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Abstract

The characteristic feature of the Kepler Problem is the existence of the so-called
Laplace–Runge–Lenz vector which enables a very simple discussion of the properties
of the orbit for the problem. It is found that there are many classes of problems, some
closely related to the Kepler Problem and others somewhat remote, which share the
possession of a conserved vector which plays a significant rôle in the analysis of these
problems.
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1 Introduction

Cosmology and its precursor, Cosmogeny, have a very long history dating back to the
earliest records of ancient civilisations. The practical tasks of Astronomy and its more
imaginative relation, Astrology, seemed to have prompted speculation as to the nature
of the Universe almost as an automatic concommitent. One aspect of these speculations
related to the size and distribution of the sun and its planets. In classical times there were
two schools of thought about the structure of the solar system. One placed the Earth at the
centre of the Universe with the Sun, Moon and the then known planets revolving around it,
the geocentric hypothesis, and the other had the Earth and the planets revolving about the
Sun, the heliocentric hypothesis. The latter was proposed about 250 BC by Aristarchos of
Samos. The former was the majority opinion of classical philosophers, endorsed by one of
the more influential opinion-formers of that period, Aristotle, and adopted by the computer



342 P G L Leach and G P Flessas

of orbits, Claudius Ptolemaos. Aristarchos found no support until the present era. The
dominance of Scholasticism in the Mediæval Ages and its dominance by Aristotlean Physics
in the profane realm meant that the hypothesis of Aristarchos was known to very few by
the time of the Renaissance. The heliocentric hypothesis was revived by the Pole, Nicolas
Copernicus, in his book Revolutionibus Orbium Coelestium published in 1543. Evidently
Copernicus knew of the work of Aristarchos of Samos, but the reference was deleted from
the first edition, apparently by its theologically cautious publisher, the Lutheran Andrias
Osiander [29, p. 319]. So effectively was the contribution of Aristarchos neglected that we
find the chronicler of his work, Sir Thomas Heath, moved to entitle the book Aristarchus
of Samos: the ancient Copernicus [58] and we find the historian of Mechanics, Dugas [30,
p. 83], writing ‘From Antiquity there had been writers whose opinions were similar to those
of Copernicus’ ! In an attempt to counteract such neglect the municipality of the town
of Karlovassi on the island of Samos erected a bust of the island’s second most famous
son in the main square some 200 m from where this is written with a legend (in English;
one assumes that the Greeks would not be so ignorant) indicating that Copernicus was an
1800 year Johnny-come-lately.

The timing of Copernicus was not perfect. The religious turmoil which was to shake
Europe for a century and a half had commenced about a quarter of a century before the
book was published. Not only did physicists, entirely entangled in Aristotlean ideas, take
exception to the impossible strains placed upon the fabric of the Earth and its environment,
but the theologians – particularly on the reformed side – categorically rejected the theory
of the motion of the Earth because they considered it contrary to Holy Writ [19, p. 22].

The eventual triumph of the heliocentric hypothesis can reasonably be attributed to the
work of Kepler who, painstakingly analysing his observations and those of his predecessor
as Imperial Mathematician at Prague, Tycho Brahe, endowed the hypothesis with three
empirical laws. In the books Astronomia Nova of 1609 [73] and Harmonices Mundi of
1619 [74] Kepler proposed

Itaque plane hoc est: orbita planetæ non est circulus, sed ingrediens ad latera utraque
paulatim, iterumque ad circuli amplitudinem in perigæo exiens: cujusmodi figuram
itineris ovalem appellitant. . . . orbitam planetæ non esse circulum, sed figura ovalis.
[73, pp. 336–337]1.1

Cumque scirem, infinita esse puncta eccentrici, et distantias earum infinitas, subiit, in
plano eccentrici has distantias omnes inesse. Nam memineram, sic olim et Archime-
dem, cum circumferentiæ proportionem ad diametrum quæreret, circulum in infinita
triangula dissecuisse . . . [73, p. 321]1.2

Sed res est certissima, quod proportio, quæ est inter binorum quorumcunque planetarum
tempora periodica, sit præcise sesquialtera proportionis mediarum distantiarum, id

1.1Kepler’s First Law: ‘Therefore this is obvious: the path of the planet is not a circle, but gradually
curves inwards on both sides and again departs to the width of the orbit at perigee: such a path is called
an oval figure. . . . the orbit of the planet is not a circle but an oval figure.’

1.2Kepler’s Second Law: ‘Since I was aware that there exists an infinite number of points on the orbit
and accordingly an infinite number of distances [from the Sun] it occurred to me that the sum of these
distances is contained in the area of the orbit. For I remembered that in the same manner in times past,
Archimedes too divided [the area] of a circle, for which he found the circumference proportional to the
diameter, into an infinite number of triangles . . . ’
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est orbium ipsorum . . . [74, p. 279]1.3

Johannes Kepler had presented simple quantitative facts about the orbits of the planets.
In August, 1684, Edmund Halley visited Issac Newton at Trinity College, Cambridge, and
informed him of Christopher Wren’s challenge, to which there was attached a sizeable
monetary reward, to derive the shape of the orbits of the planets about the sun. Newton
described his solution in the tract De Motu Corporum and set about improving and
expanding his ideas. During this period he proposed his law of universal gravitation and
his three laws of motion which provided the first quantitative explanation of the motion of
visible bodies. In 1686 these results were published in Newton’s masterpiece, Philosophiæ
Naturalis Principia Mathematica, which has been claimed to mark the birth of modern
science [41, p. 3], if one can isolate one moment in a period of evolution.

In the Principia Newton attempted to verify Kepler’s First Law by proving that, if
a particle moves on an elliptical orbit under the influence of a centripetal force directed
towards one focus, that force must be inversely proportional to the square of the radius
[113, Prop. XI, p. 56]. He obtained the same results for focus-centred parabolic [113,
Prop. XIII, p. 60] and hyperbolic motion [113, Prop. XII, p. 57]. Newton proved that
equal areas were swept out by the radius vector in equal times [113, Propp. I–II, p. 40ff],
which was the content of Kepler’s Second Law, and also that the square of the periodic
time of an inverse square law ellipse was proportional to the cube of the semimajor axis
length, thereby verifying Kepler’s Third Law [113, Prop. XV, p. 62].

Newton is also generally credited with having proved the converse of Propositions XI-
XIII, ie that all possible orbits of a particle moving under an inverse square law force are
conic sections. This is of greater significance than the proof of the Propositions above
since this result verifies Newton’s law of universal gravitation by showing that elliptical
planetary orbits are a natural consequence of the gravitational interaction between the Sun
and the planets. The validity of this credit has been questioned by Weinstock [138, 139]
who argues that proof that motion along a conic section orbit under the influence of a force
directed towards one focus implies an inverse square law force does not demonstrate that
a particle moving under the influence of an inverse square law force will move along a conic
section orbit. The conic section orbit, which was assumed initially, is only a geometrical
construction and not necessarily the actual path described by the particle.

The initial approach was to determine the gravitational force law assuming that the
planets move along conic sections. In 1710 Ermanno1.4, a student of Johann Bernoulli, used
the new techniques of the Leibnizian calculus to find directly the orbits given an inverse
square law force. Ermanno obtained a constant of integration related to the eccentricity
of the conic section [33] and summarised his results in a letter [59] to Johann Bernoulli
who proceeded to generalise the results to allow for an arbitrary orientation of the orbit in
the plane [12]1.5. The Ermanno–Bernoulli constants are the equivalents of the conserved

1.3Kepler’s Third Law: ‘But it is absolutely certain and exact that the ratio which exists between the
periodic times of any two planets is precisely the ratio of the 3/2th power of the mean distances, ie of the
spheres themselves . . . ’

1.4Ermanno made a considerable impact on Italian Mathematics during his brief sojourn at Padova
(1707–1713) and his place in history is based more on that. For an account of his work and extracts of
many original letters and documents see the work of Mazzone and Poero [105].

1.5Some aspects of the Kepler Problem in the period from Newton to Johann Bernoulli are to be found
in Speiser [132].
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vector generally known as the Laplace–Runge–Lenz vector [78, 127, 93]. Almost 90 years
later in his Traité de Mécanique Céleste [78] Laplace obtained seven first integrals for the
Kepler problem. These were the three cartesian components of the angular momentum, the
three cartesian components of the Laplace–Runge–Lenz vector and what was essentially
the total energy. Since only five of these autonomous functions could be independent,
Laplace determined the two relationships between the seven integrals. He showed that
the conservation of the angular momentum implied that the orbit was planar and that the
orbit equation could be expressed as a conic section [38].

In July 1845 Hamilton presented to the Royal Irish Academy a new constant of the
motion for the Kepler problem which he subsequently named the ‘eccentricity’ vector [55]
and which is commonly called Hamilton’s vector. In another of the ironies of science
the devisor of vector notation, Josiah Gibbs, is believed to have been the first to express
the classical Laplace–Runge–Lenz vector in terms of modern vector notation, thereby
antedating Runge’s derivation by roughly twenty years [39].

In 1785 Charles Coulomb discovered the inverse square law of the electrostatic force.
In 1913 Neils Bohr used the Kepler–Coulomb potential energy for a Rutherford model of
the hydrogen atom to obtain a theoretical formula for the wavelengths of the atomic spec-
trum which agreed with experimental observations. The Laplace–Runge–Lenz vector1.6

came to prominence with the mathematical development of Quantum Mechanics. In 1926
Pauli [119] used the vector to derive an expression for the energy levels of the hydrogen
atom using the new techniques of matrix mechanics. In 1935 Fock [34] showed that the
hydrogen atom possessed the four-dimensional rotation group for the bound states and the
Lorentz group for positive energy states. These results were confirmed by Bargmann [10]
in 1936 when he calculated the commutation relations between the components of the
angular momentum and the Laplace–Runge–Lenz vectors.

The characteristic feature of the Kepler problem is the existence of the conserved vectors
which enable one to determine the orbit easily. In fact what is potentially a very difficult
nonlinear system can be trivially integrated [127, 14, 22, 23] to obtain the orbit and the only
complexity is determining the time evolution of system. These conserved vectors play the
same role for the Kepler problem as do the tensorial first integrals – the angular momentum
tensor and the Jauch–Hill–Fradkin tensor [65, 35] – for that other great paradigm of
Mechanics, the isotropic harmonic oscillator. What is missing for the Kepler problem
are the explicitly time-dependent tensor invariants which enable one easily to specify
the trajectory in the configuration space of the oscillator [92]. The Kepler problem is
not the only problem in Mechanics for which there exists conserved vectors. Already in
1896 Poincaré had identified a conserved vector with properties reminiscent of angular
momentum for the classical monopole problem [123].

The advent of the space age brought about some generalisations of the Kepler prob-
lem to deal with the motion of low altitude satellites, a model was proposed by Danby
in 1962 [27]. Danby was able to provide an approximate solution. In the early Eighties
Jezewski and Mittleman [107, 66] were able to demonstrate the existence of first integrals

1.6Known amongst physicists as the Lenz vector following the 1924 paper of Lenz [93] or the Runge–
Lenz vector since Lenz had referred to the textbook on vector analysis by Runge [127], the contribution
by Laplace has been noticed in the title of the vector only in recent decades. The lack of recognition
of Ermanno and Bernoulli parallels that of Aristarchos and makes one wonder if there is some sinister
influence for those who are initiators in the field of the motions of the planets.
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for this problem. Subsequently many problems which could loosely be regarded as re-
laxations of the Kepler problem were shown to possess vector first integrals which were
sufficient to provide the orbit just as the angular momentum and Laplace–Runge–Lenz
vectors provided for the Kepler problem [42, 43, 44, 45, 46, 47, 48, 49, 81, 83, 87, 88, 89].

In 1994 Krause [75] used the Kepler problem as the vehicle for the introduction of his
concept of the complete symmetry group of a differential equation or system of differen-
tial equations. Essentially the complete symmetry group of a differential equation is the
group of the algebra of the Lie symmetries required to specify completely the differential
equation. In the case of the Kepler problem the Lie symmetries required included nonlocal
symmetries although it is not the case for every differential equation [5]. In the subse-
quent investigations of the complete symmetry groups of the Kepler and related problems
by the technique of reduction of order [117] by Nucci et al [118] the underlying symmetry
was found to be the same for a number of these problems and the critical role of the
Ermanno–Bernoulli constants clearly delineated.

It is the purpose of this review to bring the details of these divers problems together and
to highlight the essential role played by certain requirements on the equations of motion.
Our work may be divided into three parts with the nature of the division being dependent
upon the angular momentum. In the case of the Kepler problem the angular momentum
is conserved. In Danby’s model for the motion of a low altitude satellite the magnitude of
the angular momentum is no longer conserved. Poincaré’s comments upon the experiment
of Birkland led to the introduction of a generalisation of the angular momentum as the
conserved vector. The magnitude of the angular momentum was constant but not its
direction. Consequently we discuss the three classes of problem, that of the conservation
of angular momentum, that of the conservation of the direction of angular momentum
and that of the conservation of the magnitude of angular momentum. Finally we look to
the symmetry properties of these problems to reconcile the results. In this we must go
beyond the point symmetries initially introduced by Lie [98, 99] to the nonlocal symmetries
introduced by Krause [75] to construct the complete symmetry group of the Kepler problem
and extended in both number and scope by Nucci et al [118].

In the various generalisations of the Kepler Problem which we treat in this paper we
generally start with an equation of motion which has a certain structure consistent with
the angular momentum model under consideration. These equations of motion contain
arbitrary functions of, usually, unspecified variable dependence. Part of the task of the
analysis is to identify the nature of the variable dependence in these functions which is
possible for a conserved vector having the nature of the Laplace–Runge–Lenz vector to
exist. Consequently the reader should understand that the arguments of these arbitrary
functions become evident during the process of analysis. Usually the function itself remains
of arbitrary form. Specific functions are used by way of example.

The position taken here in respect to the identification of these vectors as being generali-
sations of the Laplace–Runge–Lenz vector is based on the notion of function rather than
form. The Laplace–Runge–Lenz vector of the Kepler Problem has a specific functional
structure. In particular it is quadratic in the components of the velocity. Some of the
conserved vectors found here are very evidently not of that structure. However, they serve
the same function for their equations of motion as the Laplace–Runge–Lenz vector does
for the equation of motion of the Kepler Problem. All of these conserved vectors provide
a simple route to the determination of the equation of the orbit, ie they perform the same
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function. To argue that for a conserved vector to be associated with the notion of the
Laplace–Runge–Lenz vector means that the vector should be quadratic in the components
of the velocity is the equivalent of using a sample of one to specify the properties of
a population, a practice which is clearly statistically incorrect.

This preferential option for function over form has been given renewed strength by the
results of Nucci et al [118] discussed in Chapter 5. There the various models treated in
earlier chapters are seen to be reducible to the same linear system so that the different
types of conserved vectors can in fact be regarded as different manifestations of the same
object.

2 Motions with conservation
of the angular momentum vector

2.1 The central force problem r̈ + fr = 0

2.1.1 The conservation of the angular momentum vector,
the Kepler problem and Kepler’s three laws

The techniques used for this and other problems to obtain conserved vectors and scalars
and equations describing the motion are natural extensions of the use of scalar and vector
products in the analysis of the reduced equation for the Kepler problem (cf the works of
Runge [127], Bleuler and Kustaanheimo [14], Collas [21], Collinson [22, 23] and Pollard
[124]), videlicet

r̈ +
µr

r3
= 0, (2.1.1)

in which the motion of the centre of mass of the system of two particles has already been
removed. Such other equations as we shall study are to be regarded as generalisations of
this reduced equation, (2.1.1). The vector product of r with (2.1.1) immediately gives the
conservation of the angular momentum vector

L := r × ṙ, (2.1.2)

from which we factor the mass constant. Since L is perpendicular to both r and ṙ for all
time, the constancy of L implies that the orbit is confined to a plane.

In the spirit of using vectorial methods to obtain the Laplace–Runge–Lenz and Hamil-
ton’s vectors there are two possible routes. For one of them we take the vector product
of (2.1.1) with L and the relationship

r × L = −r3 ˙̂r, (2.1.3)

where r̂ denotes the unit vector in the direction of r, to obtain

0 = r̈ × L − µ ˙̂r
⇒ J = ṙ × L − µr̂, (2.1.4)
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where J is the Laplace–Runge–Lenz vector. Hamilton’s vector is obtained as

K =
1
L2

(L × J)

= ṙ +
µr2 ˙̂r
L2

, (2.1.5)

where r̂ × L is r2 ˙̂r and L is the constant magnitude of L. For the second route we make
use of the fact that the orbit is in a plane to specify plane polar coordinates, (r, θ), in that
plane so that the three unit vectors, r̂, θ̂ and L̂ have the properties that

r̂ × θ̂ = L̂, θ̂ × L̂ = r̂, L̂ × r̂ = θ̂,

dr̂

dt
= θ̇θ̂,

dθ̂

dt
= −θ̇r̂, L = r2θ̇. (2.1.6)

Then (2.1.1) can be written as

0 = r̈ +
µ

L
θ̇r̂

⇒ K = ṙ − µ

L
θ̂. (2.1.7)

The two routes are reconciled when we express (2.1.5) in terms of the plane polar coordi-
nates, which the constancy of the angular momentum vector enables us to do.

From the integration of the scalar product of (2.1.1) with ṙ we obtain the conserved
scalar

E := 1
2 ṙ · ṙ − µ

r
(2.1.8)

which is the mechanical energy of the system scaled by the mass. From the scalar products
of (2.1.7) and (2.1.4) with themselves we obtain the equivalent relationships

K2 = 2E +
µ2

L2
(2.1.9)

J2 = 2L2E + µ2, (2.1.10)

which give two of the constraints necessary for the ten first integrals, J , K, L and E. The
other constraint is the mutual orthogonality of the three conserved vectors.

Finally, if we choose the conserved vector, J , as the reference line for the measurement
of the polar angle, θ, the scalar product of r and J gives

r · J = rJ cos θ = r · (ṙ × L) − µr · r̂

⇒ r =
L2

µ + J cos θ
(2.1.11)

which is the polar equation for a conic section with the origin at one focus. Thus we
have the orbit for the motion governed by the equation (2.1.1). The time evolution of the
system may be obtained, for example, by means of the constancy of the magnitude of the
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angular momentum for then we have that the relationship L = r2θ̇ can be combined with
(2.1.11) to give

t− t0 =
∫ θ

θ0

L3dθ
(µ + J cos θ)2

(2.1.12)

which is moderately simple to evaluate. In the constancy of the vector of angular mo-
mentum and the specific equation for the orbit we have two of Kepler’s three laws. For
a closed orbit the third law follows from the evaluation of (2.1.12) over an orbit to give
the period, T , as ([51, p. 148, 2.553.3 and 2.554.3])

T =
2πµL3

(µ2 − J2)3/2
=

2πµ
(−2E)3/2

(2.1.13)

and the use of (2.1.10) and (2.1.11) to relate the semimajor axis length, R, to the energy,
E, according to

2ER + µ = 0 ⇔ R =
µ

−2E
. (2.1.14)

Consequently we obtain

T 2

R3
=

2π
µ

(2.1.15)

in a way somewhat different compared with the manner in which Kepler obtain the result
almost 400 years ago.

It is unfortunate that not all can be calculated for the Kepler problem by these ele-
mentary methods. The evolution of the motion in time is not so simple to calculate2.1.
In (2.1.12) we have the equation to be integrated to obtain the evolution of the polar
angle, θ, in time. If we differentiate the orbit equation, (2.1.11), with respect to time, we
obtain

dt =
Ldr

J sin θ
. (2.1.16)

We may eliminate sin θ by using the orbit equation, (2.1.12), to write

sin θ =
1
Jr

(
(J2 − µ2)r2 + 2L2µr − L4

)1
2 (2.1.17)

so that (2.1.16) becomes

dt =
rdr

((J2 − µ2)r2/L2 + 2µr − L2)
1
2

. (2.1.18)

Naturally, if we use (2.1.10), (2.1.18) becomes the same equation as we would obtain from
the energy expression after the substitution θ̇ = L/r2. When we make this substitution
and perform the integration ([51, 2.264.2 and 2.261.3]), we obtain

t− t0 =

(
2Er2 + 2µr − L2

)1
2

2E
+

µ

2E(−2E)
1
2

arcsin


 2Er + µ

(2EL2 + µ2)
1
2



∣∣∣∣∣∣
r

r0

. (2.1.19)

2.1A difficulty recognised very early in the study of the Kepler Problem through the solution of Kepler’s
equation, cf [31] and [24], for which see below.
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Although it is a simple matter to recover Kepler’s Third Law from this, the inversion to
obtain an explicit function, r(t), is not globally possible. The integration of (2.1.12) gives
an equally unpleasant expression [51, 2.554.3 and 2.553.3] for the relationship between θ
and t, videlicet

t− t0 =
L

2E


 J sin θ

µ + J cos θ
− 2µ

L(−2E)
1
2

arctan
L(−2E)

1
2 tan 1

2θ

µ + J


 . (2.1.20)

The same comment applies.
There is another approach which can be taken and which dates back for several cen-

turies. The standard equation for a conic section in polar coordinates is

r =
1

c (1 + e cos θ)
, (2.1.21)

where c and the eccentricity, e, are constants. It is evident that

e =
J

µ
(2.1.22)

and so we may write

L2 = µR
(
1 − e2

)
. (2.1.23)

consequently (2.1.18) can be rewritten as

dt =
rdr

(−µr2/R + 2µr − µR(1 − e2))
1
2

. (2.1.24)

The introduction of another angular variable, ψ, which is known as the eccentric anomaly
(in contrast to θ which has been known as the true anomaly since mediæval times [40,
p. 99]), through the substitution

r = R(1 − e cosψ) (2.1.25)

simplifies (2.1.24) to

dt =
(
R3

µ

)1
2
(1 − e cosψ)dψ (2.1.26)

which is trivially integrated to give

t =
(
R3

µ

)1
2
(ψ − e sinψ), (2.1.27)

where the lower limits of integration have been taken to be zero. When (2.1.27) is evaluated
at 2π, Kepler’s Third Law is recovered. Using this we may write (2.1.27) as

ωt =
2π
T

t = ψ − e sinψ, (2.1.28)
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which is known as Kepler’s equation. The quantity ωt varies between 0 and 2π as do ψ
and θ and is known as the mean anomaly. This equation is useful in the process of
calculating r and θ at a given time. It is solved to give the value of ψ at that time. From
(2.1.25) one obtains r. By a manipulation of the orbit equation and (2.1.25) one obtains

tan 1
2θ =

(
1 + e

1 − e

)1
2
tan 1

2ψ. (2.1.29)

Before the days of computers the solution of Kepler’s equation attracted much attention
for accurate astronomical calculations.

Many treatments dealing with the Laplace–Runge–Lenz vector have been criticised as
being too ad hoc [67] in their derivations. Apart from the elegant simplicity of the above
discussion, the same could be said of the method used here. However, in the sequel we see
that the same techniques mutatis mutandis may be applied to a wide variety of problems
and so, by this generality of application, are free from the taint of being too ad hoc.
Certainly more sophisticated methods can be used to obtain the same results. Here we
prefer to establish the classes of systems by elementary methods and then use the more
advanced techniques to analyse the natures of these different classes of problems.

2.1.2 The model equation r̈ + fr = 0

The central force equation

r̈ + fr = 0, (2.1.30)

where the variables in f are specified below, can formally be integrated to give a conserved
vector of Hamilton’s type, videlicet

K = ṙ +
∫

frdt. (2.1.31)

The formality is removed if the integration in (2.1.31) can be rendered meaningful without
the solution of the original equation (2.1.30) as an explicit function of time. The conser-
vation of the angular momentum leads to a conserved vector of Laplace–Runge–Lenz type
and immediately we can make sense of (2.1.31). More usefully for the moment we can
make use of the planar nature of the motion to express everything in terms of plane polar
coordinates. For the moment we measure the polar angle, θ, from the cartesian direction, ı̂.
Then we can use the relations

r̂ = ı̂ cos θ + ̂ sin θ, θ̂ = −ı̂ sin θ + ̂ cos θ (2.1.32)

between the variable unit vectors in the polar coordinates and the constant unit vectors
in cartesian coordinates.

In central force problems the conservation of angular momentum, hence the confinement
of the motion to a plane, enables one to use the relationship θ̇ = L/r2 to pass from
an integration with respect to time to an integration with respect to polar angle. This
technique is well-established [140, p. 80], [40, Chap. 3] and [134, Chap. 3]. To reduce the
formal integral in (2.1.31) to a quadrature we make the Ansatz

fr = v(θ)θ̇, (2.1.33)
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where v(θ) is an arbitrary function of its argument. (The only mathematical requirement
on v is that it be Riemann integrable.) With the substitution (2.1.33) we have∫

frdt =
∫

v(θ)r̂dθ. (2.1.34)

Using the cartesian decomposition of the unit vectors in plane polar coordinates in terms
of the cartesian unit vectors and their inverses, videlicet

r̂ = ı̂ cos θ + ̂ sin θ, θ̂ = −ı̂ sin θ + ̂ cos θ,

ı̂ = r̂ cos θ − θ̂ sin θ, ̂ = r̂ sin θ + θ̂ cos θ (2.1.35)

we may write (2.1.34) as∫
frdt = ı̂

∫
cos θv(θ)dθ + ̂

∫
sin θv(θ)dθ

= r̂

[
cos θ

∫ θ

θ0

cos ηv(η)dη + sin θ

∫ θ

θ0

sin ηv(η)dη
]

+ θ̂

[
− sin θ

∫ θ

θ0

cos ηv(η)dη + cos θ
∫ θ

θ0

sin ηv(η)dη
]

= r̂z′(θ) − θ̂z(θ), (2.1.36)

where

z(θ) =
∫ θ

θ0

v(η) sin(θ − η)dη

z′(θ) =
∫ θ

θ0

v(η) cos(θ − η)dη, (2.1.37)

and consequently we may write z(θ) in terms of the differential equation

z′′(θ) + z(θ) = v(θ) (2.1.38)

subject to the initial conditions z(θ0) = 0 and z′(θ0) = 0. Hence we have the two conserved
vectors

K = ṙ + z′(θ)r̂ − z(θ)θ̂ (2.1.39)

J = ṙ × L̂ − z(θ)r̂ − z′(θ)θ̂, (2.1.40)

generalisations of Hamilton’s vector and the Laplace–Runge–Lenz vector respectively.
Now that we have the Ermanno–Bernoulli constants in terms of the vector first integ-

ral, J , the equation of the orbit in the plane is obtained by taking the scalar product of r
with J . Unlike the case of the Kepler problem treated in the previous subsection here
we have not assumed that θ is measured from J but from a standard cartesian direction
denoted by ı̂. We take the angle between J and ı̂ to be θ0 so that the equation of the
orbit in the plane is given by

r(θ) =
L

z(θ) + J cos(θ − θ0)
. (2.1.41)
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The evolution of the motion in time can be obtained by using the conservation of
angular momentum to give t as a function of θ or by using the equation of the orbit,
(2.1.41), to give t as a function of r. In either case the ease, or more likely lack of ease,
in evaluating these functions will depend upon the particular function v(θ), which one
assumes is dictated by physical considerations. Supposing that the quadratures can be
performed we then have the problem of inversion to find the dependent variables r and/or θ
as explicit functions of time. Differentiating (2.1.41) with respect to time we obtain

ṙ = −z′ + J sin(θ − θ0). (2.1.42)

We can evaluate z′(θ) from (2.1.37) and, provided all terms involving θ can be expressed
in terms of r, the relationship between t and r is given by

t =
∫

dr
(−z′(θ(r)) + J sin(θ(r) − θ0))

. (2.1.43)

The angular momentum route, the more familiar one, leads to

t =
∫

Ldθ
(z(θ) + J cos(θ − θ0))

2 . (2.1.44)

Even though it may not be possible to evaluate these integrals in closed form or, if
this be possible, to invert the results to give the dependent variables in terms of the
independent variable t, one does know that the results of numerical integration can be
trusted since the reduction of the problem to explicit quadratures removes the possibility
of chaos.

Since the angular momentum is conserved, the areal velocity is a constant. In fact the
area swept out by the radial vector r in a time dt is given by the element of area

dA = 1
2r(rdθ). (2.1.45)

Consequently the areal velocity is given by

dA
dt

= 1
2L (2.1.46)

and, since L is a constant for the class of problems being considered here, (2.1.46) is
integrated to give

A = 1
2Lt. (2.1.47)

In the case that the orbit for a given choice of v(θ) has nicely defined geometric properties
there may be some interest in relating (2.1.47) to these geometric properties, for example
the semimajor axis length in the case of an elliptical orbit and the period which would
arise from the area, A, in (2.1.47) assuming a multiple of the area enclosed by the orbit.
In general one would not expect to be able to make a satisfactory relationship between
the geometrical features of the orbit and the time.

We consider some examples.
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Example 2.1. The equation of motion

r̈ +
a (θ − θ0) + b

r3
r = 0, (2.1.48)

where a, b and θ0 are constants, represents a force of the Kepler type with an additional
inverse square law term which depends upon the polar angle θ. The quadrature in (2.1.37)
may be performed to give

z(θ) =
a

L
(θ − θ0 − sin(θ − θ0)) +

b

L
(1 − cos(θ − θ0)) , (2.1.49)

z′(θ) =
a

L
(1 − cos(θ − θ0)) +

b

L
sin(θ − θ0). (2.1.50)

The expressions for the conserved vectors and the orbit equation followed immediately.
They are rather complicated and are not reproduced here. For increasing θ the attraction
to the centre increases and the orbit spirals inwards in a counterclockwise direction towards
the origin.

Example 2.2. By way of contrast the equation of motion

r̈ +
ae−(θ−θ0) + b

r3
r = 0, (2.1.51)

for which, again, a, b and θ0 are constants, contains a force of Kepler type with an addi-
tional inverse square law term which decays exponentially with increasing polar angle θ.
In this case we have

z(θ) =
a

2L

(
e−(θ−θ0) + sin(θ − θ0) − cos(θ − θ0)

)
+

b

L
(1 − cos(θ − θ0)) , (2.1.52)

z′(θ) =
a

2L

(
−e−(θ−θ0) + sin(θ − θ0) + cos(θ − θ0)

)
+

b

L
sin(θ − θ0). (2.1.53)

The orbit contracts quickly to what appears to be a limit cycle as θ increases.

Example 2.3. For the equation of motion

r̈ +
a sin 3(θ − θ0) + b

r3
r = 0, (2.1.54)

which couples a force of Kepler type with an additional inverse square law term depending
periodically on the polar angle θ, we obtain

z(θ) =
a

L

(−1
8 sin 3(θ − θ0) + 3

8 sin(θ − θ0)
)
+

b

L
(1 − cos(θ − θ0)) ,

z′(θ) =
a

L

(−3
8 cos 3(θ − θ0) + 3

8 cos(θ − θ0)
)
+

b

L
sin(θ − θ0). (2.1.55)

The periodicity of the central force is reflected in the orbit which has three lobes spaced
at intervals of 2π/3 in θ.



354 P G L Leach and G P Flessas

Example 2.4. In the present context the equation for the Kepler problem, (2.1.1), rep-
resents the choice

v(θ) =
µ

L
(2.1.56)

for which

z(θ) =
µ

L
(1 − cos(θ − θ0)) , (2.1.57)

z′(θ) =
µ

L
sin(θ − θ0). (2.1.58)

The conserved vectors are

K = ṙ − µ

L

(
θ̂ − θ̂0

)
, (2.1.59)

J = ṙ × L̂ − µ

L
(r̂ − r̂0) . (2.1.60)

The expressions given here differ from the standard expressions by a factor of L in J and
the lack of identification of the reference line for θ with J . When he obtained his so-called
‘eccentricity vector’, Hamilton [55] immediately recognised that the velocity hodograph
for the Kepler problem was a circle with its centre given by Hamilton’s vector (putting
θ̂0 = 0) and radius of length µ/L. The velocity hodograph is generally attributed to
Hamilton, but his biographer gives the credit to Möbius [56, p. 333]2.2.

Example 2.5. In the examples above θ̇ does not appear in the equation of motion. In
evaluating the function z(θ) one must use the relationship L = r2θ̇ to introduce the
required θ̇ for the quadrature. Here we present an elementary example in which f is
explicitly dependent upon θ̇ in the equation of motion. The equation of motion which we
use is

r̈ +
aθ̇

r
r = 0. (2.1.61)

We find that

z(θ) = a (1 − cos(θ − θ0)) (2.1.62)

and that the equation of the orbit is

r =
L

a (1 − cos(θ − θ0)) + J cos(θ − φ0)
, (2.1.63)

2.2In the nineteenth century the velocity hodograph attracted a considerable amount of attention for
which see the works of Tait [135], Thompson (later Lord Kelvin) and Tait [71, 72], Kelland and Tait [70],
Maxwell [104] and Routh [126]. The notation for the conserved vectors makes the equation of the circle
obvious. The first known representation of the Laplace–Runge–Lenz vector in modern vector notation is
found in the text of Gibbs and Wilson [37]. The transparency of the present representation makes for
a dramatic contrast for the original representation to be found in the papers of Ermanno and Bernoulli
[33, 59, 12]. Early in the twentieth century Child [20] made a complete graphical study of the velocity
hodograph for the three possible orbits of the Kepler problem. There appear to be some inconsistencies
in the depictions which are possibly due to roundoff errors in the numerical calculations which may well
have been done on the back of an envelope. More recently the velocity hodograph has been discussed by
Goldstein [39, 40] and Stickforth [133]. Possibly the most detailed discussion of the velocity hodograph as
applied to the Kepler and related problems is to be found in the thesis of Gorringe [41]. Gorringe discusses
also the acceleration hodograph.
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where φ0 is the angle the reference line makes with J . The orbit is an ellipse, a parabola
or an hyperbola depending upon the relative values of the constants.

2.2 Algebraic properties of the first integrals of the Kepler problem

The Hamiltonian of the Kepler problem described by equation (2.1.1) is

H = 1
2p · p − µ

r
, (2.2.1)

where the canonical momentum is related to the velocity by p = ṙ, and is simply the
mechanical energy which is conserved. In terms of canonical coordinates the conserved
vectors are

L = r × p, (2.2.2)

K = p − µ

L
θ̂, (2.2.3)

J = p × L − µr̂ (2.2.4)

and the components of all three vectors have zero Poisson Bracket with the Hamilto-
nian. Consequently, in quantum mechanical terms, the physical quantities represented
by the corresponding quantum mechanical operators are simultaneously observable with
the Hamiltonian. Since the three vectors are not independent, a knowledge of two means
a knowledge of three. Normally the two vectors considered are the angular momentum
and the Laplace–Runge–Lenz2.3. The Laplace–Runge–Lenz vector was used to explain
the degeneracy of the spectrum of the hydrogen atom and is described by physicists as
a dynamical symmetry in contrast to the obvious geometric symmetry of the angular mo-
mentum. The angular momentum vector may be a more frequently occurring conserved
quantity than the Laplace–Runge–Lenz vector, but there is no reason to distinguish be-
tween the two. Both vectors are a consequence of the equation of motion.

If one writes each vector in terms of cartesian components, ie as A = Aiêi, the Poisson
Bracket relationships are

[Li, H] = 0, [Ji, H] = 0,
[Li, Lj ] = εijkLk, [Ji, Lj ] = εijkJk,

[Ji, Jj ] = −2EεijkLk, (2.2.5)

where εijk is Kronecker’s epsilon and E is the value of the Hamiltonian. The three com-
ponents of the angular momentum vector form the compact rotation algebra so(3). The
algebra of the two vectors is so(4), the representation of the four-dimensional compact
rotation group, for negative energies, so(3, 1), the representation of the four-dimensional

2.3There appears to be no reason why Hamilton’s vector should not be used in place of the Laplace–
Runge–Lenz vector. The use of the latter is possibly an accident of history. We recall that in the early
twentieth century the Ermanno–Bernoulli constants had been ‘popularised’ by the German writers Runge
and Lenz. A large contribution to the early development of Quantum Mechanics had a Teutonic origin
and it is possible that this recent work was more familiar than the older work of the quaternion-fancying
Irishman, Hamilton, amongst German speakers. The Hamiltonian formulation of Quantum Mechanics by
Dirac [28] was probably too late to change the situation.
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noncompact rotation group, ie the Lorentz group, for positive energies and e(3), the rep-
resentation of the Euclidean group for zero energy. A better representation of the algebra
for nonzero energy is given by defining

Ji± =
Ji

|2E|1/2 (2.2.6)

for negative and positive energies respectively. Then (2.2.5) is replaced by

[Li, H] = 0, [Ji, H] = 0,
[Li, Lj ] = εijkLk, [Ji, Lj ] = εijkJk,

[Ji,Jj ] = ±εijkLk, (2.2.7)

for negative and positive energies respectively, which has an æsthetic appeal greater than
(2.2.5).

2.3 Extension of the model equation to nonautonomous systems

In § 2.2 the model equation (2.1.11) was tacitly assumed to be autonomous. However,
Katzin and Levine [69], using a direct method, and Leach [81], using a variant of Noether’s
theorem [114], showed that the time-dependent central force problem with the equation
of motion

r̈ = F (r, t)r̂ (2.3.1)

possesses a time-dependent vector first integral of the form

J = U(r, t)(L × ṙ) + Z(r, t)(L × r) + W (r, t)r, (2.3.2)

provided

U = u(t) �= 0, Z = −u̇(t),

W =
µ

r
, F =

(
ür

u

)
−
( µ

ur2

)
. (2.3.3)

This system includes both a time-dependent Kepler problem (µ �= 0 and u = (αt + β)/λ
with α, β and λ being constant – this was the subject of an earlier study by Katzin
and Levine [68]) – and a particular case of the time-dependent harmonic oscillator when
µ = 02.4. Previous techniques used to solve this problem have been algebraically rather
complex. The techniques used here have been reported in Gorringe and Leach [42, 44] and
Leach and Gorringe [87].

We rewrite our model equation to include the possible dependence on time explicitly
as

r̈ + f(r, θ, t)r = 0 (2.3.4)
2.4The time-dependent harmonic oscillator was solved in one dimension by Lewis [94, 95] using Kruskal’s

asymptotic method [76]. Lewis and Riesenfeld [97] used the time-dependent harmonic oscillator to con-
struct an invariant for a charged particle moving in a time-dependent electromagnetic field. Further
techniques and results have been given by Lewis and Leach [96], Moreira [110, 111] and Günther and
Leach [79].
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of which the system above is a special case. The conservation of the vector of angular
momentum, L := r × ṙ, follows from the vector product of r with (2.3.4). We seek
a Hamilton-like vector for (2.3.4) through the use of an integrating factor, g. Writing

gr̈ = (gṙ − ġr). + g̈r (2.3.5)

and multiplying (2.3.4) by g we obtain

(gṙ − ġr). + (g̈ + gf)r = 0. (2.3.6)

A second conserved vector exists if the second term of (2.3.6) can be written as a total
time derivative. The presence of r̂ which is a function of θ signals the requirement that

(g̈ + gf)r = v(θ)θ̇, (2.3.7)

for some function v(θ). The explicit dependence upon θ̇ may be removed by using L = r2θ̇
and we then solve (2.3.7) to obtain

f =
Lv(θ)
gr3

− g̈

g
. (2.3.8)

Since f was assumed a function of r, θ and t, g = g(t). The equation (2.3.4) is now

r̈ +
Lv(θ)
g(t)r3

r − g̈(t)
g(t)

r = 0, (2.3.9)

where L is treated as a constant in the equation of motion, although it is expressed as r2θ̇
during calculations.

Direct integration of the equation of motion (2.3.9) yields the Hamilton-like vector

K = gṙ − ġr + z′(θ)r̂ − z(θ)θ̂, (2.3.10)

where z(θ) and z′(θ) are given by (2.1.36) and (2.1.37). The analogue of the Laplace–
Runge–Lenz vector is obtained by taking the vector product of K with L̂ and is

J = (gṙ − ġr) × L̂ − z(θ)r̂ − z′(θ)θ̂. (2.3.11)

The presence of r in the Hamilton-like vector K precludes the possibility to express the
velocity hodograph in a simple form as was the case for the Kepler problem. However, this
can be partially rectified by a time-dependent linear transformation of Kummer–Liouville
type [77, 100] (in Hamiltonian Mechanics it is a time-dependent linear generalised canonical
transformation [79, 120]).

The scalar product of J with r gives

r(θ) =
Lg(t)

z(θ) + J cos(θ − θ0)
. (2.3.12)

Since (2.3.12) contains an explicit function of time, it is not the required orbit equation.
We eliminate the function of time to obtain the orbit equation. From the expression for
the constant magnitude of the angular momentum we have

L = r2 dθ
dt

=
L2g2(t)

(z(θ) + J cos(θ − θ0))
2

dθ
dt

(2.3.13)



358 P G L Leach and G P Flessas

which can be rearranged to give∫ t

0

dt
g2(t)

=
∫ θ

θ0

Ldθ
(z(θ) + J cos(θ − θ0))

2 . (2.3.14)

Provided the integrands are continuous and nonzero we can, according to the Implicit
Function Theorem [16, p. 165], write the result of the integration as

t = N(θ) (2.3.15)

to obtain the orbit equation

r(θ) =
Lg ◦N(θ)

z(θ) + J cos(θ − θ0)
, (2.3.16)

where g ◦N denotes the composition of the functions g and N .
We consider some examples.

Example 2.6. v(θ) = 0. The equation of motion, (2.3.9), is

r̈ =
g̈

g
r (2.3.17)

with the conserved vectors

K = gṙ − ġr,

J = (gṙ − ġr) × L̂ (2.3.18)

and an energylike invariant

I = 1
2K · K

= 1
2(gṙ − ġr)2. (2.3.19)

The Hamiltonian for (2.3.17) is

H = 1
2

(
p · p − g̈

g
r2

)
. (2.3.20)

If the integral on the left side of (2.3.14) is denoted by M(t), the orbit equation is

r(θ) =
Lg ◦M−1 ◦ (L tan(θ − θ0)/J2)

J cos(θ − θ0)
. (2.3.21)

Example 2.7. v(θ) = µ/L. The equation of motion is

r̈ =
g̈

g
r − µ

gr3
r (2.3.22)

and the conserved vectors are

K = gṙ − ġr − µ

L
(θ̂ − θ̂0),

J = (gṙ − ġr) × L̂ − µ

L
(r̂ − r̂0). (2.3.23)
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The energylike invariant and Hamiltonian are

I = 1
2(gṙ − ġr)2 − µg

r
and

H = 1
2

(
p · p − g̈

g
r2

)
− µ

gr
(2.3.24)

respectively. The orbit equation is

r(θ) =
L2g ◦N(θ)

µ + (JL− µ) cos(θ − θ0)
. (2.3.25)

Leach [81] gave a simple example of an orbit in the case that

g(t) = (a + b cos t)
1
2 (2.3.26)

which resulted in an orbit not greatly different from the standard elliptical orbit except
for its elongation. The choice

g(t) =
(
a + b cos 1

2 t
)1

2 (2.3.27)

provides more complex orbits with the degree of complexity depending upon the values of
the parameters. In the case that a2 > b2 and µ2 > (JL− µ)2 the equation for the orbit is
([51, 2.553.3 and 2.554.3])

r(θ) = a
1
2


1 + k cos


2 arctan


(1 + k

1 − k

)1
2

× tan


a(1 − k2)

1
2L3

4µ2(1 − l2)

( −l sin(θ − θ0)
1 + l cos(θ − θ0)

+
2

(1 − l2)
1
2

arctan


(1 − l

1 + l

)1
2
tan
(

1
2 (θ − θ0)

)











1
2

, (2.3.28)

where b = ka and J = µ(1 + l)/L. The complexity of the orbits depends upon the choice
of parameters. In general the orbits are not closed, but for suitable values of L they can
be made closed.

As the mass has been taken as unity, the momentum p is just ṙ. For both of these
examples the Poisson Bracket relations are

[Li, Lj ]PB = εijkLk, [Ji, Jj ]PB = (−2I)εijkLk,
[Ji, Lj ]PB = εijkJk, [Li, H]PB = 0,
[Li, I]PB = 0, [Ji, I]PB = 0, (2.3.29)

where the Hamiltonian is given by (2.3.20) for the first example and (2.3.24) for the second
example. The Hamiltonian has the symmetry group SO(3), the rotation group in three
dimensions. The rotation group in four dimensions SO(4) of the time-independent Kepler
problem has been transferred to the energylike invariant, I. A similar transferral occurs
in the case of the n-dimensional time-dependent oscillator [53].
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Example 2.8. Another system for which an energylike integral can be found is described
by the equation of motion

r̈ =
g̈

g
r − µ

g3r
r. (2.3.30)

An integrating factor for (2.3.30) is g(gṙ− ġr) as a scalar product. The invariant obtained
is

I = 1
2(gṙ − ġr)2 + µrg (2.3.31)

and the Hamiltonian is

H = 1
2p · p − 1

2

g̈

g
r2 +

µr

g3
. (2.3.32)

There does not seem to be a simple way to construct either a Hamilton’s or Laplace–
Runge–Lenz vector for (2.3.30) by the methods which have been considered here. If
one follows the principles of Fradkin and others, this should be possible. However, the
conserved vectors would be piecewise continuous at best and would not possess group
properties but only algebraic properties. Although it is convenient to work with algebras,
one must agree with Bacry [9, 8] that the important object, as far as Physics is concerned,
is the group.

3 Conservation of the direction of angular momentum only

3.1 Vector conservation laws for the equation
of motion r̈ + gr̂ + hθ̂ = 0

In the previous chapter we considered equations of motion for which the vector of angular
momentum is conserved in both magnitude and direction. We saw that it was possible
to obtain generalisations of Hamilton’s vector and the Laplace–Runge–Lenz vector. In
this chapter we examine the extent to which we may still make reasonable progress with
a relaxation of one of the requirements previously imposed upon the angular momentum.
The relaxation is that we require only the constancy of the direction of angular momentum
and not of its magnitude. The motion is still in a plane and, by selecting the origin to
be in that plane, we may still use plane polar coordinates, (r, θ), to describe the orbit.
Consequently, for the content of this chapter at least, we do not have to move out of two
dimensions. A particular advantage is that we preserve the relationship

L̂ = r̂ × θ̂ (3.1.1)

between the direction of the angular momentum and the two unit vectors of the coordinate
system. Since L̇ = L̇L̂ and so L̇ × L = 0, L̇ and L are collinear and we may write

L̇ + h1L = 0, (3.1.2)

where h1 is some arbitrary function3.1. Making use of (3.1.1) we may rewrite (3.1.2) as

r × r̈ + g1r × r +
h1L

r
r × θ̂ = 0, (3.1.3)

3.1That (3.1.2) in turn implies the constancy of L̂ follows from writing L̇ = L̇L̂ + L
˙̂
L in (3.1.2) and

taking the scalar product with
˙̂
L and the vector product with L in turn.
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where g1 is also an arbitrary function. Consequently the equation of motion

r̈ + gr̂ + hθ̂ = 0, (3.1.4)

where g = g1r and h = h1L/r, describes motion in a plane with L̂ conserved. Equation
(3.1.4) is not the most general equation of motion in the plane, but belongs to a class
of problems for which the techniques to be discussed below can be applied. For example
we could introduce additional unrestricted functions by adding terms such as er × ṙ and
in a later section of this chapter (3.1.2) is rewritten in terms of a different set of vector
products and shown to describe a model for the motion of low altitude artificial satellites
in the atmosphere.

We employ a direct method, attributed to J Bertrand3.2, to find a vector of the class of
Laplace–Runge–Lenz for the equation of motion (3.1.4). The general principle of a direct
method is to impose some Ansatz on the structure of the first integral or the equation
of motion so that the partial differential equation resulting from the imposition that the
total time derivative of the first integral be zero can be separated into subequations. In
this instance we assume that the functions g and h depend only on r and θ. From the
vector product of r with (3.1.4) we obtain

L̇ = −hr. (3.1.5)

The vector product of (3.1.4) with L gives

r̈ × L − gLθ̂ + hLr̂ = 0 (3.1.6)

which can be rewritten as

d
dt

(ṙ × L) − ṙ × L̇ − gLθ̂ + hLr̂ = 0. (3.1.7)

A Laplace–Runge–Lenz-type vector exists of the form

J = ṙ × L − u(r, θ)r̂ − v(r, θ)θ̂ (3.1.8)

provided

d
dt

(
−ur̂ − vθ̂

)
= hrṙ × L̂ − gLθ̂ + hLr̂. (3.1.9)

Equating the coefficients of r̂ and θ̂ separately to zero and using L = r2θ̇ we have

r̂ : u̇− vθ̇ = −2r2hθ̇,

θ̂ : uθ̇ + v̇ = rṙh + gr2θ̇. (3.1.10)

We now use the assumed functional dependence (3.1.8) to obtain the set of four partial
differential equations as a sufficient condition

ur = 0, vr = hr,

uθ − v = −2hr2, vθ + u = gr2, (3.1.11)

3.2See Whittaker [140, p. 332, § 152].
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where the subscripts r and θ represent partial differentiation with respect to r and θ
respectively. We solve (3.1.11) easily to obtain

u = U(θ), v = U ′(θ) + 2r
1
2V (θ),

h = r−
3
2V (θ), g = r−2

[
U ′′(θ) + U(θ) + 2r

1
2V ′(θ)

]
, (3.1.12)

where U(θ) and V (θ) are arbitrary functions of their argument. The system with equation
of motion

r̈ +

[
U ′′(θ) + U(θ)

r2
+

2V ′(θ)

r
3
2

]
r̂ +

V (θ)

r
3
2

θ̂ = 0 (3.1.13)

has the conserved vector

J = ṙ × L − U(θ)r̂ −
[
U ′(θ) + 2r

1
2V (θ)

]
θ̂. (3.1.14)

We can construct an analogue of Hamilton’s vector from this vector by taking the vector
product of L̂ with J . It is

K = L̂ × J

= Lṙ − U(θ)θ̂ +
[
U ′(θ) + 2r

1
2V (θ)

]
r̂. (3.1.15)

Since L is no longer conserved, we can no longer rescale either (3.1.14) or (3.1.15) by L.

3.2 The orbit equation and motion in time

We construct the orbit equation from the conserved vector, J . If we let θ0 be the fixed
angle between J and the cartesian unit vector ı̂ and take the scalar product of J with r,
we find after the usual rearrangement that

r =
L2

U(θ) + J cos(θ − θ0)
. (3.2.1)

This is not the orbit equation since L is not a constant. To express L in terms of θ we
write

L̇ =
dL
dθ

θ̇ =
dL
dθ

L

r2
, (3.2.2)

use (3.1.5) and the third of (3.1.12) to obtain

L
dL
dθ

= −r
3
2V (θ). (3.2.3)

We eliminate r from (3.2.1) and (3.2.3) to express L in terms of the quadrature

1
L

=
1
L0

+
∫ θ

θ0

V (η)dη

[U(η) + J cos(η − θ0)]
3
2

. (3.2.4)



Generalisations of the Laplace–Runge–Lenz Vector 363

The orbit equation is

r(θ) =
1

U(θ) + J cos(θ − θ0)
×

 1
L0

+
∫ θ

θ0

V (η)dη

[U(η) + J cos(η − θ0)]
3
2



−2

. (3.2.5)

The orbit equation for the standard Kepler problem is recovered when we set U(θ) = U0

and V (θ) = 0.
The explicit determination of r(t) is not possible unless one can express θ in terms of r.

If we differentiate (3.2.1), use (3.1.5) to replace L̇ and again (3.2.1), we obtain

ṙ = −2hr2

L
− 1

L

(
U ′(θ) − J sin(θ − θ0)

)
. (3.2.6)

The evident impossibility of expressing the right-hand side of (3.2.6) in terms of r for
a general function of θ means that the radial motion can only be evaluated numerically.

The function θ(t) can be calculated from (3.2.4) and the scalar equation for the angular
momentum

θ̇ =
(U(θ) + J cos(θ − θ0))

2

L3
. (3.2.7)

Naturally it may not be possible to invert the results of this calculation even if the quadra-
ture can be performed to give θ in terms of t.

The calculation of the areal velocity also poses serious practical problems. If the angular
motion in time can be solved using (3.2.7) so that

t = f1(θ) (3.2.8)

and this can be inverted to give

θ = f2(t), (3.2.9)

we can use

dA
dt

= 1
2L (f2(t)) , (3.2.10)

where L is calculated from (3.2.4), and the areal velocity can in principle be determined.
One would expect to take the numerical route normally.

We note that the existence of the conserved vectors to enable us to perform the formal
calculation of the orbit in the same, or a very similar, manner as for the Kepler problem
by no means guarantees that we can perform in closed form the necessary quadratures.
However, we should bear in mind that motions in the plane can be chaotic. That we are
able to reduce these problems to quadratures indicates that they do not belong to the
chaotic class.

Example 3.1. The orbit equation (3.2.5) can yield a wide variety of orbits for different
choices of the functions U(θ) and V (θ), not to mention for values of the parameters
contained in particular choices of the functions. If V ≡ 0 (indicating the conservation
of the angular momentum vector and so not strictly belonging to this Chapter, but still
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of some interest for purposes of comparison) and U is an increasing function of θ and
U(0) > J > 0, the orbit spirals inwards. If still V ≡ 0, but now U is a decreasing function
of θ with U(0) > J > 0, the orbit spirals outwards. For V ≡ 0 and U periodic with
a period incommensurate with 2π the orbit does not close. For suitable initial conditions
the orbit closes with period 2π if U has the period 2π/n, n ∈ N . If U has a period 2nπ,
n ∈ N , the orbit circles the origin n times before closing, again for suitable values of the
initial conditions. A simple model to illustrate these possibilities is

U(θ) = a sin k(θ − θ0) + b (3.2.11)

for which the corresponding equation of motion, (3.1.13), is

r̈ +
(
a(1 − k2) sin k(θ − θ0) + b

r2

)
r̂ = 0 (3.2.12)

and for which the conserved vectors are

K = Lṙ − (a sin k(θ − θ0) + b) θ̂ + ak cos k(θ − θ0)r̂, (3.2.13)

J = ṙ × L − (a sin k(θ − θ0) + b) r̂ − ak cos k(θ − θ0)θ̂. (3.2.14)

Example 3.2. In the case that U is constant and V is periodic with period 2nπ, n ∈ N/1,
the orbit circles the origin n times before closing in the case that the energy permits bound
orbits. For

U = a, V = b sin k(θ − θ0) (3.2.15)

the equation of motion is

r̈ +

(
a

r2
+

2bk cos k(θ − θ0)

r
3
2

)
r̂ +

b sin k(θ − θ0)

r
3
2

θ̂ = 0 (3.2.16)

and the conserved vectors are

K = Lṙ +
(

2r
1
2 b sin k(θ − θ0)

)
r̂ − aθ̂, (3.2.17)

J = ṙ × L −
(

2r
1
2 b sin k(θ − θ0)

)
θ̂ − ar̂. (3.2.18)

This example is true to the genre in that the angular momentum is constant only in
direction and not in magnitude.

Some illustrative orbits are given in Gorringe and Leach [43].

3.3 The related Hamiltonian system

We now consider the most general autonomous Hamiltonian which possesses a Laplace–
Runge–Lenz vector and belongs to the class of problems specified by the equation of
motion, (3.1.13). We assume an Hamiltonian of the form

H = 1
2p · p + W (r, θ) (3.3.1)
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for which the Newtonian equation of motion can be calculated from

r̈ = −∇W (r, θ) = F (r, θ). (3.3.2)

In plane polar coordinates

∇W (r, θ) =
∂W

∂r
r̂ +

1
r

∂W

∂θ
θ̂ (3.3.3)

and by comparison with (3.1.12) we have

∂W

∂r
= r−2

[
U ′′(θ) + U(θ)

]
+ 2r−

3
2V ′(θ), (3.3.4)

∂W

∂θ
= r−

1
2V (θ). (3.3.5)

A consistent solution of (3.3.4) and (3.3.5) places considerable constraints on the func-
tions U(θ) and V (θ) so that we obtain the Hamiltonian

H = 1
2

(
p2
r +

p2
θ

r2

)
− µ

r
− αr−

1
2 cos

(
1
2(θ − β)

)
(3.3.6)

with the Newtonian equation of motion and conserved vectors given by

r̈ +

(
µ

r2
+

α cos 1
2(θ − β)

2r
3
2

)
r̂ +

α sin 1
2(θ − β)

2r
3
2

θ̂ = 0, (3.3.7)

K = Lṙ + αr
1
2 sin 1

2(θ − θ)r̂ − µθ̂, (3.3.8)

J = ṙ × L − µr̂ − αr
1
2 sin 1

2(θ − β)θ̂. (3.3.9)

We note that only the constant solution for U(θ) persists. The θ-dependent part of U
plays no role in the Hamiltonian or the equation of motion. Its sole contribution is to add
a constant vector to J and so it may be ignored.

3.4 The Lie algebra of the Poisson Brackets of the first integrals

We note a considerable diminution in the generality of the results from the Newtonian
case to the Hamiltonian case just simply because of the requirement that the force be
the gradient of a potential. Nevertheless it is interesting that even that requirement does
not impose the condition that the force be single-valued. The two nonzero cartesian
components of (3.3.9) are

J1 = prpθ sin θ +
p2
θ

r
cos θ − µ cos θ + αr

1
2 sin 1

2(θ − β) sin θ, (3.4.1)

J2 = −prpθ cos θ +
p2
θ

r
sin θ − µ sin θ − αr

1
2 sin 1

2(θ − β) cos θ, (3.4.2)

where for convenience we have written the cartesian representation in terms of the usual
plane polar coordinates. An alternative derivation of (3.4.1) and (3.4.2) would be to use
the structure for H (3.3.1) and J (3.1.8) and impose the requirement that the Poisson
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Bracket of H with each of J1 and J2 be zero. The result is the same although the machinery
used is quite different. A detailed treatment may be found in Gorringe and Leach [49].
An alternate representation of the two constants is to write them as

J± = J1 ± iJ2

= e±iθ
[
p2
θ

r
− µ∓ i

(
prpθ + αr

1
2 sin 1

2(θ − β)
)]

(3.4.3)

which is the type of combination of some use, as we see below, in the study of the complete
symmetry groups for these problems.

Whichever form of the Ermanno–Bernoulli constants we use, the two first integrals can
be used to generate a third integral using Poisson’s theorem (cf [140, p. 320, § 145] and
from the Poisson Bracket we obtain

I = 2pθH + prαr
1
2 sin 1

2(θ − β) + pθαr
−1

2 cos 1
2(θ − β). (3.4.4)

Since they are first integrals, all have zero Poisson Bracket with the Hamiltonian and so
constitute the elements of an invariance algebra of the Hamiltonian. The Poisson Bracket
relations between the three functions are

[J1, J2]PB = −I,

[J1, I]PB = −2HJ2 − 1
2α

2 sinβ, (3.4.5)

[J2, I]PB = 2HJ1 + 1
2α

2 cosβ.

The Poisson Bracket relations, (3.4.5), are neither very tidy nor very attractive. We
make some adjustment to the definitions of the first integrals by writing

A± = |2H|−1
2

(
J1 +

α2 cosβ
4H

)
,

B± = |2H|−1
2

(
J2 +

α2 sinβ

4H

)
,

C± =
I

2H
(3.4.6)

in which the positive sign of the ± refers to positive energies and the negative sign to
negative energies. Now the Poisson Bracket relations are

[A±, B±]PB = ∓C±,
[B±, C±]PB = A±,
[C±, A±]PB = B± (3.4.7)

which in the case of negative energy is immediately recognisable as the Lie algebra so(3)
and in the case of negative energy the noncompact algebra so(2, 1). It is remarkable how
a little refinement can make things look so attractive!

In the planar version of the Kepler problem the algebra for negative and positive ener-
gies is the same as we have found for this problem. Consequently we should not be
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surprised if there be a relationship between these conserved quantities as exists for the
Kepler problem. After considerable manipulation one finds that the relationship is

1
2H

{(
J1 +

α2 cosβ
4H

)2

+
(
J2 +

α2 sinβ

4H

)2

−
(
µ− α2

4H

)2
}

=
(

I

2H

)2

(3.4.8)

which is also somewhat lacking in æsthetic appeal. By defining

µ± = |2H|−1
2

(
µ− α2

4H

)
(3.4.9)

for positive and negative energies respectively we may write (3.4.8) as

µ2
± = A2

± + B2
± ∓ C2

± (3.4.10)

for positive and negative energies respectively. For negative energies in the space of first
integrals equation (3.4.10) represents a sphere which is naturally associated with so(3)
symmetry and for positive energies an hyperboloid of one sheet, the natural geometric
object associated with so(2, 1) symmetry.

When H takes the particular value of zero, the analysis commencing at (3.4.4) no longer
holds true. The third integral is now

I = prαr
1
2 sin 1

2(θ − β) + pθαr
−1

2 cos 1
2(θ − β) (3.4.11)

which is no longer a true first integral but, rather, a configurational invariant as discussed
by Hall [54] and Sarlet et al [129] since it is invariant only for the particular value, H = 0.
If we introduce the unit vector θ̂ defined by

θ̂ = ̂1 cosβ + ̂2 sinβ, (3.4.12)

where ̂1 and ̂2 respectively are the unit vectors along which J1 and J2 lie, we see that

J · θ̂ =
I2

α2
− µ (3.4.13)

or, equivalently, that

J1 cosβ + J2 sinβ =
I2

α2
− µ. (3.4.14)

Equation (3.4.14) represents the natural geometric object associated with the case H = 0
which describes a right parabolic cylinder with θ̂ lying along the axis of symmetry.

A distinction can now be drawn between the standard Kepler problem, where, for
H = 0, J = ±µ from (2.1.10), and the present problem. This is the equation for a plane,
unlike (3.4.14). This difference is also reflected in the form of the algebra. We define

A0 = −J1 sinβ + J2 cosβ,

B0 =
2I
α2

,

C0 = 1. (3.4.15)
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The combination J1 cosβ + J2 sinβ cannot be used as this also is a function of I from
(3.4.14). The Poisson Bracket relations are

[A0, B0]PB = C0,

[B0, C0]PB = 0,
[C0, A0]PB = 0 (3.4.16)

which represents the Weyl algebra, W (3, 1). The standard Kepler problem (in two dimen-
sions) has the algebra E(2) when H = 0.

For H �= 0 the Hamiltonian can be expressed as a function of the three first integrals,
J1, J2 and I, as

H =
1

2 (J2 − µ2)
[
I2 − α2(J1 cosβ + J2 sinβ + µ)

]
. (3.4.17)

An alternate derivation of the integrals for the Hamiltonian was proposed by Sen [130]
as an extension but in the spirit of the work done on first integrals polynomial in the
velocities for a variety of Hamiltonian systems by, amongst others, Gascón et al [36],
Grammaticos et al [52], Thompson [136], Hietarinta [62], Leach [82] and, in the case of
time-dependent systems, Lewis and Leach [96]. Sen assumes that the first integral is a
polynomial in the momenta of the form

IS =
∑
i=0

∑
j=0

dij(x, y)pixp
j
y, i + j ≤ n, (3.4.18)

where i + j is either even or odd in sympathy with n since autonomous invariants for
an autonomous Hamiltonian of even degree in the momenta are either even or odd in
the momenta (see Thompson [136]). The extension of Sen is to make a linear canonical
transformation to a complex coordinate system

z = 2−
1
2 (x + iy), z̄ = 2−

1
2 (x− iy),

pz = 2−
1
2 (px − ipy), pz̄ = 2−

1
2 (px + ipy). (3.4.19)

In the new coordinates the Hamiltonian and first integral have the forms

HS = 2pzpz̄ + V (z, z̄),

IS = (zpz − z̄pz̄)n−2pzpz̄ +
∑
i=0

∑
j=0

eij(z, z̄)pizp
j
z̄, (3.4.20)

where now i+ j ≤ n− 2. The Poisson Bracket requirement that [IS , HS ]PB = 0 results in
a system of equations the solution of which gives the Hamiltonian

HIS = 2pzpz̄ + az−
1
2 + bz̄−

1
2 + c(zz̄)−

1
2 , (3.4.21)

the third-order first integral

I3 = (zpz − z̄pz̄)pzpz̄ + 1
2

[
bz̄−

1
2 + c(zz̄)−

1
2

]
zpz − 1

2

[
az−

1
2 + c(zz̄)−

1
2

]
z̄pz̄ (3.4.22)
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and the two quadratic first integrals

I1 = (zpz − z̄pz̄)pz + 1
2

[
bz̄

1
2 − az−

1
2 z̄ − cz−

1
2 z̄

1
2

]
, (3.4.23)

I2 = (zpz − z̄pz̄)pz̄ + 1
2

[
bzz̄

1
2 − az

1
2 + cz

1
2 z̄−

1
2

]
. (3.4.24)

When b = ā = a1 − ia2, the identification of the results of Sen with those given above
is

HIS = 2H, − 2−
1
2 (I1 − I2) = J1,

2iI3 = I, − 2−
1
2 i(I1 + I2) = J2. (3.4.25)

Naturally the results of the two approaches can be mutually identified when the same
matters are being discussed.

The results of Sen, derived by the direct approach of assuming a structure for the first
integral, and those obtained here by means of vectorial manipulation of the equation of
motion and then the imposition of the Hamiltonian structure are peculiar to two dimen-
sions. The results of a long and tedious calculation [49] show that the only potential in
three dimensions which can be permitted subject to be requirement that the Hamiltonian
be autonomous and of the form H = T +V is the familiar Kepler potential. Sen [130] also
considered the quantum mechanical representations of the two-dimensional Hamiltonian.
The presence of the quadratic first integrals in the classical case implies that the quantum
mechanical version of this potential is integrable (see Hietarinta [61]). He obtained the
quantum invariants, the identical algebra to the classical algebra and the bound state en-
ergy spectrum using the Casimir operator for so(3). Considering equation (3.4.10) above
one should not be surprised.

3.5 Invariance under time translation and the first integrals

Sen [130] showed that the differential equation (3.3.7) possesses only the single Lie point
symmetry, G = ∂t. Sen interpreted this in the usual way as leading to the conserva-
tion of energy, which it does if one applies Noether’s Theorem. Using the Lie method
Leach [80] constructed the energy, the angular momentum and the components of the
Laplace–Runge–Lenz vector for the Kepler problem from this single Lie point symme-
try3.3.

A Lie symmetry, G, gives rise to a first integral/invariant of a differential equation for
which it is a symmetry if the two conditions

G[1]I = 0 and
dI
dt |E=0

= 0, (3.5.1)

3.3As is well known (for example, see Kaplan [67]), a system of N degrees of freedom can have at most
only 2N −1 first integrals. The excessive number obtained by Leach followed from different routes towards
obtaining the invariants of the associated Lagrange’s systems which need to be solved to obtain the inte-
grals. These integrals, energy, angular momentum and the Laplace–Runge–Lenz vector, obviously have the
symmetry, ∂t, since they are manifestly invariant under time translation. The single integral per symmetry
is a feature of Noether’s theorem and to obtain the integrals apart from the energy using Noether’s theorem
one would require additional symmetries. These symmetries would have to be generalised symmetries due
to the existence of only one Lie point symmetry.
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where the differential equation in question is E = 0 and G[1] is the first extension of G, are
satisfied. The first extension is required due to the required presence of first derivatives
in the first integral/invariant. The symmetry ∂t is its own first extension and the first of
(3.5.1) gives the linear partial differential equation

∂I

∂t
+ 0

∂I

∂r
+ 0

∂I

∂θ
+ 0

∂I

∂ṙ
+ 0

∂I

∂θ̇
= 0. (3.5.2)

The characteristics obtained from the solution of the associated Lagrange’s system

dt
1

=
dr
0

=
dθ
0

=
dṙ
0

=
dθ̇
0

(3.5.3)

are

u1 = r, v1 = ṙ,

u2 = θ, v2 = θ̇, (3.5.4)

which are individually invariant under the infinitesimal transformation generated by G[1].
The second condition of (3.5.1) gives the associated Lagrange’s system

du1

u̇1
=

du2

u̇2
=

dv1

v̇1
=

dv2

v̇2
, (3.5.5)

where we find from the equation of motion that

u̇1 = v1,

v̇1 = u1v
2
2 − µ

u2
1

− α cos 1
2(u2 − β)

2u
3
2
1

,

u̇2 = v2,

v̇2 = −2v1v2

u1
− α sin 1

2(u2 − β)

2u
5
2
1

. (3.5.6)

In the case of the Kepler problem the solution of the equation corresponding to (3.5.5)
was nontrivial and the righthand sides in (3.5.6) are more complex. The underlying idea of
the solution of the associated Lagrange’s system is to take combinations of the elements of
the system to obtain equivalent elements which have the total derivative of some function
in the numerator and zero in the denominator [63, p. 45]. To make the process of solution
more obvious, if not precisely transparent, we indicate the combinations used. We denote
the ith element of (3.5.6) by (3.5.6.i). The combination

u1v
2
2 +

µ

u2
1

+
α cos 1

2(u2 − β)

2u
3
2
1


 (3.5.6.1)

+
α sin 1

2(u2 − β)

2u
1
2
1

(3.5.6.2) + v1(3.5.6.3) + u2
1v2(3.5.6.4) (3.5.7)
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gives one of the desired elements, videlicet

d


1

2

(
v2
1 + u2

1v
2
2

)− µ

u1
− α cos 1

2(u2 − β)

u
1
2
1




0
. (3.5.8)

The term in crochets is a characteristic and hence a first integral. In the original coordi-
nates one sees that it is the energy, which in this case is the Hamiltonian. The components
of the Laplace–Runge–Lenz vector are obtained from the combinations

(
2u1v1v2 sinu2 + 3u2

1v
2
2 cosu2 + 1

2αu
−1

2
1 sin 1

2(u2 − β) sinu2

)
(3.5.6.1)

+
(
u2

1v1v2 cosu2 − u3
1v

2
2 sinu2 + µ sinu2 + 1

2αu
1
2
1 cos 1

2(u2 − β) sinu2

+ αu
1
2
1 sin 1

2(u2 − β) cosu2

)
(3.5.6.2) +

(
u2

1v2 sinu2

)
(3.5.6.3)

+
(
u2

1v1 sinu2 + 2u3
1v2 cosu2

)
(3.5.6.4) (3.5.9)

for J1 and
(
−2u1v1v2 cosu2 + 3u2

1v
2
2 sinu2 − 1

2αu
−1

2
1 sin 1

2(u2 − β) cosu2

)
(3.5.6.1)

+
(
u2

1v1v2 sinu2 + u3
1v

2
2 cosu2 − µ cosu2 − 1

2αu
1
2
1 cos 1

2(u2 − β) cosu2

+ αu
1
2
1 sin 1

2(u2 − β) sinu2

)
(3.5.6.2) +

(−u2
1v2 cosu2

)
(3.5.6.3)

+
(−u2

1v1 cosu2 + 2u3
1v2 sinu2

)
(3.5.6.4) (3.5.10)

for J2. Finally I comes from the combination

(
4u1v2H + 1

2u
−1

2
1 v1α sin 1

2(u2 − β) + 3
2u

1
2
1 v2α cos 1

2(u2 − β)
)

(3.5.6.1)

+
(

1
2u

1
2
1 v1α cos 1

2(u2 − β) − 1
2u

3
2
1 v2α sin 1

2(u2 − β)
)

(3.5.6.2) (3.5.11)

+
(
u

1
2
1 α sin 1

2(u2 − β)
)

(3.5.6.3) +
(

2u2
1H + u

3
2
1 α cos 1

2(u2 − β)
)

(3.5.6.4),

where the invariance of H, ie dH = 0, has been used.
One cannot plausibly propose that the solution of (3.5.5) is transparent. However,

it is one possible method where it is not essential, a priori, to make an Ansatz for the
structure of the first integrals. This method is more feasible when there are several sym-
metries available for a complex system. Then one can impose the requirements of several
symmetries simultaneously and so reduce the number of invariants before imposing the
condition İ = 0, in this case the second member of (3.5.1), which is generally the major
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source of difficulty3.4. An example of this procedure in practice is to be found in the paper
of Cotsakis et al [26] devoted to the determination of the first integrals/invariants of the
Bianchi models in Cosmology.

3.6 The Kepler problem with ‘drag’

For an equation of motion with the direction of angular momentum conserved we had, in
§ 3.1, the equation

L̇ + h1L = 0 (3.6.1)

which we can rewrite as

r × r̈ + g1r × r + h1r × ṙ = 0, (3.6.2)

where g1 and h1 are arbitrary functions for which the variable dependence is specified
below when it is necessary so to do. Consequently the equation of motion

r̈ + f ṙ + gr = 0, (3.6.3)

where we have replaced h1 and g1 with f and g respectively, describes motion in a plane
with L̂ conserved. This equation, (3.6.3), is a generalisation to a class of a problem
of physical interest, the equation which models the motion of satellites in low altitude
orbits and which was proposed by Brouwer and Hori [18]. They obtained a closed-form
solution which included first-order corrections for drag3.5 acceleration involving a quadratic
velocity-dependent term to account for atmospheric effects on satellites sufficiently close
to the Earth. Danby [27] modified this assumption and used a resistive term which was
proportional to the velocity vector and inversely proportional to the square of the radial
distance. For small values of the constant of proportionality he obtained a first-order
perturbation solution. Mittleman and Jezewski [107] provided an exact solution to the
same problem and in a subsequent paper [66] they demonstrated the existence of analogues
of the angular momentum, energy and Laplace–Runge–Lenz vector for the Danby problem.
Their approach was to manipulate the equation of motion as had been done by Collinson
[22, 23], Pollard [124] and also Sarlet and Bahar [128] on various nonlinear problems.
The paper of Mittleman and Jezewski [107] is quite complicated and invited attempts to
provide an elegant solution to the original problem of Danby [83] and its generalisation as
represented by (3.6.3) [46].

The vector product of r with (3.6.3) gives

L̇ = −fL. (3.6.4)

This equation may be used to eliminate f from (3.6.3) to give

r̈ − L̇

L
ṙ + gr = 0. (3.6.5)

3.4One need not be surprised at this since mathematicians and scientists have been looking for ways to
avoid the direct solution of the equations of motion ever since they were devised several centuries ago.

3.5The use of the word ‘drag’ to describe this type of force was introduced by Jezewski and Mittleman
[107, 66]. We maintain the usage, but slightly tongue in cheek as may be inferred from the ‘’ in the title
of this section.
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The first two terms of (3.6.5) possess the integrating factor L−1 and we have

d
dt

(
ṙ

L

)
+

gr

L
= 0. (3.6.6)

There exists a Hamilton-like vector if we can write

K =
ṙ

L
+ u, (3.6.7)

where u :=
∫
(gr/L)dt, explicitly without a knowledge of r(t) and θ(t). The analogue of

the Laplace–Runge–Lenz vector is

J = K × L̂ =
ṙ × L̂

L
+ u × L̂. (3.6.8)

The orbit equation is obtained by taking the scalar product of (3.6.8) with r and is

r =
1

−uθ + J cos(θ − θ0)
, (3.6.9)

where θ0 is the angle between J and the cartesian unit vector, ı̂, and uθ is the component
of u in the direction θ̂ (cf (3.6.12)). To determine u we use the cartesian representation
of r̂ to write

u =
∫

gr

L
dt

= ı̂

∫
gr

L
cos θdt + ̂

∫
gr

L
sin θdt (3.6.10)

and the two integrals can be evaluated provided that

gr

L
= v(θ)θ̇ ⇔ g = rv(θ)θ̇2. (3.6.11)

Then we may write u as (cf § 2.1)

u = z′(θ)r̂ − z(θ)θ̂, (3.6.12)

where

z(θ) =
∫ θ

θ0

v(η) sin(θ − η)dη (3.6.13)

or, alternatively,

z′′(θ) + z(θ) = v(θ), z(θ0) = 0 and z′(θ0) = 0. (3.6.14)

The radial and angular components of u are

ur = z′(θ), uθ = −z(θ) (3.6.15)
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and the two vectors are

K =
ṙ

L
+ z′(θ)r̂ − z(θ)θ̂, (3.6.16)

J =
ṙ × L̂

L
− z(θ)r̂ − z′(θ)θ̂. (3.6.17)

The orbit equation, (3.6.9), is now

r =
1

z(θ) + J cos(θ − θ0)
. (3.6.18)

We now return to (3.6.4). This can be integrated to give

M(L, r, θ) = h, (3.6.19)

where h is the constant of integration, provided

f =
∂M(L, r, θ)

∂r
ṙ + ∂M(L, r, θ)

∂θ
θ̇

L
∂M(L, r, θ)

∂L

. (3.6.20)

We may invert (3.6.19), at least locally, to obtain

L = N(h, r, θ). (3.6.21)

With this and (3.6.11) rewritten as

gr3

L2
= v(θ) (3.6.22)

by the replacement of θ̇ by L/r2, we obtain an alternative expression for g, videlicet

g =
1
r3

N2(h, r, θ)v(θ). (3.6.23)

Equations (3.6.20) and (3.6.23) establish one possible form of (3.6.3) for which the con-
served vectors K, (3.6.16), and J , (3.6.17), and the orbit equation, (3.6.18), exist.

For the model of the motion of a low altitude satellite Jezewski and Mittleman [66]
obtained an energylike first integral by a complicated calculation. For the more general
problem discussed here it is also possible to obtain a scalar energylike first integral as

I = 1
2K · K = 1

2J · J
= 1

2

ṙ · ṙ
L2

+
1
L

[
ṙz′ (θ) − rθ̇z(θ)

]
+ 1

2

[
z2(θ) + z′2(θ)

]
. (3.6.24)

The radial motion in time may be found by differentiation of (3.6.18) and use of the
orbit equation to remove the sin(θ − θ0) term. We obtain

ṙ = −L

(
z′(θ) − 1

r

(
(J2 − z2(θ))r2 + 2z(θ)r − 1

)1
2

)
, (3.6.25)
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where L = r2θ̇ has been used to eliminate θ̇. The only possibility that (3.6.25) is solvable
in closed form is that z(θ), z′(θ) and L can be expressed as functions of r, apart from any
constants of the motion. If this be possible and the subsequent quadrature performed, we
obtain

t = f1(r) (3.6.26)

and are still left with the problem of the inversion to obtain r(t). We treat one class of
such problems below.

The angular motion in time is obtained from the two-dimensional angular momentum
equation L = r2θ̇ and the elimination of r with (3.6.18). We obtain

θ̇ = L (z(θ) + J cos(θ − θ0))
2 (3.6.27)

and, provided L can be expressed in terms of θ, it may be possible to perform the quadra-
ture to obtain

t = f2(θ). (3.6.28)

The areal velocity is obtained from

Ȧ = 1
2L(t), (3.6.29)

where L(t) is obtained as an explicit function of time through the inversion of (3.6.26) and
(3.6.28) to replace r and θ by functions of time.

We see that there is much potential for not to be able to obtain explicit expressions.
However, the establishment of the existence of the conserved quantities enables us to carry
out numerical computations with confidence.

These examples are described in Leach [83] and Gorringe and Leach [44]. Mavraganis
[103] considered equations of the form (3.6.3) in which the resistive term varied slowly
with time. With the use of a Taylor series expanded about the initial velocity he obtained
expressions for the orbit equation and the Hamilton and Laplace–Runge–Lenz vectors
which are similar in structure to those described by Jezewski and Mittleman [66] and
Leach [83] for the Danby [27] problem.

Example 3.3. The equation of motion for the Danby problem is

r̈ +
αṙ

r2
+

µr

r3
= 0. (3.6.30)

From a comparison of (3.6.30) with (3.6.3) we have

f =
α

r2
, g =

µ

r3
. (3.6.31)

From (3.6.4) the magnitude of the angular momentum satisfies the equation

− L̇

L
=

α

r2
=

αθ̇

L
(3.6.32)

which has the solution

L = k − αθ, (3.6.33)
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where k is some arbitrary constant, in agreement with the result of Jezewski and Mittle-
man [66]. We also find that

v(θ) =
µ

(k − αθ)2
, (3.6.34)

z(θ) = µ

∫ θ

θ0

sin(θ − η)dη
(k − αη)2

. (3.6.35)

In terms of

u =
(
k

α
− θ

)
, u0 =

(
k

α
− θ0

)
(3.6.36)

and some standard integrals ([51, 2.641.1–4]) we obtain

z(θ) =
µ

α2

[
sin(u− u0)

u0
− sinu (si(u) − si(u0)) − cosu (Ci(u) − Ci(u0))

]
, (3.6.37)

z′(θ) = − µ

α2

[
cos(u− u0)

u0
− 1

u
+ sinu (Ci(u) − Ci(u0)) − cosu (si(u) − si(u0))

]
,

where the sine and cosine integrals are given by

si(x) = −1
2π +

∫ x

0

sin t

t
dt, (3.6.38)

Ci(x) = γ + log x +
∫ x

0

cos t− 1
t

dt (3.6.39)

and γ = 0.57721566490 . . . is Euler’s constant.
The explicit expressions for the conserved vectors are

K =
ṙ

L
+

µ

α2

(
1
u
− sinuCi(u) + cosu si(u)

)
r̂

+
µ

α2
(sinu si(u) + cosuCi(u)) θ̂

− µ

α2

(
r̂θ0
u0

+ si(u0)r̂k/α + Ci(u0)θ̂k/α

)
, (3.6.40)

J =
ṙ × L̂

L
+

µ

α2
(sinu si(u) + cosuCi(u)) r̂

− µ

α2

(
1
u
− sinuCi(u) + cosu si(u)

)
θ̂

+
µ

α2

(
θ̂θ0
u0

+ si(u0)θ̂k/α − Ci(u0)r̂k/α

)
. (3.6.41)

Since the final term in both (3.6.40) and (3.6.41) is a constant vector, it can be ignored in
order to simplify matters. The simplified version coincides with that obtained by Jezewski
and Mittleman [66] who obtained their result by means of an integrating factor. For either
version the equation for the orbit comes from the scalar product of r and J .

A typical orbit, for which see Gorringe and Leach [44], spirals inwards which is not
surprising considering what the equation of motion was intended to model.
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Example 3.4. The density of the atmosphere is not constant for all θ. A more realistic
resistive force for the motion of a low altitude satellite which incorporates a variation in
the density of the atmosphere is given by

f =
a cos θ + b

r2
, g =

µ

r3
. (3.6.42)

In this case

z(θ) = µ

∫ θ

θ0

sin(θ − η)dη
(k − a sin η − bη)2

. (3.6.43)

The nature of the orbit depends upon the relative values of the constants a and b. For
values which give a resistive force for all values of θ, the orbit spirals inwards, as expected,
but the rate at which it spirals inwards varies with θ to give almost the impression of
a precession of the orbit.

Example 3.5. There is no necessity to maintain an air of reality in the model if one wants
to explore the variety of orbits which can be obtained. If we make the choice

f =
a cos θ + b

Lr2
, g =

µ

r3
, (3.6.44)

we find that

z(θ) = 1
2µ

∫ θ

θ0

sin(θ − η)dη
k − a sin η − bη

. (3.6.45)

The “precession” of the orbit is even more pronounced. In the case that the force is
not always resistive the angular momentum increases and eventually the orbit appears to
depart asymptotically.

Example 3.6. In the case that

f =
−ae−(θ−θ0)L3

2r2
, g =

µ

r3
(3.6.46)

for which

z(θ) = 1
2µa

(
e−(θ−θ0) + sin(θ − θ0) − cos(θ − θ0)

)
+ µb (1 − cos(θ − θ0)) (3.6.47)

the “resistive” force decreases to zero as θ increases. Even for small values of θ the value of
f is small. The orbit approaches a normal Keplerian orbit asymptotically. For illustrations
of this and other orbits see Gorringe and Leach [44].

3.7 Force laws admitting Keplerian orbits

Commencing with (3.6.3) we construct the most general Keplerian orbits, ie conic sections
centred on a focus. This is motivated by the results of Bertrand’s theorem [13] which
applies specifically to central force orbits. We are not particularly concerned with the
inverse problem of finding the most general equation of motion for a given orbit. This
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has a long history for which see Whittaker [140] and more recently Broucke [17] and the
references cited therein.

The Keplerian orbit has its origin at one of the foci and from (3.6.18) we see that, since
z(θ0) = 0,

z(θ) = A (1 − cos(θ − θ0)) , (3.7.1)

where A is some constant. With this and (3.6.14) and (3.6.23) we obtain

v(θ) = A and g =
AL2

r3
. (3.7.2)

We solve this for L2 and differentiate with respect to time to obtain

2LL̇ =
ġr3

A
+

3r2ṙg

A
. (3.7.3)

Hence we find that

f = −1
2

(
ġ

g
+ 3

ṙ

r

)
. (3.7.4)

Thus the most general equation of motion possessing the conserved vectors K and J and,
in addition, an orbit equation which is a conic section is given by

r̈ − 1
2

(
ġ

g
+ 3

ṙ

r

)
ṙ + gr = 0. (3.7.5)

Under the change of timescale t → ρ(t) (3.7.5) becomes

ρ̇2 d2r

dρ2 +
(
ρ̈− 1

2

(
ġ

g
+ 3

ṙ

r

)
ρ̇

)
dr

dρ
+ gr = 0. (3.7.6)

We define the transformation by setting the middle term to zero to obtain the equation
of motion

d2r

dρ2 +
g

ρ̇2
r = 0, (3.7.7)

with the transformation defined by

ρ̈− 1
2

(
ġ

g
+ 3

ṙ

r

)
ρ̇ = 0 (3.7.8)

=⇒ ρ̇2 =
gr3

µ
=

AL2

µ
=

4A
µ

Ṡ2 =
4
L̄2

Ṡ2, (3.7.9)

where µ is the arbitrary constant in the Kepler problem

d2r

dρ2 +
µ

r3
r = 0, (3.7.10)

L̄ is the angular momentum for (3.7.10) and Ṡ = 1
2L is the areal velocity of (3.7.5).

Equation (3.7.5) has been transformed into an equivalent Kepler problem (3.7.10) using
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the area swept out in the orbit described by (3.7.5). Equation (3.7.9) is consistent with
that obtained by taking the area S(t) swept out in the orbit described by (3.7.5) in time t
with the same area swept out in the Kepler problem at time ρ(t) as given by Kepler’s
Second Law, ie ρ(t) = 2S(t)/L̄. The conserved vectors, K and J , of (3.7.5) are form
invariant under the transformation t → ρ(t) since the term ṙ×L/L2 = r′×Lt/L

2
t , where

the prime denotes differentiation with respect to ρ and Lt = r2θ′, and so

K =
r′

Lt
−A

(
θ̂ − θ̂θ0

)
,

J =
r′ × Lt

Lt
−A (r − r̂θ0) , (3.7.11)

where r̂θ0 = ı̂ cos θ0 + ̂ sin θ0 and θ̂θ0 = −ı̂ sin θ0 + ̂ cos θ0.
The angular momentum for the equation of motion (3.7.5) is obtained by taking the

vector product with r to obtain

L̇ − 1
2

(
ġ

g
+ 3

ṙ

r

)
L = 0 (3.7.12)

and, since L̂ is constant, the scalar part of (3.7.12) gives on integration

L = kg
1
2 r

3
2 , (3.7.13)

where k is the constant of integration. With the explicit form L = r2θ̇

k =
(
r

g

)1
2
θ̇ (3.7.14)

is also a constant of the motion and k = kL̂ can be regarded as a conserved generalised
angular momentum.

We obtain the scalar energylike first integral for (3.7.5) by simplifying (3.6.24) using
(3.7.1) to substitute for z(θ) and its derivatives. The integral is

I = 1
2J · J = 1

2A
ṙ · ṙ
gr3

− A

r
+ AJ. (3.7.15)

An alternate route to obtain an energylike first integral for (3.7.5) is to take the scalar
product with (gr3)−1ṙ, which is an integrating factor, and to obtain the conserved quantity

E = 1
2

ṙ · ṙ
gr3

− 1
r

= 1
2J

2A− J. (3.7.16)

The differential equation for the radial motion in time comes from (3.7.16) and (3.7.13)
and is

ṙ =
[
gr2
(
2Er − k2r − 2

)]1
2 . (3.7.17)

The integration of (3.7.17) can only be possible if g be expressible solely as a function of r
and, even then, in general the quadrature would be formal. The angular motion in time
is found from the integration of

θ̇ =
[ g
A

(A + (J −A) cos(θ − θ0))
]1

2
. (3.7.18)
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Now the possibility of quadrature requires that g be expressible in terms of θ only. The
aerial velocity is

Ȧ = 1
2L = 1

2k
(
gr3
)1

2 . (3.7.19)

The quadrature to obtain A(t) requires that the right hand side of (3.7.19) be expressible
as a function of time. In general this would require not only the ability to perform the
quadrature in either (3.7.17) or (3.7.18) but also the ability to invert the result.

3.8 The geometry of the generalised Kepler problem

In general an expression for the area swept out by the radius vector in time cannot be
found explicitly due to problems with the inversion of functions at more than a local level.
However, in the case that g = µrα, expressions for the periodic time can be found rather
elegantly and also informatively3.6 [48]. The equation of motion, (3.7.5), is now

r̈ − 1
2(α + 3)

ṙ

r
ṙ + µrαr = 0. (3.8.1)

To be consistent with the conserved vectors given for the standard Kepler problem in
Chapter 2 we delete the additional constant terms in the conserved vectors given by
(3.6.41). By means of the usual operations and techniques of this Chapter we obtain

L̇ − 1
2(α + 3)

ṙ

r
L = 0 =⇒ L = kr

1
2 (α+3). (3.8.2)

Since the motion is planar, L = r2θ̇ and so we have

k = r−
1
2 (α−1)θ̇ (3.8.3)

is a constant of the motion. The Hamilton’s vector,

K =
ṙ

L
− µ

k2
θ̂, (3.8.4)

follows from the integration of the combination of (3.8.1) divided by L and (3.8.3). The
Laplace–Runge–Lenz vector is

J = K × L̂ =
ṙ × L

L2
− µ

k2
r̂ (3.8.5)

and from this we obtain the equation of the orbit

r =
1

µ/k2 + J cos(θ − θ0)
, (3.8.6)

where θ0 is the angle between J and ı̂.

3.6Interestingly there is a change in the Lie symmetry properties of the equation of motion [121], for
which see § 5.8.2.
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The scalar product of r−(α+3)ṙ with (3.8.1) gives the energylike integral

E = 1
2

ṙ.ṙ

rα+3
− µ

r
(3.8.7)

after integration with respect to time. The conserved quantities J , k and E are related
according to

J2 = K2 =
2E
k2

+
µ2

k4
. (3.8.8)

The period of the motion is found from (3.8.3) and (3.8.6) to be expressible as the quadra-
ture

T =
2
k

∫ π+θ0

θ0

( µ

k2
+ J cos(θ − θ0)

)1
2 (α−1)

dθ. (3.8.9)

Using (3.8.8) we may rewrite the term within the large parentheses in the integrand of
(3.8.9) as

(−2E
k2

)1
2




µ

k(−2E)
1
2

+




 µ

k(−2E)
1
2




2

− 1




1
2

cos(θ − θ0)


 . (3.8.10)

The definition of the Legendre function of the first kind is ([51] [8.822.1])

Pν(z) =
1
π

∫ π

0

dξ[
z + (z2 − 1)

1
2 cos ξ

]ν+1 =
1
π

∫ π

0

[
z +
(
z2 − 1

)1
2 cos ξ

]ν
dξ. (3.8.11)

When ν is an integer, this becomes the Legendre polynomial.
The energylike integral, (3.8.7), is negative for an elliptical orbit. With (3.8.10) and

(3.8.11) the quadrature of the right-hand side of (3.8.9) can be performed to give the
period as

T =
2π
k

(−2E
k2

)1
4 (α−1)

P1
2 (α−1)

(z), (3.8.12)

where the argument of the Legendre function of the first kind is given by

z =
µ

k(−2E)
1
2

. (3.8.13)

The relationship between the semilatus rectum, the semimajor axis and the eccentricity
of an ellipse is

l = R
(
1 − e2

)
, (3.8.14)
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where the symbols are in the same order. From the orbit equation (3.8.6) the semilatus
rectum and the semimajor axis are given by

l = r
(

1
2π
)

R = 1
2 [r(0) + r(π)]

=
k2

µ
=

µ/k2

µ2/k4 − J2

=
µ

−2E
, (3.8.15)

where we have used (3.8.8) in the third line of the second column, so that z, the argument
of the generalised Kepler’s Third Law, becomes

z =
(
1 − e2

)−1
2 (3.8.16)

and the law itself can be written as

T 2Rα =
4π2

µ

(
1 − e2

)−1
2 (α+1)

P 2
1
2 (α−1)

[(
1 − e2

)−1
2

]
(3.8.17)

when (3.8.12) is squared.
The differential equation (3.8.1) is invariant under the similarity transformation

(t, r) −→
(
t̄, r̄ : t = γt̄, r = γ

2
α r̄
)
. (3.8.18)

Since

E = γ
2
α Ē =⇒ R = γ−

2
α R̄, (3.8.19)

it follows that

R−α
2

t
=

(
γ−

2
α R̄
)−α

2

γt̄
=

γR̄−α
2

γt̄
=

R̄−α
2

t̄
(3.8.20)

is invariant under the transformation. This implies that TR
α
2 is invariant. In the case of

the angular momentum

L = γ−
4
α
−1L̄ =⇒ l = γ−

2
α l̄ (3.8.21)

so that the ratio

l̄

R̄
=

γ
2
α l

γ
2
αR

=
l

R
=
(
1 − e2

)
(3.8.22)

is invariant and hence the eccentricity, z, is also invariant. Alternatively we can use the
first extension of the infinitesimal generator of the transformation, videlicet

G = t∂t − 2
α
r∂r (3.8.23)
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to show the invariance of (3.8.17). The task is simplified somewhat by rewriting G[1](t, r,
ṙ, θ̇) in terms of the relevant conserved quantities, ie as G[1](T,R, l). For then we have

G[1] = t∂t − 2
α
r∂r − α + 2

α
ṙ∂ṙ − θ̇∂θ̇

=⇒ G[1] = T∂T − 2
α
R∂R − 2

α
l∂l (3.8.24)

when acting upon functions of T , R and l. In the case of (3.8.17) it is easy to show that

G[1]
(
T 2Rα

)
= G[1]

(
p

((
1 − e2

)−1
2

))
= G[1]


p


(R

l

)1
2




 = 0, (3.8.25)

where p(·) denotes the function on the right side of (3.8.17), which illustrates the invari-
ance.

In summary the equation of motion

r̈ − 1
2(α + 3)

ṙ

r
ṙ + µrαr = 0 (3.8.26)

describes motion in the plane which has the following properties:

(i) the orbit is a conic section with the origin at a focus, ie of the type of the Kepler
problem,

(ii) the areal velocity is 1
2kr

1
2 (α+3) and

(iii) in the case of an elliptical orbit the period and semimajor axis are related by

T 2Rα =
4π2

µ

(
1 − e2

)−1
2 (α+1)

P 2
1
2 (α−1)

[(
1 − e2

)−1
2

]
. (3.8.27)

For α = −3 in (3.8.26) we obtain the usual Kepler’s laws of planetary motion and, in
particular, we see that T 2 ∝ R3 irrespective of the value of the eccentricity of the ellipse. In
general the areal velocity is not constant. The equation (3.8.17) is the generalised Kepler’s
Third Law for a power law central force plus a resistive term. We note that the constant
of proportionality depends explicitly upon the eccentricity of the orbit. When α = −3, the
selfsimilar transformation (3.8.23) maps solutions into solutions of the same eccentricity
(see Prince and Eliezer [125]). This is not reflected in the relationship between the period
and the semimajor axis. However, for general α not only does the symmetry maps solutions
into solutions of the same eccentricity but in general the relationship between the period
and the semimajor axis now depends explicitly upon the eccentricity. We note that several
cases arise in which the constant of proportionality in (3.8.17) does not depend upon the
eccentricity. This occurs for the Kepler problem for which α = −3 and when α = −1. In
the cases α = 1 and α = 3 the constant of proportionality can be made independent of
the eccentricity if the semilatus rectum, l = R

(
1 − e2

)
, is used instead of the semimajor

axis length. We obtain

T 2l =
4π2

µ
and T 2l3 =

4π2

µ
(3.8.28)
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respectively. (Note that the units of µ depend upon the value of α.) In these two instances
the implication is that all orbits with the same length of semilatus rectum have the same
period. In the case that α = 0 in (3.8.26) we have an oscillator with an additional velocity-
dependent force which has the effect of changing the usual geometric-centred oscillator
ellipse into a focus-centred Kepler ellipse. The isochronism of the oscillator is now only
preserved for all orbits of the same eccentricity.

From the energy equation, (3.8.7), we obtain

ṙ = r
1
2 (α+1) (2Er2 + 2µr − k2

)1
2 . (3.8.29)

This equation can be integrated in closed form for many values of α. In particular for
α = ±1 we can not only perform the quadrature in closed form but also invert it ([51,
formulæ 2.26ff]) to obtain r(t). Consequently it is possible to obtain expressions for both
θ(t) and S(t). We have

1. α = −1

r(t) =
µ

(−2E)
− k2J

(−2E)
cos
(

(−2E)
1
2 (t− t0)

)
,

θ(t) = θ0 + 2arctan


 k(−2E)

1
2

(µ− k2J)
tan
(

1
2(−2E)

1
2 (t− t0)

) ,

S(t) = 1
2


µk(t− t0)

(−2E)
− k3J

(−2E)
3
2

sin
(

(−2E)
1
2 (t− t0)

) . (3.8.30)

2. α = 1

r(t) =
1

µ/k2 + J cos (k(t− t0))
,

θ(t) = θ0 + k(t− t0),

S(t) = 1
2


 2µk

(−2E)
3
2

arctan


k(−2E)

1
2 tan(1

2k(t− t0))
µ + k2J




− k2J sin (k(t− t0))
(−2E) (µ/k2 + J cos (k(t− t0)))

]
. (3.8.31)

In this case for S(t) the formulæ of [51, 2.554.3 and 2.2553.3] were used.
In the second case, that of α = 1, it is rather interesting that θ increases linearly with

time. We note that the function ρ(t) introduced in (3.7.6) can be obtained explicitly in
these two cases from the relationship ρ(t) = 2S(t)/L̄. Since the orbit is elliptical and
the area swept out in the corresponding Kepler problem is simply a constant multiple
of time, one would expect intuitively that the time transformation required to transform
(3.8.26) to the equivalent Kepler equation of motion should involve the area swept out in
the original elliptical orbit.
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4 Motion with conserved L

4.1 A conserved Laplace–Runge–Lenz vector for r̈ + fL+ gr̂ = 0

In the previous chapter we considered equations of motion for which the direction of the
angular momentum vector was constant. In this chapter we require that the magnitude
of the angular momentum vector, L, be constant. We write

L2 = L · L (4.1.1)

and upon differentiation of this obtain

L̇ · L = 0. (4.1.2)

Equation (4.1.2) implies that L̇ and L are orthogonal. Equations of motion arising from L̇
and combinations of other vectors orthogonal to L describe motion for which L is con-
served. One such orthogonal vector is r × L and so the equation

L̇ + fr × L = 0 (4.1.3)

describes one possible, not to be regarded as the most general, class of equations meeting
the requirement that the magnitude of the angular momentum be conserved. Since L̇ =
r × ṙ and r × r̂ = 0, we may write (4.1.3) as

r × r̈ + fr × L + gr × r̂ = 0 (4.1.4)

from which it follows that the equation of motion

r̈ + fL + gr̂ = 0, (4.1.5)

where for the present f and g are arbitrary functions with their variables to be specified
below when it is necessary, describes motion subject to the constraint that L be constant.
We note that it is possible to introduce additional terms of the form eṙ × L into (4.1.3),
but we do not consider them here. With the techniques described earlier in this work we
now construct Laplace–Runge–Lenz vectors for (4.1.5) by the means of the imposition of
restrictions upon the so far arbitrary functions f and g.

The vector product of (4.1.5) with L gives

r̈ × L + gr̂ × L = 0. (4.1.6)

With the aid of (4.1.3) and making the vector triple expansion of ṙ × (L × r) we rewrite
(4.1.6) in the equivalent form

(ṙ × L). − frṙL +
g

r
r × L = 0. (4.1.7)

The ultimate term in the left hand side of (4.1.7) may be written in the two alternate
forms

g

r
r × L = − g

rf
L̇ and

g

r
r × L = −gr2 ˙̂r (4.1.8)
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thereby prompting the suggestion that we write

g = g1 + g2 (4.1.9)

so that (4.1.7) becomes

(ṙ × L). − frṙL − g1

rf
L̇ − g2r

2 ˙̂r = 0. (4.1.10)

We now impose constraints on the as yet arbitrary functions f , g1 and g2 to make (4.1.10)
trivially integrable. We set

f =
h′(r)
r

, g1 = h(r)h′(r) and g2 =
k

r2
. (4.1.11)

Hence the system described by the equation of motion [88]

r̈ +
h′(r)
r

L +
(
h(r)h′(r) +

k

r2

)
r̂ = 0 (4.1.12)

possesses the conserved Laplace–Runge–Lenz vector

J = ṙ × L − h(r)L − kr̂. (4.1.13)

It does not seem possible to construct a Hamilton’s vector for (4.1.13) for general h(r).
The scalar product of ṙ with (4.1.12) yields the energylike integral

I = 1
2 ṙ · ṙ + 1

2h
2(r) − k

r
. (4.1.14)

The conserved scalars are not independent since

J2 = 2L2I + k2. (4.1.15)

If we measure the polar angle θ from J , the scalar product of (4.1.13) with r gives

r =
L2

k + J cos θ
(4.1.16)

after some rearrangement. However, as the direction of the angular momentum vector is
not constant, the motion is truly three-dimensional and we need not one but two equations
to describe the orbit. We observe that (4.1.16) is independent of the azimuthal angle, φ,
ie we have the radial distance, r, as a function of the polar angle only. Consequently any
surface upon which the position vector moves will be a surface of revolution about the
polar axis. For the second equation we need to involve the azimuthal angle, φ. We achieve
this by taking the scalar product of J with r−2φ̂. This gives

ṙφ̇ sin θ + hθ̇ = 0 =⇒ φ̇ = − hθ̇

ṙ sin θ
. (4.1.17)

By differentiating (4.1.16) with respect to time we obtain

ṙ =
Jr2 sin θθ̇

L2
=⇒ φ̇ = − hL2

Jr2 sin 2θ
. (4.1.18)
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In terms of spherical polar coordinates

L2 = r4
(
θ̇2 + φ̇2 sin2 θ

)
(4.1.19)

and this in conjunction with (4.1.18) enables us to write

θ̇2 =
L2
(
J2 sin2 θ − h2L2

)
J2r4 sin2 θ

. (4.1.20)

We can then express the azimuthal angle as

φ =
∫ θ

θ0

φ̇

θ̇
dθ

= −
∫ θ

θ0

hL

sin θ

(
J2 sin2 θ − h2L2

)−1
2 dθ. (4.1.21)

From the orbit equation (4.1.16) h(r) can be expressed in terms of θ. Equations (4.1.16)
and (4.1.21) fully describe the orbit. Generally we would not expect to be able to express
the quadrature in (4.1.21) in closed form. The relationship between φ and θ expressed
through (4.1.21) is critical for the existence of closed rather than surface filling orbits. The
existence of the term, sin θ, in the denominator means that in general the pole is avoided.
From the second term in the denominator it is also possible that a singularity will occur
for an angle in 0 < θ0 < θ < π and so the motion be confined to a zone of the surface of
revolution.

From (4.1.20) we can write

t =
∫ θ

θ0

JL3 sin θdθ

(k + J cos θ)2
(
J2 sin2 θ − h2(r(θ))L2

)1
2

. (4.1.22)

If this can be inverted to obtain θ as a function of t, the orbit equation (4.1.16) can be
written as

r(t) =
L2

k + J cos(θ(t))
. (4.1.23)

Similiarly φ(t) is obtained from (4.1.21) by the replacement of θ with the inverse of (4.1.22).
In practice, however, it is unlikely that the quadratures could be achieved in closed form
and, even if the unlikely were to happen, one then has the problem of the inversion.
Nevertheless everything is sufficiently well-defined for numerical integrations to be used.
Finally we note that, although the direction of the areal velocity is not constant, its
magnitude is and so we have equal areas swept out in equal times, ie

A = 1
2Lt. (4.1.24)

We have already noted that the motion occurs on a surface of revolution. If this be a
recognisable surface, by expressing the area in terms of well-known geometric quantities,
one could possibly obtain an expression relating the period and the geometry of the orbit.
One could of course always use (4.1.22) and (4.1.21) (in the form which gives φ(t)) to
determine the period and in the case of complex geometry there would be no choice.
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Example 4.1. The possible orbits vary considerably depending upon the choice of the
function h(r) and, indeed, even on the choice of the parameters in the chosen function. In
the case of the simple choice h(r) = λr we have the equation

r̈ +
λ

r
L +

(
λ2r +

k

r2

)
r̂ = 0 (4.1.25)

which is the three-dimensional isotropic harmonic oscillator with the additional forces,
λL/r and kr̂/r2. (Alternatively we could consider this as the Kepler problem with two
additional forces dependent on the parameter λ.) The formula (4.1.21) for the azimuthal
angle takes the explicit form

φ = −
∫ θ

θ0

[
sin2 θ

(
a2 sin2 θ(k + J cos θ)2 − 1

)]−1
2 dθ (4.1.26)

where a2 = J2λ−2L−6. The performance of the quadrature in closed form does not appear
to be possible and so we can only evaluate φ(θ) numerically. Given the comment just after
(4.1.21) it is not surprising that the orbits close only for certain choices of the parameter k.
As one increases the value of k from zero with values selected to close the orbit, there is an
increase in the amount of rotational symmetry. The motions occur on a zone of a sphere.

Example 4.2. The equation of motion

r̈ =
λṙ × r + F (r)r

r3
(4.1.27)

was studied in some detail by Thompson [137]. He established conditions on F (r) in order
that (4.1.27) possess an autonomous second first integral quadratic in the momentum
independent of the energy. In summary his results were that

(i) λ = 0 and F (r) = k1, a constant, which is the Kepler–Coulomb problem for k1 �= 0
and the free particle otherwise,

(ii) λ = 0 and F (r) = k1r
3 which is the three-dimensional isotropic harmonic oscillator

or

(iii) λ = 1 and F (r) = k1 − 1/r.

For case (iii) Thompson found the conserved vector

J = L × ṙ +
L

r
− k1r (4.1.28)

which is the Laplace–Runge–Lenz vector for this problem. Case (iii) of equation (4.1.27)
is, of course, a special case of (4.1.12) with h = −1/r and k = −k1. It appears that the
expression which Thompson uses for F (r) is incorrect and should be F (r) = k1 + 1/r.
The error seems to stem from the incorrect solution of an equation in his paper [137,
(4.12)]. As a consequence the sign of the angular momentum term in (4.1.28) is incorrect.
Thompson’s Case (iii) is an apparently specific example of the more general equation

r̈ +
λL

r3
+
(

k

r2
− λ2

r3

)
r̂ = 0 (4.1.29)
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which has attracted a great deal of interest in connection with monopoles. In fact it is not a
special case since (4.1.29) contains only one essential parameter which can be taken to be k
by a simple rescaling of distance and time. This equation is treated in greater detail below.
For λ = 1 and F (r) = 0 (4.1.27) becomes the equation of motion describing an electric
charge interacting with a magnetic monopole fixed at the origin for which it has been shown
that analogues of the angular momentum first integrals exist as well as some additional
first integrals which are quadratic in the momentum, but which explicitly depend upon
time (see Moreira [112]). The monopole system has no other time-independent scalar
integrals apart from the conserved energy. It does seem that the vector approach, which
we have been using, seems to offer results which are more general than the approaches
adopted by other writers and with the benefit of far less mathematical complexity. It is
the existence of the first integrals/invariants which determines the integrability of a given
equation of motion, not the precise assumed form of those first integrals/invariants.

The equation of motion (4.1.29) describes the motion of an electric charge interacting
with a magnetic monopole fixed at the origin with the additional centripetal forces kr̂/r2

and −λ2r̂/r3.
When h(r) = −λ/r and k = 0, from (4.1.16) we see that

r cos θ =
L2

J
. (4.1.30)

This means that r has a constant projection onto J of length L2/J . From (4.1.21) we
easily determine that

φ = arcsec


(1 +

L2

λ2

)1
2
sin θ



∣∣∣∣∣∣
θ

θ0

. (4.1.31)

From (4.1.30) it is evident that θ is in the first quadrant and, since the argument of the
arcsec is greater than or equal to one, we have that

arcsin
1

(1 + L2/λ2)
1
2

≤ θ ≤ 1
2π. (4.1.32)

The geometry of this orbit and those to be described below are intimately connected with
the orbits of the Kepler problem.

In the general case that h(r) = −λ/r and k �= 0 we have a truly three-dimensional
motion for which there exists a Laplace–Runge–Lenz vector. The orbits may or may not
be closed depending upon the relative values of k and J . The integration of (4.1.21)
is not as elementary as in the case that k = 0 and the expressions are somewhat more
complicated. We find the three distinct cases

J �= k or −k:

φ = 1
2 arctan



J2L2

λ2 − k2 − Jk − J
(
JL2

λ2 + J + k
)

cos θ

(J + k)
(
J2L2

λ2 sin2 θ − (k + J cos θ)2
)1

2



∣∣∣∣∣∣∣∣

θ

θ0
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+ 1
2 arctan



J2L2

λ2 + k2 − Jk + J
(
JL2

λ2 + J + k
)

cos θ

(J − k)
(
J2L2

λ2 sin2 θ − (k + J cos θ)2
)1

2



∣∣∣∣∣∣∣∣

θ

θ0

, (4.1.33)

J = k:

φ = 1
2 arctan




L2

λ2 − 2 −
(
L2

λ2 + 2
)

cos θ

2
(
L2

λ2 sin2 θ − (1 + cos θ)2
)1

2



∣∣∣∣∣∣∣∣

θ

θ0

, (4.1.34)

J = −k:

φ = −1
2 arctan




L2

λ2 − 2 −
(
L2

λ2 + 2
)

cos θ

2
(
L2

λ2 sin2 θ − (1 + cos θ)2
)1

2



∣∣∣∣∣∣∣∣

θ

θ0

. (4.1.35)

In the illustrative examples we have concentrated on the monopole because of its phy-
sical interest. We could have used any differentiable function h(r). The point is that
Laplace–Runge–Lenz vectors exist for truly three-dimensional motions for which only the
magnitude of the angular momentum is conserved. To obtain the orbit we used the
Laplace–Runge–Lenz vector in two separate vectorial combinations to obtain the two
equations required to specify the orbit in three dimensions.

4.2 The classical MICZ problem

The motion of a spinless test particle in the field of a Dirac monopole plus Coulomb
potential with an additional centrifugal potential has been called the MIC problem by
Mladenov and Tsanov [108] and the MICZ problem by Cordani [25] after the studies of
this problem by McIntosh and Cisneros [106] and also by Zwanziger [141]. The MICZ
system is related to the problem of the asymptotic scattering of two self-dual monopoles
by a canonical transformation [25] which gives the reduced Hamiltonian of a particle in
an Euclidean Taub-NUT space. This in turn is related to the scattering of slowly moving
Bogomol’nyi–Prasad–Sommerfield (BPS) monopoles [6, 7, 102].

The classical MICZ problem is described by the equation of motion

r̈ +
λ

r3
L +

(
µ

r2
− λ2

r3

)
r̂ = 0, (4.2.1)

in which the mass is taken as unity, λ is the strength of the monopole and µ is the strength
of the Coulombic field. The Hamiltonian for (4.2.1) is

H = 1
2

(
p · p +

λ2

r2

)
− µ

r
, (4.2.2)

where p = ṙ is not the canonical momentum since, although [xi, xj ]PB = 0 and [xi, pj ]PB =
δij (xixi = r2), the Poisson Bracket of the components of the mechanical momentum, p,
is

[pi, pj ]PB = λεijk
xk
r3

, (4.2.3)
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where δij and εijk are the Kronecker delta and Kronecker epsilon respectively. The MICZ
system possesses two conserved vectors which can be easily derived. We take the vector
product of r with (4.2.1) and integrate the result to obtain

P = L − λr̂, (4.2.4)

which is known as Poincare’s vector [123]. The scalar product of (4.2.4) with itself gives

P 2 = L2 + λ2, (4.2.5)

which indicates that not only P is a constant but also L. The vector product of (4.2.1)
with L is easily integrated to give the second conserved vector

J = ṙ × L +
λ

r
L − µr̂. (4.2.6)

Hamilton’s vector for the system (4.2.1) is given by

K = J × P = (ṙ × P ) × P − µ

r
r × P . (4.2.7)

The integrals are related according to

J2 = 2L2H + µ2 and J · P = λµ. (4.2.8)

The presence of two conserved vectors for this three-dimensional motion gives rise to
a rather special geometry.

If the velocity ṙ is replaced by the momentum p in P and J , the Poisson Bracket
relations are given by [109]

[Pi, Pj ]PB = εijkPk, [Pi, Jj ]PB = εijkJk, [Ji, Jj ]PB = −2HεijkPk. (4.2.9)

The Lie algebra of the first integrals under the operation of taking the Poisson Bracket
is so(4), e(3) or so(3, 1) depending upon whether H is negative, zero or positive. This is
the same result as is found for the standard Kepler-Coulomb problem. We note, however,
that the Lie algebra of the Lie point symmetries of the equation of motion, (4.2.1), is
A1 ⊕ so(3) whereas for the Kepler–Coulomb problem it is A2 ⊕ so(3), where A1 and A2

are the abelian subalgebra of dimension one and the nonabelian subalgebra of dimension
two respectively [89].

The motion of a particle described by the equation of motion (4.2.1) is known to be a
conic section. The only detailed study of the geometry of the orbit is to be found in the
work of Gorringe [41] and this is a very detailed study indeed. McIntosh and Cisneros
[106] state that they did not find any simple algebraic expressions for the parameters of
the orbit in terms of constants of the motion. Gorringe comments “Using the first integrals
of the MICZ system it has been possible to describe, using very elementary methods, the
complete geometry of the orbits. Despite the comment of McIntosh and Cisneros [106]
referred to earlier, the orbital quantities can be expressed fairly simply in terms of the
conserved quantities and orbit parameters.” [41]. Unfortunately the elementariness and
simplicity of the derivations is not matched by brevity and it would be out of place in
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terms of the balance of this work to include it. Consequently we present only a brief
summary of the general features.

The orbit of the MICZ problem is described by the intersection of a plane and a right
circular cone. Consequently the orbit is a conic section. The projection of the orbit onto
the azimuthal plane is a focus-centred conic section which corresponds naturally with the
orbit of the standard Kepler problem. In the case of negative energy, Kepler’s three laws
of motion for the standard Kepler problem have a natural extension. They become4.1

(i) The orbit is an ellipse. However, the origin is not coplanar with the ellipse.

(ii) Equal areas are swept out on the surface of the cone in equal times.

(iii) The relationship between the period of the motion and the semimajor axis length,
videlicet

T 2

R3
=

4π2

µ
, (4.2.10)

persists.

The orientation of the right circular cone is determined by Poincare’s vector, P . The
line of the Laplace–Runge–Lenz vector passes through the geometric centre of the orbit.
Consequently the plane determined by P and J bisects the right circular cone and the
intersection of this plane with the orbit gives the ends of the major axis. A linear com-
bination of P and J naturally gives rise to two vectors one of which is parallel to the
normal to the orbital plane and the other of which is parallel to the orbital plane. The
second vector plays the role of a Laplace–Runge–Lenz vector in that it provides the orbital
equation in a natural way using a suitable scalar product.

Let π−α and β be the angles between P and r and P and J respectively. The scalar
product of P , (4.2.4), and r and of P and J , (4.2.6), give

cosα =
λ

P
and cosβ =

λµ

PJ
(4.2.11)

respectively. If the angle between J and r is π − ψ, the scalar product of J and r can be
rearranged to give

r =
L2

µ− J cosψ
(4.2.12)

which is one of the equations necessary to specify the orbit. The equation (4.2.12) describes
a surface of revolution with the line of J being the axis of symmetry and one focus of
the surface is centred at the origin. The constancy of the angle between P and r implies
that the particle moves on the surface of a cone with vertex at the origin. The curve of
intersection of the cone and the surface of revolution, known as a conicoid, is the orbit of

4.1Bates [11] has approached this problem from a different direction using differential geometry. In the
case of the Third Law he was able to obtain only the relationship between the period and the energy,
which is the same as for the Kepler problem in the plane, since, without a knowledge of the geometry of
the orbit, he was unable to relate this to the semimajor axis of the orbit.
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the particle and also a plane conic section. By virtue of (4.2.4) P , L and r are always
coplanar. However, the scalar triple product,

[P ,J , r] = L2rṙ, (4.2.13)

implies that P , J and r are coplanar only when ṙ is zero, ie at the extremities of the
motion. We define the conserved vector

N = P − λ

µ
J . (4.2.14)

The scalar product of N with r gives

N · r = −λ

µ
L2, (4.2.15)

which confirms that the orbit lies on a plane. However, the origin does not lie on this
plane since the scalar product produces a nonzero value. The vector N is parallel to the
normal to the orbital plane. A vector S, which is parallel to the orbital plane, is given by

S = P +
µ

2λH
J (4.2.16)

and is obtained by using the requirement that S ·N = 0. The angle, ξ, between P and N
is found by taking the scalar product of these two vectors. This gives

cos ξ = sin γ =
µL

P (2Hλ2 + µ2)
1
2

, (4.2.17)

where γ = 1
2π − ξ is the angle between the orbital plane and the vector P and can be

used to find the cartesian equation of the plane. Similiarly the angle between J and N is
found from the scalar product between these two vectors and is given by

cos η =
−2HLλ

(2HL2 + µ2)
1
2 (2Hλ2 + µ2)

1
2

. (4.2.18)

The projection of r onto N , which defines the orbital plane, is given, with the use of
(4.2.15), by

r · N̂ = r cos ζ =
λL

(2Hλ2 + µ2)
1
2

, (4.2.19)

where ζ is the angle between r and N . If we fix P to be along the −k direction and
rotate the orbit around P so that the major axis of the orbit lies in the xz-plane, the unit
normal is given by N̂ = (cos γ, 0, sin γ) and correspondingly the equation of the orbital
plane described by (4.2.19) can be expressed in terms of cartesian components as

x cos γ + z sin γ =
λP

µ
sin γ, (4.2.20)
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where γ is the angle between P and the plane of the orbit. The cartesian representation
for the trajectory in spherical polar coordinates is given by

x = r sinα cosφ, y = r sinα sinφ, z = r cosα. (4.2.21)

The substitution of these expressions into (4.2.20) gives

r =
λP sin γ/µ

cosα sin γ + sinα cos γ cosφ
(4.2.22)

which can be equated with the orbit equation, (4.2.12), to give

ψ = arccos


λ2µ− L2(2HP 2 + µ2)

1
2 cosφ

P 2J


 . (4.2.23)

The general features of the motion are that the particle moves on a plane section of a cone
with axis of symmetry along the line of P and semivertex angle determined by λ/P . The
ratio J/µ determines whether the orbit is an ellipse, a parabola or an hyperbola. As r
moves over the cone, L, which is coplanar with r and P , describes a circle on its own cone
which has semivertex angle 1

2π−α with P its axis of symmetry. The vector N is parallel
to the normal to the orbital plane and the vector S is parallel to the orbital plane. From
these basic considerations the geometric attributes of the orbit may be described in terms
of the parameters in and the conserved quantities of the equation of motion (4.2.1) [41,
pp. 150–206].

5 Symmetries and conserved vectors

5.1 Introduction

A second order ordinary differential equation,

E(t, x, ẋ, ẍ) = 0, (5.1.1)

possesses a Lie symmetry,

G = τ∂t + ηi∂xi , (5.1.2)

if

G[2]E(t, x, ẋ, ẍ)∣∣
E=0

= 0, (5.1.3)

where G has been twice extended to be able to operate on the first and second derivatives
in the differential equation. The coefficient functions, τ and ηi, can be anything provided
they are twice differentiable.

If the coefficient functions depend upon t and x only, the symmetry is a Lie point
symmetry. If in addition they depend upon ẋ, the symmetry is a generalised one. If
the coefficient functions contained terms which are expressed as integrals that cannot be
evaluated without a knowledge of the solution of the differential equation, the symmetry
is a nonlocal symmetry.
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Each of the three types of symmetry has a role to play in the discussion of the equations
of motion which we have been considering. Traditionally the emphasis has been placed
upon Lie point symmetries, but generalised symmetries – particularly in the context of
Noether’s theorem – have been found in many instances to be necessary to be able to re-
late the existence of a first integral/invariant and the symmetry underlying its existence.
More recently nonlocal symmetries have been found necessary to explain the existence of
integrating factors for certain second order equations [84], to account for one of the inte-
grable cases of the Hénon–Heiles problem [122] and to provide the symmetries necessary
to construct the complete symmetry groups of some differential equations [75, 118, 91].

The application of (5.1.3) to the standard Kepler problem gives the following Lie point
symmetries [125]

G1 = ∂t, G3 = z∂y − y∂z,

G2 = t∂t + 2
3 (x∂x + y∂y + z∂z) , G4 = z∂x − x∂z,

G5 = x∂y − y∂x (5.1.4)

which have the nonzero Lie Brackets

[G1, G2] = G1,

[G3, G4] = G5, [G4, G5] = G3, [G5, G3] = G4 (5.1.5)

from which it is evident that the Lie algebra is the direct sum A2 ⊕ so(3). The three
symmetries, G3, G4 and G5, correspond to the invariance of (2.1.1) under rotation, G1

represents invariance under time translation and G2, the symmetry often associated with
the Laplace–Runge–Lenz vector, reflects invariance under the similarity transformation

(t, r) −→ (t̄, r̄ : t = γt̄, r = γ
2
3 r̄). One must realise that any of the first integrals can

in fact be constructed from more than one of the symmetries in (5.1.4) [80] and so the
association is not strictly accurate in the mathematical sense although it is in a geometric
sense. The two-dimensional algebra, A2, of G1 and G2, representing invariance under
time translation and rescaling, is a common combination in physical problems and has
attracted attention in applications to a number of systems [15, 86, 85].

Since the Kepler problem and the time-dependent Kepler problem are related by a point
transformation, they have the same algebraic structure [81].

By way of comparison the Lie point symmetries of the charge-monopole described by
the equation of motion

r̈ = − µ

r3
L, (5.1.6)

which were studied in some detail by Moreira et al [112], are

G1 = ∂t, G4 = z∂y − y∂z,

G2 = t∂t + 1
2 (x∂x + y∂y + z∂z) , G5 = z∂x − x∂z,

G3 = t(t∂t + x∂x + y∂y + z∂z), G6 = x∂y − y∂x, (5.1.7)

and have the nonzero Lie Brackets

[G1, G2] = G1, [G2, G3] = G3, [G3, G1] = −2G2,

[G4, G5] = G6, [G5, G6] = G4, [G6, G4] = G5. (5.1.8)
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The algebra is the direct sum of the subalgebras {G1, G2, G3} and {G4, G5, G6} and is
sl(2, R) ⊕ so(3)5.1. Since the algebraic structure of (5.1.6) is more complex than that of
the Kepler problem (2.1.1), as Thompson [137] has already noted, the charge-monopole
problem is not related to the Kepler problem by a point transformation.

In this chapter we look at the symmetries of the various systems which have been
considered above. In the first instance we look at the point symmetries. To explain the
persistence of features such as the Laplace–Runge–Lenz vector for problems which do not
have the appropriate number of point symmetries, in particular some rescaling symmetry
such as G2 in (5.1.4) which is traditionally associated with the vector, we find it necessary
to introduce a nonlocal symmetry. Following Krause [75] we look at the different systems
from the point of view of their complete symmetry groups for which, in the case of these
systems, it is also necessary to introduce nonlocal symmetries5.2. In the context of the
complete symmetry group we find a remarkable unity in these diverse problems with a very
interesting connection between the scalar simple harmonic oscillator and the Ermanno–
Bernoulli constants [118].

5.2 The Lie point symmetries of r̈ + f(r)L+ g(r)r = 0

We consider the more general equation

r̈ + f(r)L + g(r)r = 0 (5.2.1)

since, when f = 0 and g = µ/r3, we regain the Kepler problem and, when f = µ/r3 and
g = 0, we obtain the charge-monopole problem. More generally (5.2.1) contains the class
of equations

r̈ +
h′(r)
r

L +
(
h(r)h′(r) +

k

r2

)
r̂ = 0 (5.2.2)

which was shown in the previous chapter to possess a Laplace–Runge–Lenz vector.
The system (5.2.1) must be expressed in terms of components for the purposes of calcu-

lating its symmetries. Since the angular momentum has a regular structure in a cartesian
basis, it is sensible to perform the calculation in this basis to provide a computational
check through certain regularities in the determining equations. We write (5.2.1) as

ẍ + f(yż − zẏ) + gx = 0,
ÿ + f(zẋ− xż) + gy = 0,
z̈ + f(xẏ − yẋ) + gz = 0. (5.2.3)

Even with the aid of a symmetry computing package such as Alan Head’s Program LIE
[57, 131] one cannot do much more than obtain the determining equations using symbolic

5.1Moreira et al [112] use so(2, 1) rather than sl(2, R). However, we believe that the sl(2, R) is more
appropriate since the three symmetries with this algebra are common to all scalar ordinary differential
equations of maximal (point) symmetry of order greater than one and the algebra is characteristic of
Ermakov systems [32] of which (5.1.6) is an instance [50].

5.2Nonlocal symmetries are not always necessary to specify completely an ordinary differential equation,
eg in the paper of Andriopoulos et al [5] it is shown that a linear second order equation has a complete
symmetry group based on three point symmetries.
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manipulation due to the unknown functions f and g in (5.2.3)5.3. There are forty-eight
determining equations, twelve of which are duplicates. The solution of the thirty-six
independent equations is a tedious business and we simply summarise the results. We find
that two cases occur, f = 0 and f �= 0.

5.2.1 The case f = 0

In all cases we obtain the three symmetries associated with the algebra so(3) given by

G1 = z∂y − y∂z,

G2 = x∂z − z∂x,

G3 = y∂x − x∂y. (5.2.4)

Additional point symmetries depend upon the specific form of g(r).

1. g(r) is unspecified: there is the single additional symmetry

G4 = ∂t. (5.2.5)

The algebra is A1 ⊕ so(3).

2. g = µrα: there are the two additional symmetries

G4 = ∂t,

G5 = αt∂t − 2r∂r. (5.2.6)

The algebra is A2 ⊕ so(3) as was reported for the Kepler problem, (2.1.1), by Prince
and Eliezer [125] and Leach [80]. The Kepler problem is recovered when α = −3.

3. g = µr−4: the additional symmetries are

G4 = ∂t,

G5 = 2t∂t + r∂r,

G6 = t (t∂t + r∂r) . (5.2.7)

The algebra is sl(2, R) ⊕ so(3) which is the same as that found for the charge-
monopole problem, (5.1.6), by Moreira et al [112].

4. g = µr−4 − ε: in this case the additional symmetries are

G4 = ∂t,

G5 = e2tε1/2
(
ε−1/2∂t + r∂r

)
,

G6 = e−2tε1/2
(
ε−1/2∂t − r∂r

)
. (5.2.8)

5.3It would be interesting to see how far the very flexible and well-known interactive package of Nucci
[115, 116] would be able to take the calculation. Unfortunately we did not have the package at the time.
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The algebra is again sl(2, R) ⊕ so(3). In the case that ε is a negative number, say
−ω2, one may prefer to replace G5 and G6 with

X5 = −1
2 i (G5 + G6) =

cos 2ωt
ω

∂t + r sin 2ωt∂r,

X6 = 1
2 (G5 −G6) = −sin 2ωt

ω
∂t + r cos 2ωt∂r, (5.2.9)

although the former form is probably preferable for applications in quantum me-
chanics.

5. g = ε: the equation of motion (5.2.1) is now that of a simple three-dimensional linear
system, the free particle for ε = 0, the isotropic simple harmonic oscillator for ε > 0
and the isotropic repulsor for ε < 0. In all cases there are twenty-four symmetries
and the algebra is sl(5, R) [80].

Despite the existence of a Laplace–Runge–Lenz vector in the classical Kepler problem
we see that this does little to influence the construction of the symmetry algebra. Apart
from the three-dimensional isotropic harmonic oscillator and the Newton–Cotes potential
all power law central force problems possess the same number of symmetries and the same
symmetry algebra, yet global (or even local) representations for a Laplace–Runge–Lenz
vector are rarely possible. Although the Kepler problem is regarded as unusual because of
the existence of the Laplace–Runge–Lenz vector, in terms of the point symmetry algebra
of its equation of motion the Kepler problem is just one of an infinite number of problems.

5.2.2 The case f �= 0

The generic result is that there exist the three generators of so(3) given in (5.2.4) and
invariance under time translation given in (5.2.4). The exceptional cases are

1. f = λr−3, g = µr−4: in addition to the usual generators of so(3) there are the three
additional symmetries given in (5.2.7). The algebra is again sl(2, R) ⊕ so(3). The
equation of motion is

r̈ +
λ

r3
L +

µ

r4
r = 0 (5.2.10)

and the vector product of r with this gives Poincare’s vector

P = L − λr̂ (5.2.11)

when integrated with respect to time. The vector product of the equation of motion,
(5.2.10), with Poincare’s vector, P , gives

d(r × P )
dt

+
(
L4(λ2 + µ)
|(r × P )|4

)
(r × P ) = 0 (5.2.12)

which is just the equation of motion in Case 3 above in terms of the new variable
r × P .
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2. f = λr−3, g = µr−4 − ε: the additional symmetries are given by (5.2.8) in Case 4
above. The equation of motion

r̈ +
λ

r3
L +

( µ

r4
− ε
)

r = 0 (5.2.13)

also has the Poincare’s vector (5.2.11) and, as in the previous case, the equation of
motion in the variable r × P is just that of Case 4 above.

5.2.3 Comment

The equation of motion

r̈ + f(r)L + g(r)r = 0 (5.2.14)

has four Lie point symmetries for general f and g with the algebra A1 ⊕ so(3) with A1

representing invariance under time translation and so(3) the usual rotational invariance.
In the special cases

r̈ + µrαr = 0,

r̈ +
µ

r4
r = 0, r̈ +

( µ

r4
− ε
)

r = 0,

r̈ + εr = 0,

r̈ +
λ

r3
L +

µ

r4
r = 0, r̈ +

λ

r3
L +

( µ

r4
− ε
)

r = 0 (5.2.15)

there is additional symmetry. The five-dimensional algebra of (5.2.15a) was found to be
A2 ⊕ so(3) in which the A2 represents invariance under time translation and under the
self-similar transformation

t = γt̄, r = γ−2/αr̄. (5.2.16)

The interesting point about (5.2.15a) is that, as far as the Lie point symmetries are
concerned, there is no distinction made between the Kepler problem and any other power
law central force apart from the three-dimensional isotropic harmonic oscillator.

The equations of motion (5.2.15b) both possess the algebra sl(2, R)⊕so(3) regardless of
the values of the parameters. They may be regarded as direct extensions of the results of
Moreira et al [112] for the algebra of the charge-monopole problem. Equation (5.2.15c) has
the twenty-four-dimensional algebra sl(5, R) of the three-dimensional isotropic harmonic
oscillator, free particle or repulsor depending whether ε >,=, < 0 respectively. Equations
(5.2.15d) have the algebra sl(2, R)⊕ so(3) and also possess Poincaré vectors which can be
used, through the vector product, to project and rotate them onto equations of motion
equivalent to (5.2.15b) respectively in the variable r × P .

The term µrr−4 can be interpreted as a centripetal force (Newton–Cotes) and the term
εr represents a three-dimensional isotropic harmonic oscillator, free particle or repulsor
depending on whether ε >,=, < 0 respectively. The latter term does not affect the algebra
nor the integrability of the equation. In both equations (5.2.15d) L is constant. The
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motion remains on the surface of a cone due to the existence of the Poincaré vector.
Another scalar integral

I = 1
2

(
ṙ · ṙ − µ

r2
− εr2

)
(5.2.17)

also exists. Equation (5.2.15d2) does not belong to the class of the problems, (5.2.2),
treated by Leach and Gorringe [88]. However, when µ = −λ2, (5.2.15d1) belongs to the
class and, in addition to the three integrals above, there is also the conserved vector

J = ṙ × L +
λ

r
L

= ṙ × P (5.2.18)

from which one of the equations specifying the orbit is easily obtained by taking the scalar
product with r.

The MICZ problem, (4.2.1), has the four-dimensional algebra, A1 ⊕ so(3), which is
surprising as it differs from the five-dimensional algebra, A2⊕so(3), of the Kepler problem
and yet the Poincaré vector of the MICZ problem can be used to give the equation of
motion for the Kepler problem in terms of the vector r × P . We recall that, in the case
of the Kepler problem, the self-similar symmetry is generally associated with Kepler’s
Third Law. However, in the MICZ problem, although an analogue of this conservation
law is present, there is no suggestion of this in the Lie point symmetries of the problem.
A similar observation can be made in respect of (5.2.13) in the case that µ = −λ2. Then
the Poincaré vector can be used to express the equation as that of a three-dimensional
isotropic harmonic oscillator in the variable r ×P . Apart from the change in the number
of symmetries from six to twenty-four, which in itself is sufficient to cause one to pause
for wonder, the self-similar symmetry of the isotropic harmonic oscillator signals a Kepler-
type Third Law, in this case the oscillator’s isochronism. There is no suggestion of this
in (5.2.13). The obvious geometric connection between these motions on the surface of
a cone and the corresponding planar motions is not reflected in the Lie point symmetries.

Finally we note that the equation (5.2.2) possesses a Laplace–Runge–Lenz vector for
general functions h(r). Can it be that there is no connection between the existence of this
extraordinary vector and the underlying symmetry of the equation of motion apart from
its invariance under time translation? This seems to be most unlikely.

5.3 The equation r̈ + fṙ + µgr = 0

We turn now to the equation of motion we considered in Chapter 2 for which we found
the conserved quantities

A = L
(
gr3
)−1

2 , (5.3.1)

K =
ṙ

L
− µ

A2
θ̂, (5.3.2)

J =
ṙ × L̂

L
+

µ

A2
r̂ (5.3.3)

in the case that

f = −1
2

(
ġ

g
+ 3

ṙ

r

)
, (5.3.4)
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where ġ represents the total time derivative of g. We recall that the direction of the angular
momentum vector, L̂, is a constant and we can work with plane polar coordinates, (r, θ).
The equation of the orbit is obtained from the scalar product of (5.3.3) and r and is

r =
1

µA−2 + J cos θ
(5.3.5)

which is a conic section. Gorringe and Leach [48] reported just the four Lie point sym-
metries, (5.2.4) and (5.2.5), in the case that g was a function of r, but not a power law,
only (and by consequence f of r and ṙ only) and so we are in a situation which is similar
to our considerations of the previous section. In the case that g is a power law potential
there is also a rescaling symmetry [48].

The Laplace–Runge–Lenz vector is invariant under time translation, but there is no
other Lie point symmetry as in the case of the Kepler problem. Since we do not have a Lie
point symmetry apart from ∂t for the vector J , we look for a symmetry of the form [121]

G = τ∂t + η∂r (5.3.6)

with no restrictions made on the coefficient functions. Note that we are not looking
for a general symmetry which would include a term for ∂θ. We are looking for some
generalisation of the similarity symmetry.

We require that (5.3.3) be invariant under the action of the first extension of the
symmetry, ie G[1]J = 0. The first extension of G is given by

G[1] = τ∂t + η∂r + 0∂θ + (η̇ − ṙτ̇) ∂ṙ − θ̇τ̇∂θ̇. (5.3.7)

(As a practical note we include the ∂θ term, even though its coefficient is zero, as a reminder
that there is a ∂θ̇ term as well.) Since

r̂ = cos θı̂ + sin θ̂ and θ̂ = − sin θı̂ + cos θ̂, (5.3.8)

we have

G[1]r̂ = 0 and G[1]θ̂ = 0 (5.3.9)

when r̂ and θ̂ appear as geometrical (coordinate frame) vectors. When r̂ and θ̂ appear as
a consequence of integration of the equation of motion (as occurs in [48]), the calculation
is generally more delicate [60]. Applying the first extension of G to J and separating by
the coefficients of the independent vectors r̂ and θ̂ we obtain the following equations for
the coefficient functions

τ̇ + 1
2

g′

g
η = 0, (5.3.10)

η̇L− ηrṙθ̇ = 0, (5.3.11)

where g′ = dg/dr.
Since L̂ is conserved, we can replace L by r2θ̇ in the solution of these equations. Hence

(5.3.11) gives

η = Cr, (5.3.12)
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where C is a constant of integration. We substitute this into (5.3.10) and integrate the
equation to obtain

τ = −1
2C

∫
g′r
g

dt. (5.3.13)

We have, therefore, that

G = −1
2

[∫
g′r
g

dt
]
∂t + r∂r (5.3.14)

is a symmetry of the (generalised) Laplace–Runge–Lenz vector. Note that for g = rα

this is a local symmetry and corresponds to the result of Gorringe and Leach [48] quoted
above.

In the case of elliptical orbits the similarity symmetry of the Kepler problem is closely
connected with Kepler’s Third Law. In this case we have the period T given by the
quadrature

T = 2
∫ π

0

dθ
θ̇

= 2
∫ π

0

(
r

g

)1
2 dθ

A
. (5.3.15)

The integral is evaluated by substituting for r from the orbit equation, (5.3.5). In the
case that g is a power law in r Gorringe and Leach [48] were able to evaluate the integral
in (5.3.15) in terms of Legendre functions. One would not expect to be able to evaluate
the quadrature in closed form for general g although this would be the case were g one of
some particular polynomials in r.

In terms of cartesian unit vectors in the plane of the orbit we may rewrite (5.3.3), using
(5.3.1), as

A2J = ı̂

[(
θ̇2

g
− µ

)
cos θ +

ṙθ̇

gr
sin θ

]
+ ̂

[(
θ̇2

g
− µ

)
sin θ − ṙθ̇

gr
cos θ

]
. (5.3.16)

(Note that in equation (36) of [121] there is an error which has been corrected in the
formula given above.) The two independent components of the conserved vector, the
Ermanno–Bernoulli constants, can be written in the compact form

J± = exp [±iθ]

(
θ̇2

g
− µ± ṙθ̇

igr

)
. (5.3.17)

The components in (5.3.17) have a symmetry of the form (5.3.6) provided

η̇ − η

(
ṙg′

g
+

ṙ

r
± iθ̇rg′

g

)
= 2τ̇

(
ṙ ± irθ̇

)
. (5.3.18)

If in (5.3.18) we set η = 0 and η = r, we recover the ∂t symmetry and (5.3.14) respectively.
When we put τ = 0, (5.3.18) gives

η = gr exp
[
±i

∫
rg′

g
dθ
]
, (5.3.19)
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where we recall that r and hence g(r) are functions of θ and hence must remain in the
integral, so that the components have the extra symmetry

G3± = gr exp
[
±i

∫
rg′

g
dθ
]
∂r. (5.3.20)

For a given g(r) the integral in (5.3.19) is evaluated using the expression for r in (5.3.5).
For the Kepler problem g = r−3 and (5.3.20) reduces to

G3± =
1
r2

exp [±3iθ] ∂r (5.3.21)

which does not seem to have been reported prior to the paper of Pillay et al [121]. We
observe that the 3,2 combination of the similarity symmetry for the Kepler problem recurs
in this symmetry. We note that this symmetry is a symmetry of the first integral and not
a symmetry of the differential equation.

In the case of the Kepler problem the Ermanno–Bernoulli constants have the three Lie
point symmetries

G1 = ∂t, G2 = t∂t + 2
3r∂r, G3± =

1
r2

exp [±3iθ] ∂r (5.3.22)

with the Lie Brackets

[G1, G2] = G1, [G1, G3±] = 0 and [G2, G3±] = −2G3± (5.3.23)

which is a representation of the algebra A
1/2
3,5 .

It would appear that we have now come to the beginning of a resolution of the quandary
which faced us at the end of the previous section. We simply cannot expect these more
complicated systems to have a Lie point symmetry naturally associated with a given first
integral/invariant. In the case of simple systems, to which class most problems arising in
a natural physical context belong, one has been well-served in the past by point symmetries
and, perhaps consequentially, led to regard point symmetries as the norm. In cases for
which the analysis of the simple system can be extended to more complicated, albeit
artificial, systems we have the opportunity to extract the essence of the system and not
just the simplicity of the original system.

5.4 Complete symmetry groups

In 1994 Krause [75] introduced a new concept into the study of the symmetries of ordinary
differential equations. Krause adopted the terminology ‘complete symmetry group’, which
in the past had been used to describe the group corresponding to the set of all Lie point
symmetries of a differential equation, defining it by the addition of two properties to
the definition of a Lie symmetry group. These were that the manifold of solutions is
a homogeneous space of the group and that the group is specific to the system, ie no other
system admits it5.4. To take a simple example the free particle in one dimension described
by the equation of motion

q̈ = 0 (5.4.1)
5.4There is an exception to this in that there may be an arbitrary parameter present in the equation

which can be set at any permissible value by means of a transformation, such as rescaling or translation.
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has eight Lie point symmetries of which three are

G1 = ∂t, G2 = ∂q, G3 = t∂t + q∂q (5.4.2)

with the Lie Brackets

[G1, G2] = 0, [G1, G3] = G1, [G2, G3] = G2 (5.4.3)

which is a representation of the algebra A3,3, the semidirect product of dilations and
translations, D ⊕s T2. If we consider the general scalar second order equation

q̈ = f(t, q, q̇), (5.4.4)

the action of G1 is to remove the dependence of f on t and that of G2 is to remove the
dependence on q. The second extension of G3 is

G[2] = t∂t + q∂q + 0∂q̇ − q̈∂q̈ (5.4.5)

and this requires that the f(q̇) remaining be zero. Thus the algebra A3,3 is a representation
of the complete symmetry group of (5.4.1) [5].

The vehicle which Krause used to illustrate the purpose of the introduction of the
complete symmetry group was the Kepler problem. If we consider the Lie point symmetries
of the Kepler problem (in two dimensions only for the sake of brevity), videlicet

G1 = ∂t, G2 = ∂θ, G3 = t∂t + 2
3r∂r, (5.4.6)

and apply them as in the example above, we find that the two components of the equation
of motion are required to have the forms

r̈ =
1
r2

f
(
rṙ2, r3θ̇2

)
,

θ̈ =
1
r3

g
(
rṙ2, r3θ̇2

)
, (5.4.7)

where f and g are arbitrary functions of their arguments. Evidently the three Lie point
symmetries are not adequate to specify completely the Kepler problem. To obtain the
complete symmetry group of the Kepler problem Krause introduced a nonlocal symmetry
defined by

Y =
[∫

τ(t, x1, . . . , xN )dt
]
∂t + ηi(t, xi, . . . , xN )∂xi . (5.4.8)

This type of nonlocal symmetry is a very special type since only the coefficient function
of ∂t contains a nonlocal term. This type of nonlocal symmetry is potentially very useful
to treat autonomous systems for then only the integrand and not the integral intrudes
into the calculation. In his treatment of the three-dimensional problem Krause found the
standard five Lie point symmetries and three additional nonlocal symmetries which were
needed to specify completely the Kepler equation, up to the value of the gravitational
constant µ. The three additional symmetries are

Y1 = 2
(∫

x1dt
)
∂t + x1r∂r, Y2 = 2

(∫
x2dt

)
∂t + x2r∂r,

Y3 = 2
(∫

x3dt
)
∂t + x3r∂r (5.4.9)

in which r2 = xixi.
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Krause did not give the algebra of these symmetries. He also remarked that it was not
possible to obtain the symmetries of the complete symmetry group of the Kepler problem
by means of Lie point methods. In 1996 Nucci [117] demonstrated that it was indeed
possible to obtain the symmetries by means of Lie point methods.

5.5 The method of reduction of order

The technique which Nucci used to show that one could obtain the symmetries of the
complete symmetry group of the Kepler problem by means of Lie point methods is one
which appears to be generally useful and we summarise it here. For the purposes of our
discussion we consider a system of N second order ordinary differential equations,

ẍi = fi(x, ẋi), i = 1, N, (5.5.1)

in which t is the independent variable and xi, i = 1, N are the N dependent variables.
These equations may be considered as equations from Newtonian mechanics, which was
Krause’s approach and which is appropriate to the context of this paper, but there is
no necessity for that to be the case. There is no necessity for the dependent variables to
represent cartesian coordinates, nor is there a need for the system to be of the second order.
There is no requirement that the system be autonomous. In the case of a nonautonomous
system we can apply the standard procedure of introducing a new variable xN+1 = t
and an additional first-order equation of ẋN+1 = 1 so that the system becomes formally
autonomous. In our discussion we confine our attention to autonomous systems.

The first step in the method of reduction of order is to write the system (5.5.1) as a
2N -dimensional first order system by means of the introduction of the variables

w1 = x1, wN+1 = ẋ1,

w2 = x2, wN+2 = ẋ2,

...
...

wN−1 = xN−1, w2N−1 = ẋN−1,

wN = xN , w2N = ẋN (5.5.2)

so that the system (5.5.1) becomes

ẇi = g(w), i = 1, 2N, (5.5.3)

where gi = wN+i for i = 1, N and gi = fi for i = N + 1, 2N . In this first step of
the reduction of the original system, (5.5.1), we have simply followed the conventional
method used to reduce a higher order system to a first order system. Any optimisation is
performed in the further selection of the final variables. This selection may be motivated
by the existence of a known first integral, such as angular momentum, or some specific
symmetry in the original system, (5.5.1).

We choose one of the variables wi to be a new independent variable y. For the purpose
of the present development we make the identification wN = y. In terms of the new
independent variable we obtain the system of 2N − 1 first order equations

dwi

dy
=

gi
gN

=
gi

w2N
, i = 1, . . . , N − 1, N + 1, . . . , 2N. (5.5.4)
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We do not attempt to calculate the Lie point symmetries of the system, (5.5.4), because
the Lie point symmetries of a first order system are generalised symmetries and one has to
impose some Ansatz on the form of the symmetry. The choice of Ansatz tends to be more
of what appeals to the mind of the devisor rather than of some intrinsic property of the
system. Rather we select n ≤ N − 1 of the variables to be new dependent variables and
rewrite the system (5.5.4) as a system of n second order equations plus 2(N − n)− 1 first
order equations5.5. The selection of the new dependent variables, denoted by u1, u2, . . . to
distinguish them from the intermediate variables w1, w2, . . . , is dictated by a number of
considerations. The first and foremost is that we must be able to eliminate the unwanted
variables from the system (5.5.4). After this condition has been satisfied, we may look to
seek variables which reflect some symmetry system, for example an ignorable coordinate
such as the azimuthal angle in a central force problem.

After the symmetries of the reduced system have been calculated, they can be translated
back to symmetries of the original system. In the reduction of order we are hoping that
nonlocal symmetries become local, indeed point, symmetries of the reduced system and
that any existing point symmetries remain as point symmetries of the reduced system. This
means that the nonlocal symmetries are of Type II [1, 2, 3, 4]. As the computation of
point symmetries is the easiest of all computations of symmetries to perform, the existence
of Type II symmetries is desirable. Unfortunately there is also the possibility of the
occurrence of Type I hidden symmetries, ie Lie point symmetries of the original system
which become nonlocal on the reduction of order. If the symmetry associated with the
reduction of order is, say, G1, and a second symmetry G2 has the Lie Bracket [G1, G2] �=
λG1, where the constant λ may be zero, G2 will become an exponential nonlocal symmetry
of the reduced system. This is the risk which one must accept in undertaking the search for
symmetry by means of a change of order of the system, whether that change be a reduction
of order or an increase of order. Even with simple systems the comings and goings of point
symmetries with an increase or decrease in the order is quite extraordinary [90].

5.6 The symmetries of the reduced Kepler problem

The two components of the equation of motion for the Kepler problem in two dimensions
are

r̈ − rθ̇2 = − µ

r2
, (5.6.1)

rθ̈ + 2ṙθ̇ = 0. (5.6.2)

We introduce the new variables and their time derivatives

w1 = r, ẇ1 = w3,

w2 = θ, ẇ2 = w4,

w3 = ṙ, ẇ3 = w1w
2
4 −

µ

w2
1

,

w4 = θ̇, ẇ4 = −2w3w4

w1
. (5.6.3)

5.5Again there is no real necessity for the final equations to be a mixture of second and first order
equations. One could include third or fourth order equations. However, from a practical point of view this
may not be so productive.



Generalisations of the Laplace–Runge–Lenz Vector 407

Since in the original system θ is an ignorable coordinate, we select w2 to be the new
independent variable y. The right side of (5.6.3) leads to the reduced system

dw1

dy
=

w3

w4
, (5.6.4)

dw3

dy
= w1w4 − µ

w2
1w4

, (5.6.5)

dw4

dy
= −2w3

w1
. (5.6.6)

We proceed now to change the system of three first order equations into a system of
one second order and one first order. From (5.6.4) we have w3 = w4w

′
1, where the prime

denotes differentiation with respect to the new independent variable, y, and replace (5.6.6)
by

w′
4 = −2w4w

′
1

w1
. (5.6.7)

In (5.6.5) we make the same replacement to obtain the second order equation

w4w
′′
1 − w4w

′
1
2

w1
= w1w4 − µ

w2
1w4

. (5.6.8)

In the elimination of w3 we have not precisely decided that the variables u1 and u2 are
to be w1 and w4. We observe that the integrating factor w2

1 makes (5.6.7) exact as

(
w2

1w4

)′ = 0 (5.6.9)

and this prompts the choice of one of the new variables to be u2 = w2
1w4. We introduce

this new variable into (5.6.8) to obtain

w′′
1 = 2

w′
1
2

w1
+ w1 − µw2

1

u2
2

. (5.6.10)

We rearrange (5.6.10) somewhat as

u2
2

(
w′′

1

w2
1

− 2w′
1
2

w3
1

)
=

u2
2

w1
− µ (5.6.11)

and immediately recognise a convenient new variable u1 = µ− u2
2/w1 so that the reduced

system becomes

u′′1 + u1 = 0,
u′2 = 0 (5.6.12)

which is an attractively simple system. When we calculate the Lie point symmetries of
(5.6.12), we obtain nine point symmetries. Some of these contain sine and cosine terms.
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We combine them to give the symmetries in terms of the exponential of an imaginary
variable. The symmetries are

Γ1 = u2∂u2 ,

Γ2 = ∂y,

Γ3 = u1∂u1 ,

Γ4± = e±iy∂u1 ,

Γ6± = e±2iy [∂y ± iu1∂u1 ] ,

Γ8± = e±iy
[
u1∂y ± iu2

1∂u1

]
. (5.6.13)

In terms of the original variables we obtain

Γ1 = 3t∂t + 2r∂r,
Γ2 = ∂θ,

Γ3 = 2
[
µ

∫
rdt− L2t

]
∂t + r

(
µr − L2

)
∂r,

Γ4± = 2
[∫

re±iθdt
]
∂t + r2e±iθ∂r,

Γ6± = 2
[∫ (

µr + 3L2
)
e±2iθdt

]
∂t + r

(
µr + 3L2

)
e±2iθ∂r + L2e±2iθ∂θ,

Γ8± = 2
[∫ {

2ṙL3 ± ir
(
µ− r3θ̇2

)(
µ + r3θ̇2

)}
e±iθdt

]
∂t

+ r
[
2ṙL3 ± ir

(
µ− r3θ̇2

)(
µ + r3θ̇2

)]
∂r + L2

(
µ− r3θ̇2

)
e±iθ∂θ (5.6.14)

in which a factor of L2 has generally been included (the exceptions are Γ2 and Γ1; in the
latter a factor of L has been included) to make the expressions look simpler.

In (5.6.14) we recognise in Γ1 and Γ2 the two point symmetries which were not affected
by the reduction of order based on the symmetry ∂t. The two symmetries Γ4± are the two
nonlocal symmetries required to be introduced to obtain the complete symmetry group
for the two-dimensional Kepler problem. The remaining four symmetries are additional
to the number required completely to specify the differential equation. It is curious that
they were not reported by Krause [75] since they are of the same structure as the nonlocal
symmetry which he introduced.

If we examine the reduced system (5.6.12), we find that the symmetries Γ1, Γ2 and Γ4±
are sufficient to specify it completely from the general system

u′′1 = f(y, u1, u2, u
′
1),

u′2 = g(y, u1, u2) (5.6.15)

and so we should not be surprised that in combination with the symmetry ∂t these sym-
metries completely specify the two-dimensional Kepler problem. In the case of the three-
dimensional Kepler problem a third equation, of the first order, based on the constancy of
the z-component of the angular momentum is added to (5.6.12). Since there are at least
three representations of the algebra for the complete symmetry group of a second order
linear equation [5], one would be surprised if this representation be unique.
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We have seen in detail for the two-dimensional Kepler problem that one of the trivial
equations of the reduced system was that of the conservation of angular momentum and
have indicated for the three-dimensional Kepler problem that there will be two trivial
equations, one for the conservation of the total angular momentum and the other for the
conservation of the z-component of the angular momentum. The nontrivial equation is
(5.6.12a), the second order equation for the simple harmonic oscillator. In defining the new
variable u1 we could, although in fact we did not, have taken the standard transformation
of u = 1/r which is used to convert the radial equation of the Kepler problem to an
inhomogeneous oscillator equation [140] and then introduced the translation to remove
the inhomogeneous term. The equation (5.6.12a) has two linear first integrals. In the
notation we are using here they are

J± = e±iy
(
u1 ± iu′1

)
(5.6.16)

and, if one translates these back into the original coordinates of the two-dimensional Kepler
problem, one finds that these two invariants for the simple harmonic oscillator are just
the Ermanno–Bernoulli constants, ie combinations of the two components of the Laplace–
Runge–Lenz vector. This immediately raises the question whether a similar phenomenon
occurs for any other other problems which possess Laplace–Runge–Lenz vectors.

5.7 The reduced system for some problems possessing
a conserved vector of Laplace–Runge–Lenz type

5.7.1 The Kepler problem with drag

We recall the model proposed by Danby [27] for the motion of a satellite at low altitude
subject to a resistive force due to the Earth’s atmosphere described by the equation of
motion

r̈ +
αṙ

r2
+

µr

r3
= 0, (5.7.1)

where α and µ are constants. Since the direction of the angular momentum is a constant,
we may use plane polar coordinates, (r, θ). The two components of the equation of motion
are

r̈ − rθ̇2 +
αṙ

r2
+

µ

r2
= 0, (5.7.2)

rθ̈ + 2ṙθ̇ +
αθ̇

r
= 0. (5.7.3)

We introduce the same new variables as for the Kepler problem, rewrite the system (5.7.2)
and (5.7.3) as the equivalent system of four first order equations and again select w2 to
be the new independent variable y. We obtain the three first order equations

w′
1 =

w3

w4
, (5.7.4)

w′
3 = w1w4 − αw3

w2
1w4

− µ

w2
1w4

, (5.7.5)

w′
4 = −2w3

w1
− αw4

w2
1

, (5.7.6)
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where the prime denotes differentiation with respect to the new independent variable, y.
The same convention is used below.

The choice of (5.7.4) to eliminate w3 is obvious. We obtain

w′′
1w4 + w′

1w
′
4 = w1w4 − αw′

1

w2
1

− µ

w2
1w4

, (5.7.7)

w′
4 = −2w′

1w4

w1
− α

w2
1

. (5.7.8)

We can easily manipulate (5.7.8) to obtain(
w2

1w4

)′ + α = 0 ⇔ w2
1w4 = − (αy + β) , (5.7.9)

which indicates that the angular momentum is not conserved, and the choice of one of the
new variables is then

u2 = w2
1w4 + αy + β. (5.7.10)

In (5.7.7) we use both forms of (5.7.9) to eliminate w4 and w′
4 to obtain(

1
w1

)′′
+

1
w1

=
µ

(αy + β)2
(5.7.11)

and with the choice of the second new variable

u1 =
1
w1

+ µ

∫ y sin(y − s)ds
(αs + β)2

(5.7.12)

we recover the system (5.6.12).
The Lie point symmetries of the reduced system are, naturally, those listed in (5.6.13).

In terms of the original variables these are

Γ1 =
[∫

dt
r2θ̇

]
∂t,

Γ2 = 2
[∫

rI ′dt
]
∂t + r2I ′∂r + ∂θ,

Γ3 = 2
[
t +
∫

rIdt
]
∂t + r(1 + rI)∂r,

Γ4± = 2
[∫

re±iθdt
]
∂t + r2e±iθ∂r,

Γ6± =
[∫ (

2r(I ′ ± iI) − α

r2θ̇

)
e±2iθdt

]
∂t +

[
r
(±i + r(I ′ ± iI)

)]
e±2iθ∂r − e±2iθ∂θ,

Γ8± =
[∫ (

ṙ

r2θ̇
+ I ′(1 + 2rI) ± i

r
(1 + rI)2 − α

r3θ̇
(1 + rI)

)
e±iθdt

]
∂t

+
[
(1 + rI)

(
rI ′ ± i(1 + rI)′

)
e±iθ
]
∂r − 1

r
(1 + rI)e±iθ∂θ, (5.7.13)

where I stands for the second term in (5.7.12) and I ′ is its derivative with respect to θ.
In addition to the symmetries listed in (5.7.13) equation (5.7.1) has the Lie point

symmetry ∂t which was the symmetry upon which the reduction of order was based. Con-
sequently we can conclude that algebraically the Kepler problem and the Kepler problem
with drag are identical.
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5.7.2 The equation r̈ − 1
2

(
ġ
g
+ 3 ṙ

r

)
ṙ + µgr = 0

The two components of this equation of motion in plane polar coordinates are

r̈ = rθ̇2 + 1
2

(
g′

g
+

3
r

)
ṙ2 − µgr,

θ̈ = 1
2 ṙθ̇

(
g′

g
− 1

r

)
, (5.7.14)

where we have written ġ(r) = g′(r)ṙ. We proceed in the same fashion as before with
the same choice of new independent variable and obtain the system of three first-order
equations

w′
1 =

w3

w4
⇔ w3 = w4w

′
1,

w′
3 = w1w4 + 1

2

(
g′

g
+

3
r

)
w4w

′
1
2 − µg

w1

w4
,

w′
4 =

w3

2w1

(
g′

g
w1 − 1

)
(5.7.15)

and again the obvious variable to be eliminated is w3 from the first of (5.7.15). With this
substitution the third of (5.7.15) is easily integrated to give

A =
(
w1

g

)1
2
w4 (5.7.16)

and we use this as the definition of u2. The second of (5.7.15) is now (after a certain
amount of simplification)

u2w
′′
1 = w1u2 + 2

u2w
′
1
2

w1
− µw2

1

u2
. (5.7.17)

This equation is just the same equation as one obtains for the Kepler problem and we
know that the correct substitution is u1 = µ−u2

2/u1. Again we have recovered the system
(5.6.12) and so this problem is also algebraically equivalent to the Kepler problem. The
symmetries are

Γ1 =
[∫

rg′

g
dt
]
∂t − 2r∂r,

Γ2 = ∂θ,

Γ3 = 1
2

[∫
r

(
1
r
− g′

g

)(
µg

θ̇2
− 1
)

dt
]
∂t + r

(
µg

θ̇2
− 1
)
∂r,

Γ4± = 1
2

[∫
r2

(
1
r
− g′

g

)
e±iθdt

]
∂t + r2e±θ∂r,

Γ6± = ±1
2 i

[∫ (
3 +

rg′

g
+

µ(g − g′r)
θ̇2

)
e±2iθdt

]
∂t ± ir

(
µg

θ̇2
− 1
)

e±2iθ∂r + e±2iθ∂θ,
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Γ8± = 1
2



∫

e±iθ


gr
θ̇2

(
µ− θ̇2

g

)2(
1
r
− g′

g

)
± 2i

(
µ− θ̇2

g

)
+

2ṙθ̇
rg


dt


 ∂t

+


e±iθ

gr

θ̇2

(
µ− θ̇2

g

)2

 ∂r +

{
e±iθ

(
µ− θ̇2

g

)}
∂θ. (5.7.18)

5.7.3 An example with an angle-dependent force

So far we have seen that by the correct choice of variables the reduced system comes down
to be the same one, videlicet (5.6.12). One of the variables is related to the Laplace–
Runge–Lenz vector. We apply the idea to the equation

r̈ + gr̂ + hθ̂ = 0, (5.7.19)

where

g =
U ′′(θ) + U(θ)

r2
+ 2

V ′(θ)
r3/2

and h =
V (θ)
r3/2

. (5.7.20)

We make the same reduction as in previous cases to arrive at the pair of equations

w1w
′′
1w

2
4 − 2w′

1
2w2

4 − w2
1w

2
4 = w1h− gw1, (5.7.21)

w1w4w
′
4 + 2w′

1w
2
4 = −h, (5.7.22)

where w1 = r and w4 = θ̇ as before.
The Laplace–Runge–Lenz vector for equation (5.7.19) is

J = ṙ × L − U r̂ −
[
U ′ + 2r

1
2V

]
θ̂. (5.7.23)

If we take the two cartesian components of J , videlicet J1 and J2, and combine them we
obtain the two Ermanno–Bernoulli constants

J± = −J1 ± iJ2,

=

[(
L2

w1
− U

)
± i

(
L2

w1
− U

)′ ]
e±iy. (5.7.24)

We see that the Ermanno–Bernoulli constants have the same structure as for the standard
Kepler problem. Immediately we have the clue to the identification of one of new variables
and we set

u1 =
L2

w1
− U (5.7.25)

so that the Ermanno–Bernoulli constants are given by

J± = (u1 ± iu′1)e
±iy. (5.7.26)
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The identification of the second variable is more delicate. Equation (5.7.22) can be written
as

LL′ = −w
3
2
1 V (y) (5.7.27)

and, when (5.7.25) is taken into account, this becomes

0 =
L′

L2
+

V (y)

(u1 + U(y))
3
2

. (5.7.28)

From (5.7.26) we have

u1 = 1
2

(
J+e−iy + J−e+iy

)
= J cos y (5.7.29)

since J− = J∗
+ and we have written J = |J+| = |J−|. We use (5.7.28) to define the second

variable

u2 =
1
L

−
∫

V (y)dy

(J cos y + U(y))
3
2

. (5.7.30)

The reduced system of equations is again (5.6.12).
In addition to the symmetry ∂t which was used to reduce the original system of equa-

tions the reduced system contributes the following symmetries to the original equation

Γ1 = 3
[∫

r2θ̇dt
]
∂t + 2r3θ̇∂r,

Γ2 =

[∫ (
2U ′

r2θ̇2
+

3V r2θ̇

U + J cos θ

)
dt

]
∂t +

[
U ′

r2θ̇2
+

2V r3θ̇

U + J cos θ

]
∂r − ∂θ,

Γ3 = 2
[
t−
∫

Udt
r3θ̇2

]
∂t +

[
r − U

r2θ̇2

]
∂r,

Γ4± = 2
[∫

e±iθ

r3θ̇2
dt
]
∂t +

e±iθ

r2θ̇2
∂r,

Γ6± =

{∫
e±2iθ

[
3V r2θ̇

U + J cos θ
+

2(U ′ ∓ iU)
r3θ̇2

]
dt

}
∂t,

− e±2iθ

[
2V r3θ̇

U + J cos θ
± ir +

U ′ ∓ iU

r2θ̇2

]
∂r + e±2iθ∂θ

Γ8± =
{∫

e±iθ
[
2U ′
(

1 − U

r3θ̇2

)
− 3
(
r2ṙθ̇ ± ir3θ̇2 − 2r

1
2V ∓ iU

)]
dt
}
∂t (5.7.31)

− e±iθ
[

2V r2θ̇

U + J cos θ

(
U ′ ± i

(
r3θ̇2 − U

))(
1 − U

r3θ̇2

)]
∂r + e±iθ

[
r3θ̇2 − U

]
∂θ.

Again we have a system possessing a Laplace–Runge–Lenz vector having the same
algebraic properties as the standard Kepler problem. The standard Kepler problem has
a Hamiltonian structure whereas (5.7.19) was shown by Sen [130] to be Hamiltonian only
under considerable restrictions on the functions U(θ) and V (θ). It is presently an open
question whether one can construct a Hamiltonian through these transformations.
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5.7.4 A truly three-dimensional motion

We mentioned above that the three-dimensional treatment of the standard Kepler problem
would require simply the addition of a second first order equation to the system (5.6.12)
and that the suitable variable for this equation would be the z-component of the angular
momentum. In the case of (4.1.12) we did not have a conserved z-component of the
angular momentum. The magnitude of the angular momentum vector was conserved, but
the direction of angular momentum was not constant and the motion was truly three-
dimensional. This equation gives us a good chance to test the idea put forward above that
one of the useful variables in the reduction is somehow related to the Laplace–Runge–Lenz
vector in the case in which we cannot reduce the problem to one of two dimensions. We
recall that the equation of motion

r̈ +
h′

r
L +

(
hh′ +

k

r2

)
r̂ = 0 (5.7.32)

has the Laplace–Runge–Lenz vector

J = ṙ × L − h(r)L − kr. (5.7.33)

In addition the square of the magnitude of the angular momentum, videlicet

L2 = r4
(
θ̇2 + φ̇2 sin2 θ

)
, (5.7.34)

is a conserved scalar. In spherical polar coordinates the three components of the equation
of motion, (5.7.32), are

r̈ = r
(
θ̇2 + φ̇2 sin2 θ

)
− hh′ − k

r2
, (5.7.35)

θ̈ = −2
ṙθ̇

r
+ φ̇2 sin θ cos θ + h′ sin θφ̇, (5.7.36)

φ̈ sin θ = −2
ṙφ̇

r
sin θ − 2θ̇φ̇ cos θ − h′θ̇. (5.7.37)

The three components of the Laplace–Runge–Lenz vector are

Jx =
(
L2

r
− k

)
sin θ cosφ− r2

(
ṙθ̇ − hφ̇ sin θ

)
cos θ cosφ + r2

(
ṙφ̇ sin θ + hθ̇

)
sinφ,

Jy =
(
L2

r
− k

)
sin θ sinφ− r2

(
ṙθ̇ − hφ̇ sin θ

)
cos θ sinφ− r2

(
ṙφ̇ sin θ + hθ̇

)
cosφ,

Jz =
(
L2

r
− k

)
cos θ + r2

(
ṙθ̇ − hφ̇ sin θ

)
sin θ. (5.7.38)

To obtain the Ermanno–Bernoulli constants we take the combinations

J± = Jx ± iJy (5.7.39)

= e±iφ
[((

L2

r
− k

)
sin θ − r2

(
ṙθ̇ − hφ̇ sin θ

)
cos θ

)
± i
(
−r2

(
ṙφ̇ sin θ + hθ̇

))]
.



Generalisations of the Laplace–Runge–Lenz Vector 415

Since φ does not appear in the components of the equation of motion, we choose it to be
the new independent variable. It is a simple matter to verify that the derivative of the
real part within crochets in (5.7.39) with respect to φ gives the imaginary part and so we
define the new variable

u1 =
(
L2

r
− k

)
sin θ − r2

(
ṙθ̇ − hφ̇ sin θ

)
cos θ.. (5.7.40)

Thus we have the Ermanno–Bernoulli constants in the standard form

J± = e±iφ
(
u1 ± iu′1

)
, (5.7.41)

where the new variable u1 satisfies the second order equation

u′′1 + u1 = 0. (5.7.42)

The other two variables for the reduced system can be taken to be the remaining
component of the Laplace–Runge–Lenz vector and the square of the magnitude of the
angular momentum. We write

u2 = r4
(
θ̇2 + φ̇2 sin2 θ

)
, u′2 = 0,

u3 =
(
L2

r
− k

)
cos θ + r2

(
ṙθ̇ − hφ̇ sin θ

)
sin θ, u′3 = 0, (5.7.43)

and so we have the complete reduction of (5.7.32) to a system of two first-order equations
and the simple harmonic oscillator. The algebra of the Lie point symmetries is 2A1 ⊕
sl(3, R) if one takes the two symmetries

G9 = A(u2, u3)∂u2 and G10 = B(u2, u3)∂u3 , (5.7.44)

where A and B are arbitrary functions of the two first integrals, to be equivalent to just ∂u2

and ∂u3 . The involved expressions for the new variables and the additional complication
of an extra dimension make the computation of the symmetries in the original variables a
task of somewhat greater length than the result justifies and we omit them.

Finally we note that, of the Lie point symmetries of the system of differential equations,
those associated with J± are

G1± = ±i∂y + u1∂u1 ,

G2± = e±2iy (∂y ± iu1∂u1) and G3± = e±iy∂u1 (5.7.45)

in addition to the trivial G9 and G10. To these three symmetries in the original represen-
tation there is added ∂t.
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Bäcklund, and Approximate Symmetries of Differential Equations: Manual and Floppy Disk,
in CRC Handbook of Lie Group Analysis of Differential Equations, Vol. III: New Trends,
Editor: Ibragimov N H, CRC Press, Boca Raton Fl, 1996, 415–481.

[117] Nucci M C, The Complete Kepler Group Can Be Derived by Lie Group Analysis, J. Math.
Phys. 37 (1996), 1772–1775.

[118] Nucci M C and Leach P G L, The Harmony in the Kepler and Related Problems, J. Math.
Phys. 42 (2001), 746–764.
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