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Abstract

We discuss the wellposedness theory of the Cauchy problem for the nonlinear Schrö-
dinger equation on compact Riemannian manifolds. New dispersive estimates on the
linear Schrödinger group are used to get global existence in the energy space on arbit-
rary surfaces and three-dimensional manifolds, generalizing earlier results by Bourgain
on tori. On the other hand, on specific manifolds such as spheres, new instability
phenomena are displayed, leading to some kind of illposednesss in higher dimensions.

1 Introduction

The nonlinear Schrödinger equation

i∂tu+ ∆u = F (u), (1.1)

where F = ∂V
∂z and V : C → R satisfies V (eiθz) = V (z) for every z ∈ C, θ ∈ R,

plays an important role in many areas of Physics, such as Laser Optics, Plasma Physics,
Bose–Einstein condensates, . . . (see e.g. the recent book [23]). Typical nonlinearities of
interest are smooth enough and have polynomial growth at infinity. Here we shall assume
V ∈ S2+α(C) for some α > 0, namely

V ∈ C∞(C), |Dkz,z V (z)| ≤ Ck(1 + |z|)2+α−k, k = 0, 1, 2, . . . .

If ∆ denotes the usual Laplace operator in R
d, the Cauchy problem for (1.1) has been

extensively studied in the last two decades (see [12, 13, 27, 9]). Muchless results are known
on bounded domains, with the notable exception of the work of Bourgain (see [3, 4, 11]) on
the torus R

d/Zd. Our aim in this short paper is to address the same problem posed on an
arbitrary Riemannian compact manifold (M, g). Our motivation is of course to evaluate
the impact of geometry of M on the wellposedness theory of equation (1.1), having in
mind the infinite propagation speed of the Schrödinger equation, which suggests that the
global geometry of M may have some influence on the solutions in finite time, contrary
to what is known for the wave equation, for instance. Here we discuss slight extensions of
the recent papers [6, 7].
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2 Statement of the results

From now on (M, g) denotes a Riemannian compact manifold of dimension d, and ∆ is the
associated Laplace–Beltrami operator. First notice that, with the notation of the intro-
duction, it is easy to check the following classical conservation laws for smooth solutions
of (1.1),∫

M
|u(t, x)|2dx = Q0, (2.1a)∫

M
|∇u(t, x)|2dx+

∫
M
V (u(t, x)) dx = E0. (2.1b)

As a consequence of these conservation laws and of the usual Gagliardo–Nirenberg in-
equalities, if we assume

α ≤ 4
(d− 2)+

and V (z) ≥ −C(1 + |z|)β for some β < 2 +
4
d
, (2.2)

the finiteness of the norm of u(t) in H1(M) is equivalent to the finiteness of the conserved
quantities Q0 and E0.

In what follows we shall emphasize the following two aspects of the wellposedness theory
for (1.1).

i) Global existence and uniqueness results for data in the energy space H1(M) under
the assumption (2.2).

ii) Continuous dependence of the solutions with respect to the data.

Of course the question of blow up in finite time (if (2.2) is not satisfied) is also of
great interest, but very few results are known on compact manifolds, and we shall content
ourselves with mentioning them briefly.

2.1 Positive results in dimensions two and three

If d = 1, the control of the H1 norm of u provided by conservation laws yields an estimate
of the L∞ norm, therefore global wellposedness in H1 is easy. Thus we start with the first
non trivial case d = 2.

Theorem 1. Assume the dimension of M is d = 2, and

V (z) ≥ −C(1 + |z|)β

for some β < 4. Let s ≥ 1 and u0 ∈ Hs(M). Then equation (1.1) has a unique global
solution u ∈ C(R, Hs(M)). In particular, u ∈ C∞(R ×M) if u0 ∈ C∞(M). Moreover,
u satisfies the conservation laws (2.1) and, for any T > 0, for any bounded subset B of
Hs(M), the flow map

u0 ∈ B 
→ u ∈ C([−T, T ], Hs(M)) (2.3)

is Lipschitz continuous.
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Of course local wellposedness in Hs(M) for s > 1 = d/2 is a classical consequence
of energy estimates, therefore the main part of Theorem 1 is global existence of strong
solutions in H1, propagation of their regularity, and the Lipschitz continuity of the flow
map (2.3) on bounded subsets of H1(M). Notice that Theorem 1 was proved in [3]
in the particular case M = R

2/Z2. Let us also mention that logarithmic estimates in
Brezis–Gallouët [5], Vladimirov [26] and Ogawa–Ozawa [18] allow to prove Theorem 1 on
any compact surface M in the particular case α ≤ 2, with the exception of the uniform
continuity of the flow map (2.3) if s = 1.

We now come to the case of dimension 3. The natural limitation due to Sobolev
inequality here reads α ≤ 4. For α < 4, Bourgain was able to prove global existence and
regularity on the torus. For a general manifold we only obtain results for nonlinearities
with cubic growth.

Theorem 2. Assume the dimension of M is d = 3, and

α ≤ 2, V (z) ≥ −C(1 + |z|)β

for some β < 10/3. Let s ≥ 1 and u0 ∈ Hs(M). Then equation (1.1) has a unique global
solution u ∈ C(R, Hs(M)). In particular, u ∈ C∞(R ×M) if u0 ∈ C∞(M). Moreover,
u satisfies the conservation laws (2.1) and, for any T > 0, for any s > 1, for any bounded
subset B of Hs(M), the flow map

u0 ∈ B 
→ u ∈ C([−T, T ], Hs(M)) (2.4)

is Lipschitz continuous.

Notice that here the difference between the energy regularity s = 1 and the Sobolev
threshold s > d/2 is 1/2 derivative, therefore even the local in time part of Theorem 2 is
not trivial if s ∈ [1, 3/2]. We do not know whether the flow map (2.4) is still uniformly
continuous if s = 1. This is related to the specific method of proof of Theorem 2 if s = 1,
which is a combination of compactness arguments and uniqueness of weak solutions. In
contrast, Theorem 1 and the part s > 1 of 2 can be obtained through some contraction
argument in suitable spaces.

In dimensions d ≥ 4, global wellposedness for equation (1.1) on general manifolds is
completely open. To our knowledge, the only positive result concerns quadratic nonlin-
earities on the four-dimensional torus and is due to Bourgain [4]. This limitation may not
be just technical, as suggested by the result of the next subsection.

2.2 A negative result in dimension six

We consider the following particular case of equation (1.1) on M = S6

i∂tu+ ∆u = (1+ | u |2)α/2u (2.5)

with α ≤ 1 (= 4/(d− 2)).

Theorem 3. Let α ∈]0, 1] and s ∈ [1, 5/4[. There exist sequences (un0 ), (ũn0 ) of functions
in C∞(S6) such that

sup
n

‖un0‖Hs + ‖ũn0‖Hs < +∞, ‖un0 − ũn0‖Hs → 0,
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and if there exist C∞ solutions un, ũn of (2.5) with un(0) = un0 , ũ
n(0) = ũn0 , on [0, T ]×S6

with T > 0 independent of n, then

lim inf
n

sup
0≤t≤T

‖un(t) − ũn(t)‖Hs > 0.

Theorem 3 is in strong contrast with uniform continuity of the flow map stated in
dimensions 2 and 3 in the previous subsection, as well as with results for equation (2.5)
on R

6, for which one can prove global existence, regularity and Lipschitz continuity of the
flow map on H1 (see Appendix A). The instability property which is displayed in Theo-
rem 3 is strongly related to the existence of families of eigenfunctions which concentrates
on a closed geodesic curve. It also appears in lower dimensions, but only for regularities
s < 1. Unfortunately it is not clear to generalize this phenomenon to other manifolds
having the same geometric property since our proof also uses a global information about
the distribution of eigenvalues. Let us mention that variants of this instability property
on spheres for other dimensions and other regularities s can be found in [7], as well as the
case of a boundary value problem on the two–dimensional disc in [8].

2.3 Blow up results

As already mentioned, the blow up in finite time of solutions of (1.1) on a compact manifold
is a widely open problem. To our knowledge, the only examples of such phenomena are
given by the following result, due to Ogawa–Tsutsumi [19] if d = 1 and generalized to the
case d = 2 in [8].

Theorem 4. Let (M, g) be a compact Riemannian manifold of dimension d = 1 or d = 2.
Assume there exists x0 ∈M and a system of coordinates near x0 in which

g =
d∑
j=1

dx2j .

Then there exist smooth solutions u ∈ C∞([0, T [×M) of

i∂tu+ ∆u = −|u|4/du (2.6)

such that, as t→ T ,

|u(t, x)|2 ⇀ ‖Q‖2
L2(Rd)δ(x− x0),

where Q is the ground state solution on R
d of

∆Q+Q1+4/d = Q. (2.7)

Notice that the assumption of Theorem 4 is always fulfilled if d = 1, and holds at every
point of the two dimensional torus if g is the standard metric. The proof of Theorem 4
consists in modifying properly explicit blow up solutions of equation (2.6) on R

d, obtained
from (2.7) and some pseudoconformal invariance of (2.6). We refer to [19] and [8] for
details.
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3 Outline of the proof of Theorems 1 and 2

3.1 Dispersive estimates and generalized Strichartz inequalities

It is now classical that the proof of wellposedness results for equation (1.1) on R
d in the

class Hs(M) for s < d
2 is based on Strichartz inequalities (see [12, 13, 27, 9, 14]). In order

to state these inequalities, let us recall the usual definition of admissible pair. A pair (p, q)
of exponents in [2,∞] is said to be d-admissible if

2
p

+
d

q
=
d

2
, p ≥ 2, (p, q) 
= (2,∞). (3.1)

Then the Strichartz inequalities for the linear Schrödinger group on R
d read as

‖v‖Lp(R,Lq(Rd)) ≤ C‖v0‖L2(Rd), if v(t) = eit∆v0, (3.2a)

‖w‖Lp(R,Lq(Rd)) ≤ C‖f‖Lp′ (R,Lq′ (Rd))
, if w(t) =

∫ t

−∞
ei(t−τ)∆f(τ)dτ (3.2b)

for any admissible pairs (p, q), (p′, q′) (where r̄ denotes the conjugate exponent of r). The
usual way for deriving such inequalities is to rely on the following dispersive estimate

‖eit∆f‖L∞(Rd) ≤
C

|t|d/2 ‖f‖L1(Rd), (3.3)

which is a trivial consequence of the explicit formula for the kernel of eit∆. Then (3.2)
follow from the combination of (3.3) with the following functional analytic device, which
we borrow from the paper by Keel–Tao [14], where it is proved in its widest generality.

Lemma 1 (TT � lemma, Keel–Tao). Let (X,S, µ) be a σ-finite measured space, and U
be a weakly measurable map from R to the space of bounded operators on L2(X,S, µ).
Assume that U satisfies the following two estimates for some A > 0, B > 0, σ > 0,

(i) ‖U(t)‖L2→L2 ≤ A, t ∈ R,

(ii) ‖U(t1)U(t2)�‖L1→L∞ ≤ B

|t1 − t2|σ , t1, t2 ∈ R.

Then for every 2σ-admissible pairs (p, q), (p′, q′), one has(∫
R

‖U(t)f‖pLqdt

) 1
p

≤ C‖f‖L2 ,

‖w‖Lp(R;Lq) ≤ C‖f‖Lp′ (R;Lq′) , if w(t) =
∫
τ<t
U(t)U(τ)�f(τ)dτ.

The problem is that the dispersive estimate (3.3) fails on every compact manifold, not
only globally in time (which is trivial by testing on f = 1) but also locally in time, due
to the existence of point spectrum. Starting from this fact, Bourgain introduced a direct
approach to Strichartz estimates to (1.1) on the torus R

d/Zd, based on the Fourier series
representation

eit∆v0(x) =
∑

k∈(2πZ)d

e−it|k|
2
eik·xv̂0(k). (3.4)
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In particular, using ingredients from analytic number theory, he was able to prove Lp

estimates for (3.4) in terms of the ‖v0‖Hs(Td) for suitable s ≥ 0 as well as bounds on the
distributional function of the restriction of the exponential sum (3.4) on |k| ≤ N , N � 1.
It is worth noticing that the L4 estimates of Bourgain for the linear Schrödinger group
on T

d coincide (with exception of the end point) with the L4 estimates obtained on R
d by

combining (3.2a) with p = 4 and Sobolev inequalities. Unfortunately, the generalization of
this approach to an arbitrary compact manifold M seems unrealistic, because of the lack
of information about the distribution of eigenvalues of the Laplace–Beltrami operator.

Our strategy is to use the following weakened version of dispersive estimate.

Proposition 1. Let ϕ ∈ C∞
0 (R). There exists α > 0 such that, for any h ∈]0, 1], for any

t ∈ [−αh, αh],

‖ϕ(h2∆)eit∆f‖L∞(M) ≤
C

|t|d/2 ‖f‖L1(M). (3.5)

The proof of Proposition 1 is based on the following elementary observation. By resca-
ling the time variable to t = hs, the function w = ϕ(h2∆)eihs∆f satisfies the semiclassical
problem

ih∂sw + h2∆w = 0, w(0) = ϕ(h2∆)f

and therefore can be described by a Fourier integral operator, using the WKB method.
The dispersive estimate (3.5) is then a consequence of the stationary phase formula. Let
us mention that the length of the time interval on which (3.5) holds can not be � h, due
to the Weyl asymptotics. Also notice that (3.5) was already known in the particular case
M = T

d (see [25, 15]).
Combining (3.5) with the TT � lemma, we obtain the same Strichartz estimates as

on R
d, but for the truncated evolution ϕ(h2∆)eihs∆, and only for very small time intervals.

Namely, for all d-admissible pairs (p, q), (p′, q′),

‖ϕ(h2∆)v‖Lp(J,Lq(M)) ≤ C‖v0‖L2(M), |J | � h, (3.6a)

if v(t) = eit∆v0 and

‖w‖Lp(J,Lq(M) ≤ C‖f‖Lp′ (J,Lq′ (M))
, |J | � h, supp(f) ⊂ J ×M, (3.6b)

if w(t) =
∫ t
−∞ e

i(t−τ)∆f(τ)dτ .
By slicing finite time intervals into intervals of length � h, we infer from (3.6a)

‖ϕ(h2∆)v‖Lp(I,Lq(M)) ≤ C(I)h−
1
p ‖ϕ(h2∆)v0‖L2(M), |I| <∞.

Then, using the Littlewood–Paley inequality, we obtain finally the

Theorem 5. If d ≥ 2, (p, q) is d-admissible, and I a finite interval,

‖v‖Lp(I,Lq(M)) ≤ C(I)‖v0‖
H

1
p (M)
, if v(t) = eit∆v0. (3.7)



18 N Burq, P Gérard and N Tzvetkov

Notice that the idea of slicing time intervals in order to derive Strichartz inequalities
with loss of derivatives was already used by Bahouri–Chemin [1] and Tataru [24] in the
context of the wave equation with non smooth coefficients. It should also be observed that
similar estimates to (3.7) were derived by Staffilani–Tataru [22] by a different method. In
our context it is interesting to observe that at least one of the estimates in Theorem 3
is optimal from the view point of the loss of derivatives 1

p . Indeed, if M = Sd and v0 is
a zonal spherical harmonic associated to eigenvalue λ = n(n + d − 1) it is classical (see
e.g. Sogge [21]) that for λ� 1,

‖v0‖Lq(M) ≈
√
λ
s(q)
, s(q) =

d− 1
2

− d
q

if q ≥ 2(d+ 1)
d− 1

.

If we set d ≥ 3, p = 2, q = 2� := 2d
d−2 in (3.7), observing that v(t) = e−itλv0, we notice

that

1
p

=
1
2

=
d− 1

2
− d

2�
= s(2�),

thus this slicing method leads to an optimal result in this case. However some intermediate
Strichartz inequalities on spheres (2 < p < +∞) can be improved (see [6]).

3.2 Applications to the nonlinear equation

We now come to the proofs of Theorem 1 and Theorem 2. First observe that estimate (3.7)
implies its non-homogeneous version

‖w‖Lp([0,T ],Lq(M)) ≤ C(T )‖f‖
L1([0,T ],H

1
p (M))

, if w(t) =
∫ t

0
ei(t−τ)∆f(τ)dτ. (3.8)

Using (3.7) and (3.8) if d = 2, one proves easily local wellposedness for (1.1) in H1(M) by
a contraction argument in

X1
T = C([−T, T ], H1(M)) ∩ Lp([−T, T ],W σ,q(M)),

where p ∈]α,+∞[, σ = 1 − 1
p >

2
q = 1 − 2

p , so that W σ,q(M) ⊂ L∞(M). The global
existence is then derived classically from conservation laws, while propagation of regularity
is a consequence of the key information u ∈ Lploc(R, L

∞(M)) for all p < +∞.
A similar approach leads to local wellposedness in Hs(M) for s > 1 and d = 3, but we

have to be more careful with the growth of nonlinearities. Since the case s > 3
2 is trivial,

we shall assume s ∈]1, 32 ]. Our starting point is the following general estimate which is
valid in any dimension (see Appendix B ).

Lemma 2. Let G ∈ S2(C), G(0) = 0, s ∈ [1, 2] and u ∈ L∞ ∩Hs, then G(u) ∈ Hs and

‖G(u)‖Hs ≤ C(1 + ‖u‖L∞)‖u‖Hs .

As a consequence of this lemma, we get, if F ∈ S3(C),

‖F (u) − F (v)‖Hs ≤ C(M2
∞‖u− v‖Hs +M∞Ns‖u− v‖L∞)
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if M∞ = 1 + ‖u‖L∞ + ‖v‖L∞ , Ns = 1 + ‖u‖Hs + ‖v‖Hs . Let (p, q) be a 3-admissible pair
with p > 2 so close to 2 such that

σ = s− 1
p
>

3
q

=
3
2
− 2
p
.

Then the above inequality combined with (3.8) and (3.7) allows to solve (1.1) by a con-
traction argument in

XsT = C([−T, T ], Hs(M)) ∩ Lp([−T, T ],W σ,q(M)).

Unfortunately, this argument breaks down if s = 1, which is our key regularity for global
existence in view of conservation laws (2.1). Therefore we appeal to another kind of
argument if s = 1. Notice that global existence of weak solutions in the class H1 is an
easy consequence of (2.1) and of a compactness argument. We shall show that these weak
solutions are in fact strong and regular if their Cauchy data are regular. Unfortunately
because of the critical character of regularity s = 1, estimates (3.7) and (3.8) are not
sufficient and we have to come back to truncated evolutions. The following lemma is
crucial.

Lemma 3. Let u ∈ Cw(R, H1(M)) be a weak solution of (1.1) with α ≤ 2 and d = 3, and
ϕ ∈ C∞

0 (R \ {0}), 0 < h < 1, T > 0. Then

‖ϕ(h2∆)u‖L2([0,T ],L6(M)) ≤ Ch
1
2 ‖ϕ(h2∆)u‖L2([0,T ],H1(M)) +N1h

1
2
+δ (3.9)

for some δ > 0, where N1 only depends on a bound of ‖u‖L∞([0,T ],H1(M)).

The idea for proving Lemma 3 is once again to slice interval [0, T ] into small pieces of
length � h and to apply (3.6a) and (3.6b) with p = p′ = 2 on each piece. If we apply
this strategy to the solution u itself, we obtain contributions of the value of ϕ(h2∆)u
at the bottom of each piece, which is not easy to compare with ‖ϕ(h2∆)u‖L2([0,T ],H1).
Therefore the trick is to apply the nonhomogeneous estimate (3.6b) with p = p′ = 2 to
χh(t)ϕ(h2∆)u, where χh is a cutoff function which localizes in the piece. Summing up
these contributions leads to (3.9).

By combining lemma 3 with Littlewood–Paley theory, one infers, for every weak solution
of (1.1) with α ≤ 2 and every q < +∞,

‖u‖L2([0,T ],Lq(M)) ≤ N1(
√
qT + 1). (3.10)

Inequality (3.10) allows a strategy which goes back to Yudovitch in the framework of fluid
mechanics. Indeed, if u, ũ are two weak solutions of (1.1) with u(0) = ũ(0), estimate (3.10)
allows to control the evolution of g(t) = ‖u(t) − ũ(t)‖2

L2(M), specifically,

g′(t) ≤ C(‖u(t)‖2
Lq(M) + ‖ũ(t)‖2

Lq(M))g(t)
1− 3

q

thus

g(t) ≤
(
N1

(
t+

1
q

)) q
3
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which goes to zero as q tends to infinity if t > 0 is small enough. This yields the uniqueness
for the Cauchy problem. Similarly, regularity in Hs(M), s > 1, is obtained by deriving
the following other consequence of Lemma 3,

‖u‖L2([0,T ],L∞(M)) ≤ N1([T log(2 + ‖u‖L2([0,T ],Hs(M)))]
1
2 + 1) (3.11)

which, plugged into a Gronwall process, leads to the result. �

4 Outline of the proof of Theorem 3

In order to justify the choice d = 6, we work a priori on

M = Sd = {x ∈ R
d+1, x21 + · · · + x2d+1 = 1}, d ≥ 2.

For n ≥ 1, the polynomial (x1 + ix2)n is harmonic and homogeneous of degree n, hence its
restriction ψn to Sd is an eigenfunction of −∆ associated to the eigenvalue λn = n(n+d−1).
Moreover ψn concentrates on the circle x21 + x22 = 1, so that, for any p > 0,∫

M
|ψn|p dx = βpn−

d−1
2

(
1 + O (

n−1
))
, βp > 0. (4.1)

Let s < d−1
4 and set

φn = n
d−1
4

−sψn. (4.2)

Then ‖φn‖Hs ≈ 1 and, for any α > 0, for some γ > 0,

‖φn‖2+α
Lα+2

‖φn‖2
L2

= γ nα( d−1
4

−s) (
1 + O (

n−1
)) −→ +∞ as n tends to + ∞. (4.3)

Let κ ∈ [12 , 1], consider the equation

i∂tun + ∆un = 〈un〉αun, un(0) = κφn, (4.4)

with α ∈]0, 1]. Assume un exists as a C∞ function on [0, T ] × M , where T > 0 is
independent of n, and denote by cn(t) the component of un(t) along φn. Let us look
for an ansatz for cn(t) an n → +∞. If we start with a rough analysis which ignores the
dynamics orthogonally to φn we are led to |cn(t)| ≈ 1 (by conservation of the L2 norm)
and cn(t) is approximated by the solution c#n (t) of the ordinary differential equation

i
d

dt
c#n − λnc#n = ωn(κ)c#n , c#n (0) = κ,

where ωn(κ) is the component of 〈κφn〉αφn along φn, namely

ωn(κ) =
1

‖φn‖2
L2

∫
M
〈κφn(x)〉α|φn(x)|2dx

= καγnα( d−1
4

−s)(1 + εn(κ)), (4.5)

where εn(κ) → 0 uniformly with respect to κ ∈ [12 , 1]. This leads to

c#n (t) = κe−it(λn+ωn(κ)).

It turns out that, for suitable values of α, s, t, this ansatz is correct.
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Proposition 2. Assume

d− 1
4
> s >

d− 1
4

− 1
2 − α. (4.6)

Then there exists Tn such that

Tnn
α( d−1

4
−s) −→ +∞

and, uniformly with respect to t ∈ [0, Tn], κ ∈ [12 , 1],

‖Πn(un(t)) − κe−it(λn+ωn(κ))φn‖Hs −→ 0 as n tends to + ∞,

where Πn is the orthogonal projector onto the line directed by φn.

Let us show how Proposition 2 implies Theorem 3. Let (un) be the above solution with
κ = 1, and let (ũn) be the solution corresponding to κ = κn, where κn ∈ [12 , 1] is to be
fixed such that κn → κ. Assume un, ũn ∈ C∞([0, T ] ×M) for a fixed T > 0. Then, for
t ∈ [0, Tn],

‖un(t) − ũn(t)‖Hs ≥ ‖Πn(un(t) − ũn(t))‖Hs

�
∣∣∣e−itωn(1) − κne−itωn(κn)

∣∣∣ − o(1)

�
∣∣∣∣sin t2[ωn(1) − ωn(κn)]

∣∣∣∣ − o(1).

In view of (4.5), we have

ωn(1) − ωn(κn) = γnα( d−1
4

−s)(1 − καn + εn),

where εn → 0 independently of the choice of (κn). As a consequence, we may choose (κn)
such that

1 − καn � 1, Tnn
α( d−1

4
−s)(1 − καn) −→ +∞ as n tends to + ∞,

so that

Tn[ωn(1) − ωn(κn)] −→ +∞ as n tends to + ∞,

and therefore

lim inf
n

sup
0≤t≤Tn

‖un(t) − ũn(t)‖Hs > 0.

Finally, notice that, in order that the interval ]d−1
4 − 1

2−α ,
d−1
4 [ contains 1 for every α ∈]0, 1]

it is necessary and sufficient that d = 6 or d = 7. This leads to Theorem 3 if d = 6.
Let us now come to the proof of Proposition 2. We set

un(t) = κe−it(λn+ωn(κ))[φn + zn(t)φn + qn(t)]
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with qn(t) ⊥ φn. Since φn is unbounded in L∞, the linearized equation around φn is not
easily tractable. Fortunately, we shall derive valuable information from the conservation
laws (2.1), which read as

|1 + zn(t)|2‖φn‖2
L2 + ‖qn(t)‖2

L2 = ‖φn‖2
L2 , (4.7)

|1 + zn(t)|2‖∇φn‖2
L2 + ‖∇qn(t)‖2

L2 +
2

(2 + α)κ2

∫
M
〈un(t, x)〉α+2dx

= ‖∇φn‖2
L2 +

2
(2 + α)κ2

∫
M
〈κφn(x)〉α+2dx. (4.8)

If we substract λn times (4.7) to (4.8), we finally obtain

‖∇qn(t)‖2
L2 − λn‖qn(t)‖2

L2 ≤ 2
(2 + α)κ2

∫
M
〈κφn(x)〉α+2dx

≤ C nα( d−1
4

−s)−2s. (4.9)

The miracle is that the left hand side of (4.9) controls the L2 norm of qn(t). Indeed, if we
denote by Rθ the rotation of angle θ in the plane (x1, x2), we observe that

φn(Rθx) = einθφn(x).

Because of the invariance of (4.4) by rotations and by u 
→ einθu, and uniqueness of the
Cauchy problem in C∞, we conclude

un(t, Rθx) = einθun(t, x).

But elementary considerations on homogeneous polynomials show that, if a spherical har-
monic h satisfies h(Rθx) = einθh(x), then either its degree is ≥ n + 1, or h is parallel
to φn. As a consequence, the decomposition of qn(t) into spherical harmonics only con-
tains spherical harmonics of degree ≥ n+ 1, and thus

‖∇qn(t)‖2
L2 − λn‖qn(t)‖2

L2 ≥ n ‖qn(t)‖2
L2

which, by (4.9), implies

‖qn(t)‖2
L2 ≤ C nα( d−1

4
−s)−2s−1 � ‖φn‖2

L2

since α(d−1
4 −s) < 1 as a consequence of hypothesis (4.6). It is now possible to project the

equation onto φn, in order to control the evolution of zn. In view of the above estimate
on qn and (4.7), we obtain finally

iżn = O
(
n

d−1
4

−s|zn|2 + n(α+1)( d−1
4

−s)−1 + n
3α
2

( d−1
4

−s)− 1
2

)
,

zn(0) = 0.

In view of assumption (4.6), this implies the existence of some Tn such that Tnnα( d−1
4

−s) →
+∞ and sup

0≤t≤Tn

|zn(t)| → 0 as n tends to infinity. �

Finally, let us mention that, in some cases, it is possible to have an ansatz for un(t)
itself (see [7]) and even to evaluate the remainder terms zn(t) and qn(t) sharply (see [2]).
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A A Lipschitz bound for the nonlinear Schrödinger flow
on H1(R6)

Let α ∈]0, 1[. In Kato [13], it is proved in particular that, given u0 ∈ H1(R6), there exists
a unique u ∈ C(R, H1(R6)) ∩ Lploc(R,W

1,q(R6)), ((p, q) 6-admissible) such that

i∂tu+ ∆u = 〈u〉αu, u(0) = u0, (A.1)

where 〈u〉 := (1 + |u|2)1/2. In this appendix, we prove the following additional property of
the flow map of (A.1).

Proposition 3. For any T > 0, for any bounded subset B ⊂ H1(R6), the map

Φ : u0 ∈ B 
−→ u ∈ C([−T, T ], H1(R6))

is Lipschitz continuous.

Proof. First of all we show the following Strichartz bounds,

sup
u∈Φ(B)

‖∇u‖Lp([−T,T ],Lq(R6)) < +∞ (A.2)

for every 6-admissible pair (p, q). Notice that the case p = ∞, q = 2, T = ∞, follows from
the conservation of energy. Next we observe that

|∇(〈u〉αu)| � |∇u| + |u|α|∇u|.
Applying the nonhomogeneous Strichartz inequality to the equation satisfied by ∇u, we
infer

‖∇u‖Lp([−T,T ],Lq) ≤ C
(

1 + T + ‖|u|α|∇u|‖
Lp′([−T,T ],Lq′ )

)
, (A.3)

where (p′, q′) is any other 6-admissible pair. We first choose q, q′ ∈]2, 3] such that

1
q′

=
α

q�
+

1
q
,

1
q�

=
1
q
− 1

6
,

which is possible since α
q� + 1

q ranges in [α6 + 1
3 ,
α
3 + 1

2 [, while 1
q′

ranges in ]12 ,
2
3 ] and 0 < α < 1.

Then using the Sobolev embedding W 1,q(R6) ⊂ Lq�
(R6) and suitable Hölder inequalities,

we observe that

‖|u|α|∇u|‖
Lp′ ([−T,T ],Lq′ ) ≤ C‖∇u‖

α
Lr([−T,T ],Lq)‖∇u‖Lp([−T,T ],Lq), (A.4)

where
1
p′

=
α

r
+

1
p
,

thus

α

r
− α
p

= 1 −
(

1
p′

+
α+ 1
p

)
= 1 − 3

2
(α+ 2) + 3

(
1
q′

+
α+ 1
q

)

= 1 − 3
2

(α+ 2) + 3
(

1 +
α

6

)
= 1 − α > 0.
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Therefore r < p, and (A.3), (A.4) together with Hölder inequality in time yield

‖∇u‖Lp([−T,T ],Lq) ≤ C
(

1 + T + T 1−α‖∇u‖1+α
Lp([−T,T ],Lq)

)
.

We therefore obtain (A.2) for this choice of (p, q) and T small enough. Coming back
to (A.3) with any other choice of (p, q) we obtain (A.2) for T small enough. Then the
generalization to any T follows from the energy conservation.

We now turn to the Lipschitz bound. Of course we may assume that B is convex,
so that we are led to show that the differential of our flow map is bounded. If u0 ∈ B,
Φ(u0) = u, we have Φ′u0

(v0) = v, with

i∂tv + ∆v = f(u, v), v(0) = v0,

f(u, v) =
(
〈u〉α +

α

2
〈u〉α−2|u|2

)
v +
α

2
〈u〉α−2u2v̄.

Notice that

|∇f(u, v)| � |v||∇u| + (1 + |u|)|∇v|. (A.5)

Therefore by Strichartz, Sobolev and Hölder inequalities

‖∇v‖L∞([0,T ],L2) � ‖∇v0‖L2 + ‖v‖L∞([0,T ],L3)‖∇u‖L2([0,T ],L3)

+ T‖∇v‖L∞([0,T ],L2) + ‖u‖L2([0,T ],L6)‖∇v‖L∞([0,T ],L2)

� ‖∇v0‖L2 +
(
T + ‖∇u‖L2([0,T ],L3)

) ‖∇v‖L∞([0,T ],L2).

If T + ‖∇u‖L2([0,T ],L3) is smaller than some fixed constant δ, we infer the desired estimate

‖∇v‖L∞([0,T ],L2) ≤ C‖∇v0‖L2 . (A.6)

In order to generalize estimate (A.6) to an arbitrary finite time interval I, we observe that
it is possible to slice I into a finite number N of intervals I1, . . . , IN such that

|Ik| + ‖∇u‖L2(Ik,L3) ≤ δ

and say

N � |I| + ‖∇u‖L2(I,L3).

Iterating the estimate (A.6), we obtain

‖∇v‖L∞([0,T ],L2) ≤ CN‖∇v0‖L2 ,

which completes the proof. �

Remark 1. Notice that, though the nonlinearity is H1 subcritical, the estimate (A.5) is
of critical type. For this reason, we had to use the above critical slicing argument (see also
Keraani [16], where the same argument was used for a critical equation). For the same
reason, our proof does not extend to dimension d ≥ 7, even if α < 4

d−2 . Therefore the
Lipschitz continuity of the flow for these high dimensions seems to be an open problem.
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B A tame estimate

In this last section, we give a simple proof of the following estimate, which yields imme-
diately Lemma 2.

Proposition 4. If G ∈ C2(C), G(0) = 0, and G′′ is bounded, then, for any s ∈]1, 2[, for
any u ∈ L∞ ∩Hs, G(u) ∈ Hs and

‖G(u)‖Hs ≤ C(1 + ‖u‖L∞)‖u‖Hs . (B.1)

Remark 2. Notice that the Bony–Meyer paradifferential decomposition (see e.g. [17])
does not provide the correct power of ‖u‖L∞ . However a discussion around the proof of
Proposition 4 and of more general estimates (with the sharp power of ‖u‖L∞) can be found
in the book of Runst and Sickel [20], Chapter 5. Our only goal here is to propose a short
proof of (B.1).

Proof of Proposition 4. It is enough to work in local coordinates, therefore we may
assume that u is defined on R

d. Notice that estimate (B.1) holds if G is a quadratic
polynomial, because of the bilinear estimate

‖uv‖Hs � ‖u‖L∞‖v‖Hs + ‖u‖Hs‖v‖L∞ , s ≥ 0

(see e.g. [10]). Next we use the equivalent norm for s ∈]1, 2[,

‖u‖Hs ≈ ‖u‖H1 + ‖∇u‖Ḣs−1 , ‖∇u‖Ḣs−1 =
(∫

R2d

|∇u(x) −∇u(y)|2
|x− y|d+2(s−1)

dxdy

) 1
2

.

Since ‖G(u)‖H1 ≤ C(1 + ‖u‖L∞)‖u‖H1 trivially, we just need to prove that

‖∇G(u)‖Ḣs−1 � (1 + ‖u‖L∞)‖u‖Hs−1 .

But

∇(G(u))(x) −∇(G(u))(y) = G′(u(x))(∇u(x) −∇u(y))
+ (G′(u(x)) −G′(u(y)))∇u(y). (B.2)

Since |G′(u)| ≤ C(1 + |u|), the contribution to ‖∇G(u)‖Ḣs−1 of the first term in the right
hand side of (B.2) is of course bounded by C(1 + ‖u‖L∞)‖∇u‖Hs−1 . As for the second
term, it is bounded by

C|u(x) − u(y)||∇u(y)|,

since G′′ is bounded. Hence its contribution to ‖∇G(u)‖Ḣs−1 is precisely the one we would
obtain in the particular case G(u) = u2. Since estimate (B.1) is true in this case, it is true
for every G. �
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