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Abstract

The derivative nonlinear Schrödinger equation is shown to be locally well-posed in
a class of functions analytic on a strip around the real axis. The main feature of the
result is that the width of the strip does not shrink in time. To overcome the derivative
loss, Kato-type smoothing results and space-time estimates are used.

1 Introduction

The aim of this article is to prove local well-posedness of the Cauchy problem for the
derivative nonlinear Schrödinger equation

iut + uxx = i
(|u|2u)

x
,

u(x, 0) = u0(x), (1.1)

with initial data u0 whose real and imaginary parts are real-analytic functions with the
uniform radii of analyticity σ.
The problem has been studied by many authors, among them Hayashi and Ozawa

[13, 14, 15] and Kato and Masuda [16]. Hayashi and Ozawa proved local well-posedness in
a class of analytic functions similar to the class considered in the present article. However,
in their result, it was essential that the width of the strip of analyticity was allowed to
shrink as the solution progressed in time. Our goal is to show that it is possible to obtain
local well-posedness without shrinking the width of the strip (or, equivalently, without
decreasing the uniform radius of spatial analyticity) in time. One difficulty in treating
the equation is the so-called derivative loss. In [2], Bourgain introduced special function
spaces which are well-suited to overcome this problem which also occurs in the Korteweg-
de Vries equation. His method was refined by Kenig, Ponce and Vega and has been used by
many other authors (cf. [3, 4, 5, 7, 17, 18]). In the context of the derivative Schrödinger
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equations, Takaoka has recently given a proof of the well-posedness of the equation in
low-regularity classes [22]. Our proof relies on some of his estimates.
The function spaces considered in this article are known as analytic Gevrey spaces, and

can be defined as follows (cf. [6]). For σ > 0 and s ∈ R, define Gσ,s to be the subspace of
L2(R) for which

‖u0‖2
Gσ,s =

∫ ∞

−∞
(1 + |ξ|)2se2σ(1+|ξ|)|û0(ξ)|2 dξ

is finite. The main result of this article is the following theorem.

Theorem 1. Let s > 1
2 and σ > 0. For initial data in Gσ,s, there exists a positive time T

such that the initial-value problem (1.1) is well-posed in the space C([0, T ], Gσ,s).

Well-posedness includes existence of a solution, uniqueness, and continuous depen-
dence on the initial data. Moreover, it is required that the solution describe a continuous
curve in the solution space. This requirement is equivalent to membership in the class
C([0, T ], Gσ,s) of continuous functions mapping the time interval [0, T ] into Gσ,s.
Since the nonlinear term i∂x(|u|2u) is difficult to treat, it is necessary to first apply

a gauge transformation, as it has been done in many previous works (cf. [9, 13]). Suppose
u(x, t) is a solution of (1.1), and define a function v(x, t) by

v(x, t) = e−i
∫ x
−∞ |u(y,t)|2 dy u(x, t).

Then v satisfies the initial-value problem

ivt + vxx = −iv2v̄x − 1
2
|v|4v,

v(x, 0) = v0(x), (1.2)

with initial data defined by v0(x) = e−i
∫ x
−∞ |u0(y)|2 dy u0(x). To see that this transform is

continuous in the Gσ,s-norm, first consider the case when s = 0. Then one may use the
equivalent norm

‖v0‖2
G̃σ,0 =

∫ ∞

−∞
|v0(x+ iσ)|2 dx+

∫ ∞

−∞
|v0(x− iσ)|2 dx.

By complexifying the path integral in the definition of v, it is easily seen that the gauge
transformation is continuous with respect to this norm. When s is an integer, one may
differentiate v with respect to x to see that the gauge transform is continuous. Finally,
the general case can be obtained by interpolation. The gauge transformation results in
an equation which still has a derivative nonlinearity. However, the derivative nonlinearity
appearing in (1.2) can be controlled using the space-time norms. The quintic nonlinearity
does not pose any special challenge.

2 Auxiliary estimates

The Fourier transform of a function v0 belonging to the Schwartz class is defined by

v̂0(ξ) =
1√
2π

∫ ∞

−∞
v0(x)e−ixξ dx.
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Defining a Fourier multiplier operator A by

Âv0(ξ) = (1 + |ξ|)v̂0(ξ),

the Gevrey norm of order (σ, s) can be written as

‖v0‖Gσ,s = ‖AseσAv0‖L2(R).

In case a function under consideration is complex-valued (e.g., a solution of a Schrödinger
equation), its real and imaginary parts are real-analytic with the uniform radii of con-
vergence equal to σ. To prove local well-posedness, another family of function spaces is
needed. For a function v(x, t) of two variables, the notation v̂(ξ, τ) is used to denote the
space-time Fourier transform. Given σ > 0, s ∈ R, and b ∈ [−1, 1], define Xσ,s,b to be the
Banach space with the space-time norm

‖v‖2
σ,s,b =

∫ ∞

−∞

∫ ∞

−∞
(1 + |τ + ξ2|)2b(1 + |ξ|)2se2σ(1+|ξ|)|v̂(ξ, τ)|2 dξdτ.

The symbol in the Xσ,s,b-norm is adjusted to the linear part of the equation. In the
following, some identities and linear estimates are listed that elucidate this relation. For
the initial-value problem

iwt + wxx = 0,
w(x, 0) = w0(x), (2.1)

an explicit solution is given in terms of the propagator S(t) by

w(x, t) = S(t)w0 = c

∫ ∞

−∞
eixξe−itξ2

ŵ0(ξ) dξ. (2.2)

For ρ ∈ R, define the operator Λρ by

Λ̂ρv(ξ, τ) = (1 + |τ |)ρ v̂(ξ, τ).
Then we have the following identity:

‖S(t)v‖σ,s,b = ‖AseσAΛbv‖L2(R2). (2.3)

As is well known, the space C([0, T ], Gσ,s) is a Banach space when equipped with the norm

|v|CT,σ,s
= sup

0≤t≤T
‖v(·, t)‖Gσ,s .

For b > 1
2 , the space Xσ,s,b is embedded in C([0, T ], Gσ,s) as is evident from the inequality

|v|CT,σ,s
≤ c‖v‖σ,s,b, (2.4)

which follows directly from (2.3) and the Sobolev Embedding Theorem.
In order to obtain local estimates in time, it is necessary to introduce a time cut-off

function. Let ψ be an infinitely differentiable function on R, such that

ψ(t) =
{
0, |t| ≥ 2,
1, |t| ≤ 1,

and let ψT (t) = ψ(t/T ).
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Lemma 1. Let σ > 0, b > 1
2 , and b − 1 < b′ < 0. Then there is a constant c such that

the following estimates hold.

‖ψ(t)S(t)u0(x)‖σ,s,b ≤ c‖u0‖Gσ,s , (2.5)∥∥∥ψT (t)
∫ t

0
S(t− s)v(s) ds

∥∥∥
σ,s,b

≤ cT 1−b+b′‖v‖σ,s,b′ . (2.6)

Proof. With the same assumptions as in the lemma, but with σ = 0, (2.5) was proved
in [19], and (2.6) was proved in [7]. These inequalities clearly remain valid for σ > 0, as
one merely has to replace u0 by eσAu0 and v by eσAv. �

Finally, note the following key result of Takaoka used in the proof of the nonlinear estimate
(cf. [22], Lemma 3.1).

Lemma 2. For 1
2 ≤ s < 1, b > 1

2 and −b ≤ b′ ≤ −3
8 , there holds

∫
R6

d(ξ, τ) (1 + |ξ|)s(
1 + |τ + ξ2|)−b′

f(ξ1, τ1)
(
1 + |ξ1|

)−s(
1 + |τ1 + ξ2

1

)b

× g(ξ − ξ2, τ − τ2)
(
1 + |ξ − ξ2|

)−s(
1 + |τ − τ2 + (ξ − ξ2)2|

)b

h(ξ2 − ξ1, τ2 − τ1)
(
1 + |ξ2 − ξ1|

)1−s(
1 + |τ2 − τ1 − (ξ2 − ξ1)2|

)b
dµ

≤ c ‖d‖L2
ξL2

τ
‖f‖L2

ξL2
τ
‖g‖L2

ξL2
τ
‖h‖L2

ξL2
τ
.

3 Nonlinear estimates

In this section estimates for the nonlinear terms in the equation are proved. The first
result will give control over the derivative term in equation (1.2).

Theorem 2. Suppose u, v and w are in Xσ,s,b where s ≥ 1
2 , b > 1

2 , and −b ≤ b′ ≤ −3
8 .

Then there exists a constant c depending only on s, b, and b′ such that

‖uvw̄x‖σ,s,b′ ≤ c ‖u‖σ,s,b ‖v‖σ,s,b ‖w‖σ,s,b. (3.1)

Proof. The proof of this theorem relies on Lemma 2. First note that (3.1) can be written
more explicitly as∥∥∥(

1 + |τ + ξ2|)b′(1 + |ξ|)s
eσ(1+|ξ|)ûvw̄x(ξ, τ)

∥∥∥
L2

ξL2
τ

≤ c ‖u‖σ,s,b ‖v‖σ,s,b ‖w‖σ,s,b. (3.2)

Now observe that if we let

U+(ξ, τ) = (1 + |τ + ξ2|)b(1 + |ξ|)s
eσ(1+|ξ|)û(ξ, τ),

V +(ξ, τ) = (1 + |τ + ξ2|)b(1 + |ξ|)s
eσ(1+|ξ|)v̂(ξ, τ),

and

W−(ξ, τ) = (1 + |τ − ξ2|)b(1 + |ξ|)s
eσ(1+|ξ|)ŵ(−ξ,−τ),
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then (3.2) is equivalent to∥∥∥∥∥
(
1 + |ξ|)s

eσ(1+|ξ|)

(1 + |τ + ξ2|)−b′

∫
R4

(
1 + |ξ1|

)−s
e−σ(1+|ξ1|)U+(ξ1, τ1)

(1 + |τ1 + ξ2
1 |)b

×
(
1 + |ξ − ξ2|

)−s
e−σ(1+|ξ−ξ2|)V +(ξ − ξ2, τ − τ2)

(1 + |τ − τ2 + (ξ − ξ2)2|)b

×
(
1 + |ξ2 − ξ1|

)1−s
e−σ(1+|ξ2−ξ1|)W−(ξ2 − ξ1, τ2 − τ1)(

1 + |τ2 − τ1 − (ξ2 − ξ1)2|
)b

dξ2dτ2dξ1dτ1

∥∥∥∥∥
L2

ξL2
τ

≤ c ‖U+‖L2
ξL2

τ
‖V +‖L2

ξL2
τ
‖W−‖L2

ξL2
τ
.

A proof of this estimate can be obtained by duality. Let d(ξ, τ) be a positive function in
L2(R2) with norm ‖d‖L2(R2) = 1. Then we need to estimate∫

R6

d(ξ, τ) (1 + |ξ|)s eσ(1+|ξ|)(
1 + |τ + ξ2|)−b′

U+(ξ1, τ1) e−σ(1+|ξ1|)(1 + |ξ1|
)−s(

1 + |τ1 + ξ2
1

)b

× V +(ξ − ξ2, τ − τ2) e−σ(1+|ξ−ξ2|)(1 + |ξ − ξ2|
)−s(

1 + |τ − τ2 + (ξ − ξ2)2|
)b

× W−(ξ2 − ξ1, τ2 − τ1) e−σ(1+|ξ2−ξ1|)(1 + |ξ2 − ξ1|
)1−s(

1 + |τ2 − τ1 − (ξ2 − ξ1)2|
)b

dµ,

where dµ = dξ2dτ2dξ1dτ1dξdτ. Using the triangle inequality |ξ| ≤ |ξ1|+ |ξ − ξ2|+ |ξ2 − ξ1|
on the exponential terms leads to∫

R6

d(ξ, τ)
(
1 + |ξ|)s(

1 + |τ + ξ2|)−b′
U+(ξ1, τ1)

(
1 + |ξ1|

)−s(
1 + |τ1 + ξ2

1

)b

V +(ξ − ξ2, τ − τ2)
(
1 + |ξ − ξ2|

)−s(
1 + |τ − τ2 + (ξ − ξ2)2|

)b

× W−(ξ2 − ξ1, τ2 − τ1)
(
1 + |ξ2 − ξ1|

)1−s(
1 + |τ2 − τ1 − (ξ2 − ξ1)2|

)b
dµ.

According to Lemma 2, this integral can be dominated by

c ‖d‖L2
ξL2

τ
‖U+‖L2

ξL2
τ
‖V +‖L2

ξL2
τ
‖W−‖L2

ξL2
τ
. �

The next result provides control on the quintic term in the equation.

Theorem 3. Suppose u, v, and w are in Xσ,s,b where s > 1
2 , b > 1

2 , and b′ < −1
4 . Then

there exists a constant c depending only on s, b, and b′ such that

‖uūvv̄w‖σ,s,b′ ≤ c ‖u‖2
σ,s,b ‖v‖2

σ,s,b ‖w‖σ,s,b. (3.3)

In order to prove this theorem, several auxiliary results are needed. First, we introduce
the following notation. For ρ ∈ R, and a suitable function f , define Fρ by its Fourier
transform F̂ρ,

F̂ρ(ξ, τ) =
f(ξ, τ)(

1 + |τ + ξ2|)ρ . (3.4)
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The first lemma is similar to a lemma proved by Bourgain [2], and we refer the reader
to his article for the proof.

Lemma 3. For ρ > 1
4 , there exists a constant c depending only on ρ such that

‖Fρ‖L4
xL2

t
≤ c‖f‖L2

ξL2
τ
. (3.5)

Lemma 4. For ρ > 1
2 , and s > 1

2 , there exists a constant c depending only on ρ and s,
such that

‖A−sFρ‖L∞
x L∞

t
≤ c‖f‖L2

ξL2
τ
. (3.6)

This lemma follows directly from the Sobolev embedding theorem (cf. [8]). The following
proposition which is the basis for the proof of the next lemma is due to Kenig and Ruiz [21].
It can also be found in [20].

Proposition 1. Let S(t) be the propagator for the linear Schrödinger equation as intro-
duced in (2.2). Then for any u0 ∈ H

1
4 ,

{∫ ∞

−∞
sup

−∞<t<∞
|S(t)u0(x)|4dx

} 1
4

≤ c ‖A 1
4u0‖L2

x
. (3.7)

Lemma 5. For ρ > 1
2 and s ≥ 1

4 ,

‖A−sFρ‖L4
xL∞

t
≤ c‖f‖L2

ξL2
τ
. (3.8)

Proof. The proof follows an argument given in [17]. Writing A−sFρ in terms of its Fourier
transform and then changing variables to λ = τ + ξ2, we obtain

A−sFρ(x, t) =
∫ ∞

−∞

∫ ∞

−∞
eixξeitτ f(ξ, τ)

(1 + |ξ|)s(1 + ∣∣τ + ξ2
∣∣)ρ dτ dξ (3.9)

=
∫ ∞

−∞
eitλ

(∫ ∞

−∞
eixξeitξ2 f(ξ, λ+ ξ2|)

(1 + |ξ|)s dξ

)
dλ

(1 + |λ|)ρ . (3.10)

Now defining uλ(x) as the inverse Fourier transform of f(ξ, λ+ ξ2) in the x-variable, using
Minkowski’s integral inequality, Proposition 1, and finally Hölder’s inequality, we can write

‖A−sFρ‖L4
xL∞

t
≤

∫ ∞

−∞

∥∥∥∥
∫ ∞

−∞
eixξeitξ2 f(ξ, λ+ ξ2)

(1 + |ξ|)s dξ

∥∥∥∥
L4

xL∞
t

dλ

(1 + |λ|)ρ

≤ c

∫ ∞

−∞

∥∥ S(t)A−suλ

∥∥
L4

xL∞
t

dλ

(1 + |λ|)ρ

≤ c

∫ ∞

−∞
‖uλ‖L2

x

dλ

(1 + |λ|)ρ
= c ‖f‖L2

ξL2
τ
. �

With these estimates in hand, Theorem 3 can be proved.
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Proof. First, let

U−(ξ, τ) = (1 + |τ − ξ2|)b(1 + |ξ|)s
eσ(1+|ξ|)û(−ξ,−τ),

V −(ξ, τ) = (1 + |τ − ξ2|)b(1 + |ξ|)s
eσ(1+|ξ|)v̂(−ξ,−τ),

and

W+(ξ, τ) = (1 + |τ + ξ2|)b(1 + |ξ|)s
eσ(1+|ξ|)ŵ(ξ, τ).

Then similarly to the proof of Theorem 2, we have to estimate an integral of the form

∫
R10

d(ξ, τ)
(
1 + |ξ|)s

eσ(1+|ξ|)(
1 + |τ + ξ2|)−b′

U+(ξ1, τ1) e−σ(1+|ξ1|)(1 + |ξ1|
)−s(

1 + |τ1 + ξ2
1

)b

× U−(ξ − ξ4, τ − τ4) e−σ(1+|ξ−ξ4|)(1 + |ξ − ξ4|
)−s(

1 + |τ − τ4 − (ξ − ξ4)2|
)b

× V +(ξ4 − ξ3, τ4 − τ3) e−σ(1+|ξ4−ξ3|)(1 + |ξ4 − ξ3|
)−s(

1 + |τ4 − τ3 + (ξ4 − ξ3)2|
)b

× V −(ξ3 − ξ2, τ3 − τ2) e−σ(1+|ξ3−ξ2|)(1 + |ξ3 − ξ2|
)−s(

1 + |τ3 − τ2 − (ξ3 − ξ2)2|
)b

× W+(ξ2 − ξ1, τ2 − τ1) e−σ(1+|ξ2−ξ1|)(1 + |ξ2 − ξ1|
)−s(

1 + |τ2 − τ1 + (ξ2 − ξ1)2|
)b

dµ,

where now dµ = dξ4dτ4dξ3dτ3dξ2dτ2dξ1dτ1dξdτ. Using the inequality |ξ| ≤ |ξ1|+ |ξ− ξ4|+
|ξ4 − ξ3|+ |ξ3 − ξ2|+ |ξ2 − ξ1| on the exponentials, we are left with

∫
R10

d(ξ, τ) |ξ|s(
1 + |τ + ξ2|)−b′

U+(ξ1, τ1)
(
1 + |ξ1|

)−s(
1 + |τ1 + ξ2

1

)b

U−(ξ − ξ4, τ − τ4)
(
1 + |ξ − ξ4|

)−s(
1 + |τ − τ4 − (ξ − ξ4)2|

)b

× V +(ξ4 − ξ3, τ4 − τ3)
(
1 + |ξ4 − ξ3|

)−s(
1 + |τ4 − τ3 + (ξ4 − ξ3)2|

)b

V −(ξ3 − ξ2, τ3 − τ2)
(
1 + |ξ3 − ξ2|

)−s(
1 + |τ3 − τ2 − (ξ3 − ξ2)2|

)b

× W+(ξ2 − ξ1, τ2 − τ1)
(
1 + |ξ2 − ξ1|

)−s(
1 + |τ2 − τ1 + (ξ2 − ξ1)2|

)b
dµ.

Now, split the Fourier space into 24 regions, according to all possible combinations of
inequalities such as |ξ− ξ4| ≤ |ξ4 − ξ3| ≤ |ξ3 − ξ2| ≤ |ξ2 − ξ1| ≤ |ξ1|. In this particular case,
the integral can be dominated by

〈D−b′ , U
+
b A−sU−

b A−sV +
b A−sV −

b A−sW+
b 〉,

where 〈·, ·〉 denotes the inner product in L2(R2), and D−b′ , U+
b , etc. are defined as in (3.4).
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Then the estimate continues as follows:

〈D−b′ , U
+
b A−sU−

b A−sV +
b A−sV −

b A−sW+
b 〉

≤ c ‖D−b′‖L4
xL2

t
‖U+

b ‖L4
xL2

t
‖A−sU−

b ‖L4
xL∞

t

× ‖A−sV +
b ‖L4

xL∞
t
‖A−sV −

b ‖L∞
x L∞

t
‖A−sW+

b ‖L∞
x L∞

t

≤ c ‖d‖L2
ξL2

τ
‖u‖2

L2
ξL2

τ
‖v‖2

L2
ξL2

τ
‖w‖L2

ξL2
τ

= c ‖u‖2
L2

ξL2
τ
‖v‖2

L2
ξL2

τ
‖w‖L2

ξL2
τ
.

The other cases follow simply by interchanging the roles of U+
b , U

−
b , V

+
b , V

−
b , andW+

b . �

The estimates in Theorems 2 and 3, coupled with the linear estimates in the previous
section suffice to prove the local well-posedness of (1.2) in the analytic classes Xσ,s,b, as is
shown in the next section.

4 Proof of Theorem 1

With the estimates provided in the previous section, existence and uniqueness of a solution
to the initial-value problem in Xσ,s,b can be proved easily using a contraction argument.
First we prove existence of the function v satisfying equation (1.2). Consider the integral
operator

Γ(v) = ψ(t)S(t)v0 − ψT (t)
∫ t

0
S(t− t′)

(
iv2v̄x + 1

2 |v|4v
)
dt′. (4.1)

Let r = ‖v0‖Gσ,s . It will be proved that T can be chosen so that Γ is a contraction in the
ball B(2cr) ⊂ Xσ,s,b of radius 2cr centered at 0.

Lemma 6. There exists a positive time T , such that the operator Γ as defined in (4.1) is
a contraction in the ball B(2cr).

Proof. First it is proved that Γ is a mapping on B(2cr). Using (2.5) and (2.6), and the
nonlinear estimates, we see that

‖Γ(v)‖σ,s,b ≤ ‖ψ(t)S(t)v0‖σ,s,b +
∥∥∥∥ψT (t)

∫ t

0
S(t− t′)v(·, t′)2v̄x(·, t′) dt′

∥∥∥∥
σ,s,b

+
∥∥∥∥ψT (t)

∫ t

0
S(t− t′)|v(·, t′)|4v(·, t′) dt′

∥∥∥∥
σ,s,b

≤ c ‖v0‖Gσ,s + c, T 1−b+b′ ‖v2∂xv̄‖σ,s,b′ + c T 1−b+b′ ‖|v|4v‖σ,s,b′

≤ c ‖v0‖Gσ,s + c2 T 1−b+b′ ‖v‖3
σ,s,b + c2 T 1−b+b′ ‖v‖5

σ,s,b

≤ cr + c2 T 1−b+b′ ((2cr)3 + (2cr)5)
≤ cr + 2c2 T 1−b+b′ (2c(r + 1))5 .

It can now be seen that T may be chosen in such a way that Γ maps B(2cr) to B(2cr).
A similar argument (cf. [8]) proves the contraction property. �
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Since Γ is a contraction, it follows that Γ has a unique fixed point v in B(2cr). The
function v solves the initial-value problem (1.2). Following standard arguments as in [8],
the persistence property, as well as uniqueness and and continuous dependence on initial
data in C([0, T ], Gσ,s) can be obtained. The local well-posedness of the original prob-
lem (1.1) follows immediately from the continuity of the gauge transformation and its
inverse in Gσ,s.
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