal grid
that is uniform in both t and x directions. By considering the set of the operators (5.20)
in the space (t, t̂, x, h+, h−, u, u+, u−, û, û+, û−) that corresponds to the stencil shown in
Fig. 1 we find 7 difference invariants of the Lie algebra:

τ
n−σ−1
2(n−1)

h
, τun−1,

û

u
,

u+

u
,

u−
u
,

û+

û
,

û−
û
.

The small number of symmetry operators provides us with a large number of difference
invariants. Thus we are left with some additional degrees of freedom in invariant difference
modeling of (5.19). By means of the discrete invariants we obtain the following explicit
scheme:

û− u

τ
=

1
h

((
u+ + u

2

)σ

u
h

x −
(
u+ u−

2

)σ

u
h

x̄

)
± un, (5.21)

where u
h

x = u+−u
h , u

h
x̄ = u−u−

h .

4. Q = ±uσ+1 + δu, δ = ±1. The equation
ut = (uσux)x ± uσ+1 + δu (5.22)

is connected with the equation (5.19) by the transformation (5.16). The infinitesimal
operators admitted by the equation are

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = e−δσt ∂

∂t
+ δe−δσtu

∂

∂u
. (5.23)

With the help of invariants for the operators (5.23)

uσ(eδστ − 1), h,

(
δ ln

û

u
− τ

)
,

u+

u
,

u−
u
,

û+

û
,

û−
û

we have the following example of an explicit difference model:

σu

eδστ − 1

(
δ ln

û

u
− τ

)
=

1
h

((
u+ + u

2

)σ

u
h

x −
(
u+ u−

2

)σ

u
h

x̄

)
± uσ+1. (5.24)

This equation considered on the grid (5.18) is transformed into the equation (5.21) on
a uniform time grid by the variable change (5.16).
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6 The special case of power heat transfer
coefficient: K = u−4/3

1. If Q ≡ 0, then the symmetry of the equation

ut =
(
u−4/3ux

)
x

(6.1)

is described by the five-dimensional algebra of infinitesimal operators (see [17]):

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2t

∂

∂t
+ x

∂

∂x
,

X4 = 2x
∂

∂x
− 3u

∂

∂u
, X5 = x2 ∂

∂x
− 3xu

∂

∂u
. (6.2)

These operators conserve orthogonality and uniformity of a grid in the time direction. The
operator X5 conserve uniformity in the t-direction, but does not conserve uniformity of
the grid in the x-direction; however orthogonality is not disturbed. We will consider the
stencil shown in Fig. 4.

�

� �

��

�
(x, t̂, û) (x+ h+, t̂, û+)

(x, t, u) (x+ h+, t, u+)

(x− h−, t̂, û−)

(x− h−, t, u−)

Figure 4. The stencil of nonuniform mesh.

The finite-difference invariants corresponding to this stencil

û

u
,

û+

u+
,

û−
u−

, u
1/3
+ u1/3 h

+

√
τ
, u

1/3
− u1/3 h

−
√
τ
,

u2/3

√
τ

(
h+h−

h+ + h−

)

give among others the explicit difference model

û− u

τ
= −h+ + h−

6h+h−

(
u
−1/3
+ − u−1/3

h+
− u−1/3 − u

−1/3
−

h−

)
. (6.3)

Remark. Let us note that we can not propose a space mesh h+ = f(x, h−) which is
preserved under all transformations of the group (6.2). It can be clearly seen from the
absence of difference invariants in the space (x, h−, h+). For example, if we take a solution
of the difference scheme (6.3) on a regular mesh h− = h+, a general group transformation
corresponding to (6.2) will transform the solution into another solution of this difference
scheme but possibly on a nonuniform mesh. This remark is also valid for the cases 2, 4
and 5 of this section.

2. In the case Q = δu, δ = ±1 equation

ut =
(
u−4/3ux

)
x
+ δu (6.4)
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admits operators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2x

∂

∂x
− 3u

∂

∂u
,

X4 = e
4δt
3
∂

∂t
+ δe

4δt
3 u

∂

∂u
, X5 = x2 ∂

∂x
− 3xu

∂

∂u
. (6.5)

By the change of variables (5.16) this equation can be transformed into the equa-
tion (6.1). Let us write out the difference invariants for the set of the operators (6.5):(

δ ln
û

u
− τ

)
, u2/3

(
h+h−

h+ + h−

)
1√

(eδστ − 1)
,

u
1/3
+ u1/3h+√
(eδστ − 1)

,
u

1/3
− u1/3h−√
(eδστ − 1)

,
û

1/3
+ û1/3h+√
(eδστ − 1)

,
û

1/3
− û1/3h−√
(eδστ − 1)

.

These invariants can be used for construction of a difference model for the equation (6.4).
We show the explicit variant of the difference model:

σu

eδστ − 1

(
δ ln

û

u
− τ

)
= −h+ + h−

6h+h−

(
u
−1/3
+ − u−1/3

h+
− u−1/3 − u

−1/3
−

h−

)
. (6.6)

3. Q = ±un, n �= −1
3 . The equation

ut =
(
u−4/3ux

)
x
± un (6.7)

admits infinitesimal operators:

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2(n− 1)t

∂

∂t
+ (n+

1
3
)x

∂

∂x
− 2u

∂

∂u
. (6.8)

Although this equation is specified in group classification (see [4]), it is a particular case
of the equation (5.19), — there is no extension of the admitted group. That’s why as
an invariant difference model for the equation (6.7) we can use the model (5.21) with
parameter σ = −4

3 , corresponding to the given equation.
4. If Q = αu−1/3, α = ±1, then the variant of the difference model for the equation

ut =
(
u−4/3ux

)
x
± u−1/3 (6.9)

depends on the sign of the coefficient α. The equation (6.9) admits a five-dimensional
algebra of infinitesimal operators, namely

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

4
3
t
∂

∂t
+ 2u

∂

∂u
,

X4 = e2
√

α/3x ∂

∂x
−
√
3αe2

√
α/3xu

∂

∂u
,

X5 = e−2
√

α/3x ∂

∂x
+
√
3αe−2

√
α/3xu

∂

∂u
. (6.10)

a.) The case α = 1. By the change of variables

ū = u cosh3

(
x√
3

)
, x̄ =

√
3 tanh

(
x√
3

)
(6.11)
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we transfer the considered equation into the equation (6.1) (see [1]). With the help of
difference invariants

û

u
,

û+

u+
,

û−
u−

,
√
τu−2/3


 1

tanh
(

h+√
3

) +
1

tanh
(

h−√
3

)

 ,

1√
τ
u1/3u

1/3
+ sinh

(
h+

√
3

)
,

1√
τ
u1/3u

1/3
− sinh

(
h−√
3

)

we can construct a difference model. Let us write out one of the possible variants of the
difference model, namely an explicit model:

û− u

τ
= − 1

18


 1

tanh
(

h+√
3

) +
1

tanh
(

h−√
3

)



×

u

−1/3
+ − u−1/3 cosh

(
h+√

3

)
sinh

(
h+√

3

) −
u−1/3 cosh

(
h−√

3

)
− u

−1/3
−

sinh
(

h−√
3

)

 . (6.12)

b.) The case α = −1. By the change of variables

ū = u cos3
(

x√
3

)
, x̄ =

√
3 tan

(
x√
3

)
(6.13)

we can transfer the given equation into the equation (6.1) (see [1]). The set of finite-
difference invariants:

û

u
,

û+

u+
,

û−
u−

,
√
τu−2/3


 1

tan
(

h+√
3

) +
1

tan
(

h−√
3

)

 ,

1√
τ
u1/3u

1/3
+ sin

(
h+

√
3

)
,

1√
τ
u1/3u

1/3
− sin

(
h−√
3

)

provides us with a possibility to construct an invariant difference scheme. For example,
one can use an explicit difference model:

û− u

τ
= − 1

18


 1

tan
(

h+√
3

) +
1

tan
(

h−√
3

)



×

u

−1/3
+ − u−1/3 cos

(
h+√

3

)
sin

(
h+√

3

) −
u−1/3 cos

(
h−√

3

)
− u

−1/3
−

sin
(

h−√
3

)

 . (6.14)

We stress that the obtained difference models (6.12) and (6.14) are connected with the
difference model (6.3) for the equation (6.1) by the changes of variables (6.11) and (6.13)
correspondingly as the initial differential equations.

5. Q = αu−1/3 + δu, |α| = |δ| = 1. As in the previous point, two cases of parameter α
in the equation

ut = (uσux)x ± uσ+1 + δu (6.15)
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should be considered separately and two difference models should be constructed. Let us
write out the infinitesimal operators, admitted by the equation (6.15):

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = e

4δt
3
∂

∂t
+ δe

4δt
3 u

∂

∂u
,

X4 = e2
√

α/3x ∂

∂x
−
√
3αe2

√
α/3xu

∂

∂u
,

X5 = e−2
√

α/3x ∂

∂x
+
√
3αe−2

√
α/3xu

∂

∂u
. (6.16)

a.) The case α = 1. The change of variables (5.16) transforms the considered equation
into the equation (6.9) and the change (6.11) into the equation (6.1).

We write out the set of finite-difference invariants for the equation (6.15) with α = 1:

(
δ ln

û

u
− τ

)
,

√
(eδστ − 1)u−2/3


 1

tanh
(

h+√
3

) +
1

tanh
(

h−√
3

)

 ,

u1/3u
1/3
+√

(eδστ − 1)
sinh

(
h+

√
3

)
,

u1/3u
1/3
−√

(eδστ − 1)
sinh

(
h−√
3

)
,

û1/3û
1/3
+√

(eδστ − 1)
sinh

(
h+

√
3

)
,

û1/3û
1/3
−√

(eδστ − 1)
sinh

(
h−√
3

)
.

The explicit variant of the difference model for the equation (6.15) on the time grid (5.18)
has the form:

σu

eδστ − 1

(
δ ln

û

u
− τ

)
= − 1

18


 1

tanh
(

h+√
3

) +
1

tanh
(

h−√
3

)



×

u

−1/3
+ − u−1/3 cosh

(
h+√

3

)
sinh

(
h+√

3

) −
u−1/3 cosh

(
h−√

3

)
− u

−1/3
−

sinh
(

h−√
3

)

 . (6.17)

b.) The case α = −1 Using the change of variables (6.13) we can transfer this equation
into the equation (6.4) and by the change (5.16) into the equation (6.9). Difference model
for the equation (6.15) can be obtained with the help of the invariants

(
δ ln

û

u
− τ

)
,

√
(eδστ − 1)u−2/3


 1

tan
(

h+√
3

) +
1

tan
(

h−√
3

)

 ,

u1/3u
1/3
+√

(eδστ − 1)
sin

(
h+

√
3

)
,

u1/3u
1/3
−√

(eδστ − 1)
sin

(
h−√
3

)
,

û1/3û
1/3
+√

(eδστ − 1)
sin

(
h+

√
3

)
,

û1/3û
1/3
−√

(eδστ − 1)
sin

(
h−√
3

)
.
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One of possible difference models for the equation (6.15) is

σu

eδστ − 1

(
δ ln

û

u
− τ

)
= − 1

18


 1

tan
(

h+√
3

) +
1

tan
(

h−√
3

)



×

u

−1/3
+ − u−1/3 cos

(
h+√

3

)
sin

(
h+√

3

) −
u−1/3 cos

(
h−√

3

)
− u

−1/3
−

sin
(

h−√
3

) .


 . (6.18)

The difference models (6.17) and (6.18) are connected with the model (6.6) by changes
of variables (6.11) and (6.13) correspondingly. The variable change (5.16) transforms
the difference models obtained in this point into model of the point 4 for corresponding
values of the parameter α. This example shows that in invariant difference modeling it is
possible to get consistent models which are connected with each other by the same point
transformations as their original differential counterparts.

7 Linear heat conductivity with a source

In this section we consider the semilinear heat transfer equation

ut = uxx +Q(u) (7.1)

with different types of a source.
1. With Q = ±eu the equation becomes

ut = uxx ± eu. (7.2)

It admits a three-dimensional algebra of infinitesimal operators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2t

∂

∂t
+ x

∂

∂x
− 2

∂

∂u
. (7.3)

It is easy to check that for the operators the conditions of orthogonality and uniformity
conservation of a grid hold. Approximation of the equation by the invariants

h2

τ
, τeu, (û− u), (u+ − u), (u− u−), (û+ − û), (û− û−)

will give different types of difference models. An explicit one is

û− u

τ
=

1
h
(u
h

x − u
h

x̄)± eu. (7.4)

2. Q = ±un. The equation

ut = uxx ± un (7.5)

admits the following infinitesimal operators:

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2(n− 1)t

∂

∂t
+ (n− 1)x

∂

∂x
− 2u

∂

∂u
. (7.6)
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The operators satisfy to conditions (2.4)–(2.6) and the finite-difference invariants

h2

τ
, τun−1,

û

u
,

u+

u
,

u−
u
,

û+

û
,

û−
û

permit us construct, for example, the following difference scheme:

û− u

τ
=

1
h
(u
h

x − u
h

x̄)± un. (7.7)

3. Q = δu lnu, δ = ±1. The semilinear heat transfer equation

ut = uxx + δu lnu, δ = ±1 (7.8)

admits the four-parameter Lie symmetry group of point transformations [4] corresponding
to the following set of infinitesimal operators:

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2eδt ∂

∂x
− δeδtxu

∂

∂u
, X4 = eδtu

∂

∂u
. (7.9)

Before constructing a difference equation and a grid that approximate (7.8) and inherit
the whole Lie algebra (7.9) we should first check condition (2.6) for the invariance of
orthogonality. The operators X1, X2 and X4 conserve orthogonality, while X3 does not:
the condition (2.6) is not true for operator X3. Consequently an orthogonal mesh can not
be used for the invariant modeling of (7.8). Conditions (2.7) are true for the complete set
of operators, so it is possible to use a nonorthogonal grid with flat time layers and we will
use the grid shown in Fig. 2.

A possible reformulation of equation (7.8) by using the four differential invariants in
the subspace (t, x, u, ux, uxx, dt, dx, du):

J1 = dt, J2 =
(ux

u

)2 − uxx

u
, J3 = 2

ux

u
+
dx

dt
,

J4 =
du

udt
− δ lnu+

1
4

(
dx

dt

)2

is given by the system

J3 = 0, J4 = J2

that is

dx

dt
= −2ux

u
,

du

dt
= uxx + δu lnu− 2

u2
x

u
. (7.10)

So, the structure of the admitted group suggests the use of two evolution equations.
As the next step, we will find difference invariants for the set X1–X4 of the group (7.9).

These invariants are necessary for the approximation of system (7.10). We will use the
six-point difference stencil of Fig. 3 on which we will approximate system (7.10). The
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stencil defines the difference subspace (t, t̂, x, x̂, h+, h−, ĥ+, ĥ−, u, u+, u−, û, û+, û−) and
the group (7.9) has the following difference invariants

I1 = τ, I2 = h+, I3 = h−, I4 = ĥ+, I5 = ĥ−,
I6 = (lnu)x − (lnu)x̄, I7 = (ln û)x − (ln û)x̄,

I8 = δ∆x+ 2(eδτ − 1)
(

h−

h+ + h−
(lnu)x +

h+

h+ + h−
(lnu)x̄

)
,

I9 = δ∆x+ 2(1− e−δτ )

(
ĥ−

ĥ+ + ĥ−
(ln û)x +

ĥ+

ĥ+ + ĥ−
(ln û)x̄

)
,

I10 = δ(∆x)2 + 4(1− e−δτ )
(
ln û− eδτ lnu

)
,

where ∆x = x̂− x, (lnu)x = ln u+−ln u
h+ , (lnu)x̄ = ln u−ln u−

h− .
An explicit model can be chosen

I8 = 0, I10 =
8
δ

(eδI1 − 1)2

I2 + I3
I6,

i.e.

δ∆x+ 2(eδτ − 1)
(

h−

h+ + h−
(lnu)x +

h+

h+ + h−
(lnu)x̄

)
= 0,

δ(∆x)2 + 4(1− e−δτ )
(
ln û− eδτ lnu

)
=

8
δ

(eδτ − 1)2

h+ + h−
[(lnu)x − (lnu)x̄]. (7.11)

One invariant solution of this scheme is given in [2].
4. A linear heat equation without a source (Q = 0).
4.1. Preliminary consideration. The linear heat transfer equation

ut = uxx (7.12)

admits a six-parameter Lie symmetry group of point transformations, corresponding to
the infinitesimal operators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2t

∂

∂x
−xu ∂

∂u
, X4 = 2t

∂

∂t
+ x

∂

∂x
,

X5 = 4t2
∂

∂t
+ 4tx

∂

∂x
− (x2 + 2t)u

∂

∂u
, X6 = u

∂

∂u
(7.13)

and an infinite-dimensional symmetry

X∗ = a(x, t)
∂

∂u
,

where a(t, x) in an arbitrary solution of equation (7.12). Symmetry X∗ represents linearity
of the equation (7.12).

Probably, the simplest approximation of the linear equation is the explicit scheme

û− u

τ
=

u+ − 2u+ u−
h2

(7.14)
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considered on a uniform orthogonal mesh. This equation is invariant with respect to the
operators X1, X2, X4 and X6 of the set (7.13). Since the equation is linear it possesses
a superposition principle that is reflected in the invariance with respect to the operator

X∗
h = ah(x, t)

∂

∂u
,

where ah(x, t) is an arbitrary solution of equation (7.14). In [2] it was shown how to
construct a discrete model which admits the six-dimensional group (7.13).

To preserve the Galilean operator X3 and the projective operator X5 it is necessary to
introduce a moving mesh.

4.2. Heat transfer system of equations and superposition principle. With the
help of the differential invariants of the operators (7.13) in the space (t, x, u, ux, uxx, dt,
dx, du)

J1 =
dx+ 2ux

u dt

dt1/2
, J2 =

du

u
+
1
4
dx

dt

2

+
(
−uxx

u
+
u2

x

u2

)
dt

we can represent the heat equation (7.12) as the system

J1 = 0, J2 = 0

that is

dx

dt
= −2ux

u
,

du

dt
= uxx − 2

u2
x

u
. (7.15)

By construction this system is invariant with respect to the six-dimensional group gene-
rated by the operators (7.13). The system also inherits the superposition principle of the
linear heat transfer equation. The superposition principle has the form of summing two
solutions of the system (7.12), but it also acts on the trajectories on which the variable x
evolves. For two arbitrary solutions U1(t, x) with the trajectories X1(t):

dX1

dt
= −2U1x

U1
,

and U2(t, x) with the trajectories X2(t):

dX2

dt
= −2U2x

U2
,

their linear combination

U = αU1 + βU2, α, β = const, (7.16)

is also the solution of (7.15). However, this linear combination has its own trajectories
satisfying

dX

dt
=

αU1

αU1 + βU2

dX1

dt
+

βU2

αU1 + βU2

dX2

dt
. (7.17)
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Therefore, the superposition principle can be presented in the following form:
 U(t, x)

dX

dt


 =


 α 0

0
αU1

αU1 + βU2





 U1(t, x)

dX1

dt




+


 β 0

0
βU2

αU1 + βU2





 U2(t, x)

dX2

dt


 . (7.18)

Let us show the superposition principle for system (7.15) by an example. The solution

U1 =
1√
t+ t1

exp
(
− (x− a)2

4(t+ t1)

)

has the trajectories

x = a+ (x0 − a)
t+ t1
t1

,

while the solution

U2 =
1√
t+ t2

exp
(
− (x− b)2

4(t+ t2)

)

exists on the trajectories

x = b+ (x0 − b)
t+ t2
t2

.

The linear combination (7.16) of these two solutions is also the solution of system (7.15).
Its trajectories are

dX

dt
=

α√
t+t1

exp
(
− (x−a)2

4(t+t1)

) (
x−a
t+t1

)
+ β√

t+t2
exp

(
− (x−b)2

4(t+t2)

) (
x−b
t+t2

)
α√
t+t1

exp
(
− (x−a)2

4(t+t1)

)
+ β√

t+t2
exp

(
− (x−b)2

4(t+t2)

) .

Examples of evolution of grid points and corresponding solutions are shown on Figs. 5–8
(for computations we used discrete model (7.19) which will be introduced in point 4.3 of
this section).

If we consider Lagrangian derivatives of the solution U , we could get the superposition
principle(

dU

dt
− Ux

dX

dt

)
= α

(
dU1

dt
− U1x

dX1

dt

)
+ β

(
dU2

dt
− U2x

dX2

dt

)
,

i.e. the superposition principle Ut = αU1t + βU2t of the linear heat equation expressed in
terms of the of total derivatives of U and X.

4.3. Invariant schemes on moving meshes. For the difference modeling of sys-
tem (7.15) we need the whole set of difference invariants of Lie symmetry group (7.13) in
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Figure 5. Evolution of solution (7.16): α = β = 1, t1 = t2 = 10, a = −8, b = 8.

−20 −15 −10 −5 0 5 10 15 20
0

5

10

15

20

25

x

t

Figure 6. Mesh trajectories for the solution shown in Fig. 5.

the difference space corresponding to the chosen stencil (t, t̂, x, x̂, h+, h−, ĥ+, ĥ−, u, û, u+,
u−, û+, û−):

I1 =
h+

h−
, I2 =

ĥ+

ĥ−
, I3 =

ĥ+h+

τ
, I4 =

τ1/2

h+

û

u
exp

(
1
4
(∆x)2

τ

)
,

I5 =
1
4
h+2

τ
− h+2

h+ + h−

(
1
h+

ln
u+

u
+

1
h−

ln
u−
u

)
,

I6 =
1
4
ĥ+2

τ
+

ĥ+2

ĥ+ + ĥ−

(
1

ĥ+
ln
û+

û
+

1

ĥ−
ln
û−
û

)
,

I7 =
∆xh+

τ
+

2h+

h+ + h−

(
h−

h+
ln
u+

u
− h+

h−
ln
u−
u

)
,

I8 =
∆xĥ+

τ
+

2ĥ+

ĥ+ + ĥ−

(
ĥ−

ĥ+
ln
û+

û
− ĥ+

ĥ−
ln
û−
û

)
.
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Figure 7. Evolution of solution (7.16): α = 0.25, β = 1, t1 = t2 = 10, a = −8, b = 8.
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Figure 8. Mesh trajectories for the solution shown in Fig. 7.

Approximating system (7.15) by the invariants, we obtain a system of difference evo-
lution equations. As an example, we present here an invariant difference model which has
explicit equations for the solution u and the trajectory of x:

∆x =
2τ

h+ + h−

(
−h−

h+
ln
u+

u
+
h+

h−
ln
u−
u

)
,

(u
û

)2
exp

(
−1
2
(∆x)2

τ

)
= 1− 4τ

h+ + h−

(
1
h+

ln
u+

u
+

1
h−

ln
u−
u

)
. (7.19)

We also can write out an implicit model

∆x =
2τ

ĥ+ + ĥ−

(
− ĥ−

ĥ+
ln
û+

û
+
ĥ+

ĥ−
ln
û−
û

)
,

(
û

u

)2

exp
(
1
2
∆x2

τ

)
= 1 +

4τ

ĥ+ + ĥ−

(
1

ĥ+
ln
û−
û

+
1

ĥ−
ln
û−
û

)
.
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It is also possible to combine an explicit equation for the mesh and an implicit approxi-
mation of the PDE or vice versa. Other ways to approximate the system (7.15) are also
possible.

4.4. Optimal system of subalgebras and reduced systems. Among all invariant
solutions there is a minimal set of such solutions, called the optimal system of invariant
solutions. From this set of invariant solutions any invariant solution can be obtained
by an appropriate group transformation. The difference model (7.19) is a system of two
evolution equations. To find its invariant solutions we need to provide a time mesh which
is invariant with respect to the considered operator. An invariant time mesh giving flat
time layers can be represented by the equation

τi = g(ti), i = 0, 1, 2, . . . . (7.20)

We request this equation to be invariant with respect to the considered symmetry. Since
for the operators (7.13) the coefficients ξt do not depend on x and u we can propose an
invariant time mesh for any symmetry. In the case ξt = 0 the function g can be taken
arbitrary. For example, we can choose the uniform mesh tj = jτ , τ = const. Thus,
different invariant solutions may have different time meshes.

The adjoint action of the Lie group transforms an invariant solution into another
one [15, 14]. In our case it also transforms the time mesh equation (7.20). Thus the
adjoint action gives us a new invariant solution with a corresponding invariant mesh.

On the example of the difference model (7.19) we will construct the optimal system of
solutions which are invariant with respect to one-parameter groups. The optimal system
of one-dimensional subalgebras of the algebra of symmetries for the linear heat equation
consists of algebras corresponding to the operators (see [14]):

Y1 = X2 =
∂

∂x
, Y2 = X6 = u

∂

∂u
, Y3 = X1 + cX6 =

∂

∂t
+ cu

∂

∂u
,

Y4 = X1 −X3 =
∂

∂t
− 2t

∂

∂x
+ xu

∂

∂u
, Y5 = X4 + 2cX6 = 2t

∂

∂t
+ x

∂

∂x
+ 2cu

∂

∂u
,

Y6 = X1 +X5 + cX6 = (4t2 + 1)
∂

∂t
+ 4tx

∂

∂x
+ (c− x2 − 2t)u

∂

∂u
.

Let us find invariant solutions corresponding to these one-dimensional subalgebras.
1) The subalgebra corresponding to the operator Y1 has only constant solutions u = C,

C = const considered on an orthogonal mesh ∆x = 0.
2) The subalgebra corresponding to the operator Y2 does not have invariant solutions

(the necessary condition of existence of invariant solutions does not hold [15]).
3) The operator Y3 has the following invariants: u exp(−ct), τ and ∆x. The time

step τ is invariant, so we can consider a uniform time mesh. We will seek a solution of the
difference model in the form

u = exp(ct)f(x).
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Substituting this invariant form of the solution into system (7.19), we get:

∆x =
2τ

h+ + h−

(
−h+

h−
ln

(
f(x+ h+)

f(x)

)
+
h+

h−
ln

(
f(x− h−)

f(x)

))
,

(
f(x)

f(x+∆x)

)2

exp
(
−2cτ − 1

2
∆x2

τ

)

= 1− 4τ
h+ + h−

(
1
h+

ln
(
f(x+ h+)

f(x)

)
+

1
h−

ln
(
f(x− h−)

f(x)

))
. (7.21)

System (7.21) will become a system of two ordinary difference equations if we project
it into the invariants space. To project the system we have to impose

∆x = −h−, 0, or h+. (7.22)

A solution of system (7.21) with one of conditions (7.22) provides the solution of sys-
tem (7.19) which is invariant with respect to the operator Y3.

4) The operator Y4 has invariants: u exp
(−xt− 2

3 t
3
)
, x + t2, τ and ∆x

2τ − t. Let us
search a solution of the difference model (7.19) in the form

u = exp
(
tx+

2
3
t3

)
f(x+ t2).

By means of variables

y = x+ t2, y − h−y = x− h− + t2,

y + h+
y = x+ h+ + t2, y +∆y = x+∆x+ (t+ τ)2

we get the following system for the invariant solution of system (7.19):

∆y − τ2 =
2τ

h+
y + h−y

(
−h−y
h+

y
ln

(
f(y + h+

y )
f(y)

)
+
h+

y

h−y
ln

(
f(y − h−y )

f(y)

))
,

(
f(y)

f(y +∆y)

)2

exp
(
− 1
2τ

∆y2 − τ(2y +∆y) +
1
6
τ3

)

= 1− 4τ
h+

y + h−y

(
1
h+

y
ln

(
f(y + h+

y )
f(y)

)
+

1
h−y

ln

(
f(y − h−y
f(y)

))
,

where ∆y can have one of the following values

∆y = −h−y , 0 or h+
y . (7.23)

A solution of the above system with one of conditions (7.23) let us find the invariant
solution for the operator Y4.

5) Expressions x√
t
, t−cu, τ

t and ∆x
x are invariants of the operator Y5. Let us search

a solution of the difference model in the form

u = tcf

(
x√
t

)
.
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In variables

y =
x√
t
, y − h−y =

x− h−√
t

, y + h+
y =

x+ h+

√
t

, y +∆y =
x+∆x√
t+ τ

we get the following system of equations:

√
1 + a(y +∆y)− y =

2a
h+

y + h−y

(
−h−y
h+

y
ln

(
f(y + h+

y )
f(y)

)
+
h+

y

h−y
ln

(
f(y − h−y )

f(y)

))
,

(1 + a)−2c

(
f(y)

f(y +∆y)

)2

exp


−1

2

(
(y +∆y)

√
1 + a

a
− y

1√
a

)2



= 1− 4a
h+

y + h−y

(
1
h+

y
ln

(
f(y + h+

y )
f(y)

)
+

1
h−y

ln

(
f(y − h−y )

f(y)

))
.

Here ∆y can have one of the values determined by conditions (7.23) and a is a constant
from the condition a = τ

t which determines an invariant time spacing. This condition can
be found if we look for a time spacing τ = g(t) which is invariant with respect to the
considered operator Y5.

6) For the operator Y6 we have the following invariants:

x√
4t2 + 1

, (4t2 + 1)1/4u exp
(

tx2

4t2 + 1
+

c

2
arctan(2t)

)
,

4t2 + 1
τ

+ 4t,
∆x
x

4t2 + 1
τ

− 4t.

We look for a solution of the difference model in the form

u = (4t2 + 1)−1/4 exp
(
− tx2

4t2 + 1
− c

2
arctan(2t)

)
f

(
x√

4t2 + 1

)
.

Involving new variables

y =
x√

4t2 + 1
, y − h−y =

x− h−√
4t2 + 1

,

y + h+
y =

x+ h+

√
4t2 + 1

, y +∆y =
x+∆x√

4(t+ τ)2 + 1
,

the system of equations (7.19) can be presented in the form:

√
b2 + 1(y +∆y)− by =

1
h+

y + h−y

(
−h−y
h+

y
ln

(
f(y + h+

y )
f(y)

)
+
h+

y

h−y
ln

(
f(y − h−y )

f(y)

))
,

√
b2 + 1

(
f(y)

f(y +∆y)

)2

× exp
(
c arctan

(
1
b

)
− b(y2 + (y +∆y)2) + 2

√
b2 + 1y(y +∆y)

)

= b− 2
h+

y + h−y

(
1
h+

y
ln

(
f(y + h+

y )
f(y)

)
+

1
h−y

ln

(
f(y − h−y )

f(y)

))
.



44 V Dorodnitsyn and R Kozlov

where ∆y has one of the values of (7.23), b is the constant from necessary condition of
invariant grid existence

2b = 4t+
4t2 + 1

τ
.

Therefore, the obtained reduced systems of equations determine the optimal system of
invariant solutions for the difference model of the liner heat transfer equation. It means
that each invariant solution can be found by transformation of a solution from the optimal
system with the help of the corresponding element of the group. As we mentioned before
the invariant time mesh for the new solution is obtained from the time mesh of the solution
from the optimal system with the help of the same group transformation. For example,
the transformation corresponding to the operator X1 with the value of the parameter −t0
gives shift in time t̂ = t− t0. Since

Ad [exp(−t0X1)]Y5 = X∗ = Y5 + 2t0X1,

the action of this transformation transfers the invariant solution with respect to the op-
erator Y5 into the solution which is invariant with respect to the operator X∗. By this
transformation the spacing τ

t = a is transformed into the spacing τ
t+t0

= a.
Example of an exact solution. Among all group invariant solutions for the difference

model (7.19) there is one interesting solution which can be integrated exactly [2]. This is
the solution invariant with respect to the operator

2t0X2 +X3, t0 = const, (7.24)

namely the solution

u(x, t) = C

(
t0

t+ t0

)1/2

exp
(
− x2

4(t+ t0)

)
, (7.25)

considered on the mesh

xi = x0
i

(
t+ t0
t0

)
, (7.26)

where x0
i are space mesh point at t = t0. In the case t0 = 0 we get the well known

fundamental solution of the linear heat equation. Note that it has a “singular” mesh.
Let us show how this solution can be obtained form the optimal system of the invariant

solutions. From

Ad [exp(εX5)]Y1 = X2 + 2εX3

we see that the solution (7.25) can be obtained from the solution invariant with respect
to operator Y1 by the transformation Ad [exp(εX5)] with ε = 1

4t0
. If we take the original

solution on the orthogonal mesh which is uniform in space and has the following special
time spacing on the interval [0, t0]:

uj
i = C, xi = ih, i = 0,±1,±2, . . . , tj =

jτt0
t0 + jτ

i, j = 0, 1, 2, . . .
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then the proposed transformation provides us the solution (7.25) on the uniform space
mesh (7.26) and uniform time mesh tj = jτ .

Thus, we see that difference model (7.19) inherits both the group admitted by the
original differential equation and the ability to be integrated on a subgroup.

4.5. The way to stop a moving mesh. The obtained difference models have adap-
tive nonorthogonal grids. We can find a way to stop the moving mesh, i.e., an exchange of
variables which orthogonalizes the mesh. The differentiation operator of Lagrange type d

dt
can be presented in the following form

d

dt
= Dt − 2

ux

u
Dx,

where

Dt =
∂

∂t
+ ut

∂

∂u
+ · · ·, Dx =

∂

∂x
+ ux

∂

∂u
+ · · ·.

The operator d
dt in contrast to the operators Dt and Dx does not commute with the

operators of total differentiation with respect to t and x:[
d

dt
,Dt

]
= 2

(uxt

u
− uxut

u2

)
Dx,

[
d

dt
,Dx

]
= 2

(
uxx

u
− u2

x

u2

)
Dx.

It is necessary to find an operator of total differentiation with respect to a new space
variable s such that[

d

dt
,Ds

]
= 0. (7.27)

The last commuting property is possible if we involve a new dependent variable ρ > 0
(density) [16]. The operator Ds = 1

ρDx satisfies (7.27) if ρ holds the equation

ρt − 2ρ
(
uxx

u
− u2

x

u2

)
− 2

ux

u
ρx = 0.

The new space variable s is introduced with the help of equations

st = 2ρ
ux

u
, sx = ρ.

For convenience we can put initial data ρ(0, x) ≡ 1. Then, s = x for t = 0.
In the variables (t, s) the heat transfer equation will get a form of the system

ut = ρ2

(
uss − 2

u2
s

u

)
+ ρρsus, ρt = 2ρ3

(
uss

u
− u2

s

u2

)
+ 2ρ2ρs

us

u
(7.28)

which can be rewritten in the form of conservation laws(
1
ρ

)
t

=
(
−2ρus

u

)
s
,

(
u

ρ

)
t

= (−ρus)s. (7.29)

The space coordinate x is defined by the system of equations

xt = −2ρus

u
, xs =

1
ρ
. (7.30)
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System (7.28) in the space of independent variables (t, s) and extended set of dependent
variables (u, ρ, x) admits a group of point transformations determined by the following
infinitesimal operators:

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2t

∂

∂x
− xu

∂

∂u
,

X4 = 2t
∂

∂t
+ x

∂

∂x
+ s

∂

∂s
, X5 = 4t2

∂

∂t
+ 4tx

∂

∂x
− (x2 + 2t)u

∂

∂u
− 4tρ

∂

∂ρ
,

X6 = u
∂

∂u
, X∗ = f(s)

∂

∂s
+ ρf ′(s)

∂

∂ρ
, (7.31)

where f(s) is an arbitrary function of s.
In the independent variables (t, s) operators X1–X6 are operators of Lie algebra fac-

torized by the operator X∗. Condition (2.6) of grid orthogonality and condition (2.5) of
space grid uniformity hold and it gives an opportunity to construct a difference model
which is invariant with respect to operators X1–X6 on the orthogonal grid.

Let us write system (7.28), (7.30) in the form of differential invariants. In the space of
variables (t, x, s, u, ρ, dt, dx, ds, du, dρ, us, ρs, xs, uss) there are five invariants:

J1 = xsρ, J2 =
ρ

ds

(
dx+ 2ρ

us

u
dt

)
, J3 =

(ds)2

ρ2dt
,

J4 =
(ds)2

ρ3

(
dρ

dt
− ρsds

dt
− 2ρ3

(
uss

u
− u2

s

u2

)
− 2ρ2ρs

us

u

)
,

J5 =
(
ds

ρ

)2
(
−2
u

du

dt
− 1
2

(
dx

dt

)2

+ 2ρ2

(
uss

u
− u2

s

u2

)
+ 2ρρs

us

u

)
.

With the help of these invariants we rewrite system (7.28), (7.30) as

ut = ρ2

(
uss − u2

s

u

)
+ ρρsus,

ρt = 2ρ3

(
uss

u
− u2

s

u2

)
+ 2ρ2ρs

us

u
, xt = −2ρus

u
(7.32)

with the constraint equation xs = 1
ρ .

Now we can find a system of equations which approximates (7.32) and is invariant with
respect to the set of operators (7.31). We can use the six-point invariant stencil (Fig. 4).
We have the following invariants for the set of operators (7.31) where the operator X∗ is
changed on its difference analog

X∗
h = f(s)

∂

∂s
+ ρD

+s
(f(s))

∂

∂ρ

in the corresponding to the chosen stencil space (t, t̂, s, h+
s , h

−
s , x, x̂, h

+
x , h

−
x , ĥ

+
x , ĥ

−
x , u, û,
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u+, u−, û+, û−, ρ, ρ̂, ρ+, ρ−, ρ̂+, ρ̂−):

I1 =
h+

x

h−x
, I2 =

ĥ+
x

ĥ−x
, I3 =

h+
x ĥ

+
x

τ
, I4 =

τ1/2

h+
x

û

u
exp

(
1
4
∆x2

τ

)
,

I5 =
1
4
h+2

x

τ
− h+2

x

h+ + h−

(
1
h+

x
ln
u+

u
+

1
h−x

ln
u−
u

)
,

I6 =
1
4
ĥ+2

x

τ
+

ĥ+2
x

ĥ+
x + ĥ−x

(
1

ĥ+
x

ln
û+

û
+

1

ĥ−x
ln
û−
û

)
,

I7 =
∆xh+

x

τ
+

2h+
x

h+
x + h−x

(
h−x
h+

x
ln
u+

u
− h+

x

h−x
ln
u−
u

)
,

I8 =
∆xĥ+

x

τ
+

2ĥ+
x

ĥ+
x + ĥ−x

(
ĥ−x
ĥ+

x

ln
û+

û
− ĥ+

x

ĥ−x
ln
û−
û

)
,

I9 =
ρ̂−
ρ−

, I10 =
ρ̂

ρ
, I11 =

ρ̂+

ρ+
, I12 =

h+
s

ρh+
x
, I13 =

h−s
ρ−h−x

.

With the help of these invariants we can write difference model in the form of the
following system of evolution difference equations (we present here only one invariant
difference model which corresponds to the system (7.19) in variables (t, x)):

∆x = 2τ
−h−

s

h+
s

ρ
ρ− ln u+

u + h+
s

h−
s

ρ−
ρ ln u−

u

h+
s
ρ + h−

s
ρ−

,

(u
û

)2
exp

(
−1
2
∆x2

τ

)
= 1− 4τ

ρ

h+
s
ln u+

u + ρ−
h−

s
ln u−

u

h+
s
ρ + h−

s
ρ−

,

ρ̂ = ρ
h+

x

ĥ+
x

.

In the case of the uniform grid (h+
s = h−s = hs) this model could be simplified as follows:

∆x = 2τ
−ρ2 ln u+

u + ρ2− ln u−
u

hs(ρ+ ρ−)
,

(u
û

)2
exp

(
−1
2
∆x2

τ

)
= 1− 4τρρ−

h2
s(ρ+ ρ−)

(
ρln

u+

u
+ ρ−ln

u−
u

)
,

ρ̂ = ρ
h+

x

ĥ+
x

.

The system (7.28) has only two dependent variables u and ρ and it can be approximated
without involvement of the space variable x. However, Galilean symmetry X3 and pro-
jective symmetry X5 are nonlocal in the coordinate system (t, s) and we need to consider
the dependent variable x in order to have these symmetries. Constructing an invariant
with respect to the set of operators (7.31) difference model, we inevitably involve x into
the difference equations.

It is important to notice that in all cases moving meshes could be stopped by using
the Lagrange type coordinate system (for an introduction of Lagrange type coordinate
systems see, for example, [16]).
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5. If Q = δu, δ = ±1, the equation
ut = uxx + δu (7.33)

can be transformed into equation (7.12) by the change of variables

ū = ue−δt. (7.34)

Reversing this transformation, one can get an invariant model for equation (7.33) from an
invariant model for the heat transfer equation without a source.

6. Q = δ = const. The equation has the form:

ut = uxx + δ. (7.35)

The case Q = 0, which was considered in point 4 of this section, is a partial case for
Q = δ = const, but the constant source can be excluded by the evident transformation

ū = u− δt. (7.36)

It means that we can get a difference model for (7.35) from the model for (7.12).

8 Concluding remarks

In the paper [10] the entire set of invariant schemes for ordinary difference equations of the
second order was developed. There were shown that for some equations and symmetries it
is necessary to involve nontrivial lattices, which are not uniform in a space of independent
variable and should depend on solution. Such schemes are self adapted for any solution
and they are as much exactly integrable, as its continuous counterpart.

In the papers [2, 3, 8, 9, 11] several examples of invariant schemes for PDEs with
two independent variables (KdV equation, nonlinear Schrödinger equation etc.) were con-
structed. Again, there were shown that for some equations and symmetries it is necessary
to involve nontrivial two-dimensional meshes, which are not uniform and rectangular in
a space of two independent variables and should depend on solution. Such schemes are
self-adapted for any solution, the meshes are evolutionary in time and these schemes have
as many exact invariant solutions as their continuous counterparts. Moreover, for invari-
ant variational cases invariant schemes have difference conservation laws as well as for
continuous case.

Thus, the applications of symmetry to difference equations led to the evolution of idea
of possible meshes: from simple regular stationary meshes to self-adapted moving meshes,
explicitly depending on solutions. Notice, that this idea evolution well corresponds to the
big changes in numerical analysis, where the idea of self-adaptivity of schemes and meshes
is in a broad fashion now.

In this paper we developed the entire set of invariant difference schemes for the heat
transfer equation

ut = (K(u)ux)x +Q(u), (8.1)

for arbitrary coefficients K(u), Q(u) and for all special cases of the coefficients which
extend the symmetry group admitted by equation (8.1).
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The main conclusion is that we have presented an algorithmic way to construct the
invariant difference schemes (i.e. a difference equation and a mesh it is defined on) for all
cases of underlying heat equation.

Other conclusion is that symmetry preservation in difference schemes led to essential
different discrete models. For different cases of coefficients K(u) and Q(u) taken in accor-
dance with the group classification of equation (8.1) we have obtained different discrete
models: for some cases K(u) and Q(u) we had to construct discrete models not for equa-
tion (8.1), but for the equivalent Lagrangian system:

dx

dt
= ϕ(u, ux),

du

dt
= ψ(u, ux, uxx). (8.2)

The consideration of the equation (8.1) in the form of system (8.2) at the very beginning
would provide us with the classification by functions ϕ and ψ. In that case there is
one-to-one correspondence between the coordinate systems for continuous and discrete
cases of the group classification. In particular, if the symmetry of the equation (8.1) does
not require application of Lagrangian type moving mesh (evolving in time mesh), then we
have ϕ ≡ 0. In that case the classification of the system (8.2) and corresponding difference
equations on orthogonal mesh can be carried out by means of ψ(u, ux, uxx).
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