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Abstract

Let F(S™) be the space of tensor densities on S of degree A. We consider this space
as an induced module of the nonunitary spherical series of the group SOg(n+1,1) and
classify (so(n+1,1),SO(n+1))-simple and unitary submodules of F(S™) as a function
of A.

1 Introduction and main result

Let F\(S™) be the space of tensor densities of degree A € C on the sphere S", that is, of
smooth sections of the line bundle

A)\<Sn) _ ‘AnT*Sn‘(@)\

on S™. This space plays an important role in geometric quantization and, more recently,
it has also been used in equivariant quantization (see [1]). This space is endowed with
a structure of Diff(S")- and Vect(S™)-module in the following way. As a vector space,
it is isomorphic to the space C°(S™) of smooth complex-valued functions; the action of
a vector field

- B,
Y:Z;Yia—xi

is given by the Lie derivative of degree A

0 Y;
L?(‘P(:ﬂla . ,l'n)) = Z <Y;% + A e g0> (:L’1, . ,l’n) (1.1)

n
i
=1

in any coordinate system.
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The Lie algebra so(n+1,1) C Vect(S™) of infinitesimal conformal transformations, that
we call the conformal Lie algebra, is generated by the vector fields

0 0 0
Y 0s;] i = s Js; 5 0s;’
Z 0 - Z 9 0 0
where (s1,...,s,) are stereographic coordinates on the sphere S™.

The space F(S™) is naturally an so(n + 1, 1)-module; furthermore, the restriction of
the action of the group Diff(S™), defines the action of the subgroup SO(n + 1) given by
the formula

(ko.f)(k) = f(ky'k),  where ko€ K, keS"~SO0(n+1)/SO(n).

Therefore, F,(S"™) is also a SO(n + 1)-module.
Given a Lie group G and a compact subgroup K C G, let g and £ be the corresponding

Lie algebras. One calls (g, K )-module a complex vector space E endowed with actions of g
and K such that

1. (Adk-X)-e=k-X- k' e VkcK, Xcg eckFE

2. For all e € E, the space K - e is finite-dimensional (i.e., e is a K-finite vector), the
representation of K in F' is continuous and one has for X € ¢:

d
X -e= a(exth) - eli=o.

Put G = SOg(n + 1,1), the connected component of the identity in SO(n + 1,1),
g=so(n+1,1) and K = SO(n+1); let H(K) be the space of K-finite vectors in F)(S").
The main result of this note is a classification of simple and unitary (g, K)-submodules
of H(K) as a function of A.

Theorem 1. 1. IfA#1/n forl € Z, orif, forn > 1, A€ {1, 2 .. 2=} then F,(S")
contains a unique simple (g, K)-module H(K), identified to the space of harmonic
polynomials on S™. This module is unitary if and only if A = % + i, a € R*, or

A €lo, 1)\ {3}

2. If \ = =l/n, |l € N, H(K) contains a unique simple (g, K)-submodule, which is
finite-dimensional and given by the elements of degree < 1. It is unitary if and only
if A=0.

3. Ifn=1and A =1,1 € N*, H(K) contains two simple (g, K)-submodules, unitary
and infinite-dimensional, and the direct sum of these modules consists of the elements

of H(K) of degree > 1.

4. Ifn>1and A = 1+1/n, | € N, H(K) contains a simple infinite-dimensional
(g, K)-submodule consisting of the elements with degree > 1+ 1. It is unitary if and
only if A\ =1.

Remark 1. We described all the closed G-submodules of F)(S") (cf. [3], Theorem 8.9),

and, since G is connected, we obtained, in the case (2), every simple finite-dimensional
g-submodules of F)(S").
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2 Nonunitary spherical series

The main ingredient of the proof of Theorem 1 is the identification of the modules F(S"™)
with induced representations. Denote G = K AN the Iwasawa decomposition of G and p
the half-sum of the positive restricted roots of the pair (so(n +1,1),a), A =expa.

Consider the representation Ind$; 45 (0 ® v), induced from the minimal parabolic sub-
group M AN of G, with the trivial representation of the subgroup M = SO(n) (the
centralizer of A in K) and a one-dimensional representation p of A such that, for h € A,
one has u(h) = exp(r(logh)), with a fixed v € a*. Abusing the notations, we identify an
element v in a* with v(H), where H is the matricial element

H =E; 1 n+2+ Entony1  (with elementary matrices E;;).

Therefore, p = 3.

The Iwasawa decomposition shows that this induced representation acts on the space
of functions in £L2(K/M) = L2(S"), and the operators of this representation are given, for
g € G, by

d§ 4n (0 @ v)(9) f(k) = exp(—v(log h)) f(k,),  with ¢ 'k =kshn € KAN.

Considering every value of v in C, we obtain the representations of the so-called nonunitary
spherical series, that defines a structure of G-module on the space £2(S"). We denote by
CX(S™) the submodule constituted of C*° elements.

Our proof is based on the following fact.

Theorem 2. The g-modules Fx(S™) and C°(S™) are isomorphic if and only if v = nA,
and this isomorphism is compatible with the action of K.

Let us give the main idea of the proof of Theorem 2. Denote by dInd§, (0 ® v) the
infinitesimal representation associated with Ind]\G4 An(0® v), Lx the Lie derivative along
X €g,and (0y,...,0,) the spherical coordinates on S". Straightforward but complicated
computations lead to the following two facts, that use cohomological (elementary) notions.

Lemma 1. For all X € g one has
dInd§; 45 (0 ® v)(X) = Lx 4 ve(X),

where ¢ is the 1-cocycle on so(n + 1,1) with coefficients in C>°(R™) given, in spherical

coordinates, by c¢(X) = %{g:.

It is known that the cohomology space H'(so(n + 1,1);C>(R")) is one-dimensional.
We then have the following

Lemma 2. The cocycle ¢ is cohomological to the cocycle ¢ given in spherical coordinates
by

1
&X) = —DivX.
n

We now use the fact that two representations that are given by Lx+c¢(X) and Lx+¢(X)
are equivalent if the cocycles ¢ and ¢ belong to the same cohomology class. Theorem 2 is
proved.

As a consequence, (g, K)-modules of K-finite vectors in F(S") and C°(S™) are iso-
morphic.
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3 Classification of (g, K)-modules in F,(S")

Let us now use the results (and the notations) of [2] (see Appendix B.10). Let us put
k = ["TH] (where [p] is the integral part of p), and denote by D™ the simple K-
module with highest weight mre; + mg_162 + - - - + myex, where

Ei()\lﬂl + -+ )\ka) =\,

and the matricial H, = i(E2,—12, — Eg;2,—1) generate a Cartan subalgebra of the Lie
algebra €.

Consider the representation Ind$§; 45 (0® v+ p) (which is unitary if and only if v is pure
imaginary), and describe the (g, K')-module E, of its K-finite vectors : the restriction of
the latter to K is given by the direct sum of simple K-modules

_ 0,.0m | meN for n>1;
EO’V’K_@D "Il meZ for n=1.

We use the isomorphism Fy ., & Ej,, (K-finite dual).
The module Ey, is unitary if and only if v is pure imaginary, or v € | -2, 2\ {0}.
In order to study simple (g, K)-submodules of Ej,, we have to consider the following
two cases.

o If n =1, then the module Ej, is simple if and only if v ¢ % + Z.

Otherwise, we have:

— If v < 0, Ey, contains a unique simple(g, K )-submodule. It is finite-dimensional
and given, as a K-module, by ®\m\<IV|—l D™. This module is unitary for
— 2

—_1
v=—3.

— If v > 0, Ey,, contains two simple infinite-dimensional (g, K )-submodules, given
as K-modules by @, 1., D™. These modules are unitary.
3<

o If n > 1, then the module Fy, contains a simple submodule if and only if v =
+ (%,% +1,...). In this case, there exists a simple finite-dimensional (g, K')-module
given, as a K-module, by n DY--0m This is a (g, K)-submodule of Ey, if

n

v <0, and a quotient-module if v > 0. It is unitary for v = —3.

m<|v|-

Consider the space of smooth functions on R"™1\ {0}, homogeneous of degree —\(n+1).
This space is a Diff(S™)-module (and also a Vect(S™)-module with the Lie derivative)
isomorphic to the module Fy(S") (see [5]). Denote by H"*1™ the K-module constituted
of its elements of the form

Py (xoy ..., 2p)
Faagl

(x§+-- +a2)2

where P, is a harmonic polynomial homogeneous of degree m. We, finally, check the
following facts:
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e If n =1, then H*>™ = D~ @ D™. Indeed H*>™ is the direct sum of SO(2)-modules
H,, and H_,,, respectively generated by

. _m_y
(g +ix1)™ (3:(2) + x%) 2

and its conjugate in C, and we have Hy,, = D™,

o If n > 1, then H" ™1™ is simple and we have H"Thm = DO:-0m

Consequently, the (g, K)-module of K-finite vectors of F)(S™) is given by

H(K) = P H

meN

Let us apply the above results to the representation Ind% An(0 ® v).  Substituting
v+ p = nA to Theorem 2, we obtain the assertions of Theorem 1.

Remark 2. The case n = 1 can be directly deduced from the classification of represen-
tations of SL(2,R): acting the same way as in [4], we observe that the space of K-finite
vectors of Fy(S') is the direct sum P Ha, | € Z, where H,, is the space of the represen-
tation of SO(2) C SL(2,R) with the character

| cos@ sind . oim
Xm 1l 6ing cosd '
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