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Abstract

We study the Toda equations in the continuous level, discrete level and ultradiscrete
level in terms of elliptic and hyperelliptic σ and ψ functions of genera one and two.
The ultradiscrete Toda equation appears as a discrete-valuation of recursion relations
of ψ functions.

1 Introduction

Recently Kimijima and Tokihiro found solutions of the discrete and ultradiscrete Toda
equations in terms of elliptic and hyperelliptic θ functions [17]. In this article we present
another type of solution of another type of the discretization of the Toda equation [7] and
its ultradiscretization [15] associated with algebraic curves of genera one and two.

Elliptic and hyperelliptic σ functions are related to nonlinear differential equations from
the beginning [2, 10, 19]. We study the Toda equations at the continuous level, discrete
level and ultradiscrete level in terms of σ functions and ψ functions of genera one and two.
We show that these equations have solutions expressed in terms of σ and ψ functions.
Here the ψ functions are defined by rational functions of the σ functions.

In [13] it was shown that the ψ functions can be related to discrete nonlinear equations,
such as the discrete Painlevé equations. This article can be considered as one of a series
in which relations between ψ functions and discrete nonlinear difference equations are
unfolded.

Further, as was mentioned in [14], the ultradiscrete sometimes can be regarded as
a valuation of a related field. This article shows that, in the case of the Toda equation, it
can be also realized as a discrete valuation of a function field over a Jacobi variety.

In Section 2 we concentrate on the genus one case and give concrete solutions. We
investigate the genus two version in Section 3. It is shown that all solutions of the Toda
equations in this study are connected with the addition formulae of the σ functions.
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2 Genus one case

In this Section we deal with an elliptic curve given by

C1 :
1
4
ȳ2 = y2 = x3 + λ2x

2 + λ1x+ λ0

= (x− b1)(x− b2)(x− b3), (2.1)

where the b’s are complex numbers.

2.1 Continuous Toda equation

Firstly we give a ℘ function solution of the continuous Toda equation [16]. We treat the
Weierstrass elliptic σ function associated with the curve C1, which is connected with the
Weierstrass ℘ function by

℘(u) = − d2

du2
log σ(u). (2.2)

A local parameter u in C1 is given by

u =
∫ (x,y)

∞
dx

2y
, (2.3)

and ℘(u) is equal to x(u). Here ∞ is the infinity point of C1.
The addition formula of the σ functions is given by

−[℘(u)− ℘(v)] =
σ(v + u)σ(u− v)

[σ(v)σ(u)]2
. (2.4)

By differentiating the logarithm of (2.4) by u twice, we have

− d2

du2
log[℘(u)− ℘(v)] = ℘(u+ v)− 2℘(u) + ℘(u− v). (2.5)

For a constant number u0, by letting u = nu0 + t, v = u0 and b := ℘(u0), we have

− d2

dt2
log[℘(nu0 + t)− b] = [℘((n+ 1)u0 + t)− b]

− 2[℘(nu0 + t)− b] + [℘((n− 1)u0 + t)− b]. (2.6)

Further by letting qn := log[℘((n+ 1)u0 + t)− b], we have

− d2

dt2
(qn) = eqn+1 − 2eqn + eqn−1 . (2.7)

This is identified with the continuous Toda lattice equation. In fact, by letting qn =
Qn − Qn−1, Qn obeys the nonlinear differential equation of a nonlinear lattice [16]. It is
clear that this elliptic solution comes from the addition formula (2.4). In § 3.1 we show
that a genus two solution of the Toda equation can be expressed by a similar form.
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2.2 Discrete Toda equation and ψ functions

Though there are several models of the discrete Toda equations, we concentrate on a model
given in [7]. In this subsection we give elliptic solutions of the discrete Toda equation.

The elliptic ψ function is given by

ψn(u) =
σ(nu)
σ(u)n2 (2.8)

and, due to the addition formula (2.4), it satisfies the recursion relation [18],

ψn+mψm−n =
∣∣∣∣ ψm−1ψn ψmψn+1

ψmψn−1 ψm+1ψn

∣∣∣∣ . (2.9)

Further ψn can also be computed using the Brioches–Kiepert relation [3, 9],

ψn(u) =
(−1)n−1

[1!2! · · · (n− 1)!]2

∣∣∣∣∣∣∣∣∣

℘′(u) ℘′′(u) · · · ℘(n−1)(u)
℘′′(u) ℘′′′(u) · · · ℘(n)(u)

...
...

. . .
...

℘(n−1)(u) ℘(n)(u) · · · ℘(2n−3)(u)

∣∣∣∣∣∣∣∣∣
. (2.10)

Here derivatives of u are denoted by ′ and (n). By noting d
du = 2y d

dx , the ψ function
is a polynomial of x and y over the complex number C. In fact the ψ function can be
explicitly obtained as,

ψ1(u) = 1,
ψ2(u) = −2y,

ψ3(u) = 3x4 + 4λ2x
3 + 6λ1x

2 + 12λ0x− λ1
2 + 4λ2λ0,

ψ4(u) = −4y
[
x6 + 2λ2x

5 + 5λ1x
4 + 20λ0x

3 +
(
20λ2λ0 − 5λ1

2
)
x2

+
(
8λ2

2λ0 − 2λ2λ1
2 − 4λ1λ0

)
x+ 4λ2λ1λ0 − λ1

3 − 8λ0
2
]
. (2.11)

For ψn, n > 4, we have the recursion relations

ψ2n+1 = ψn+2ψ
3
n − ψ3

n+1ψn−1,

ψ2n = ψn(ψn+2ψ
2
n−1 − ψ2

n+1ψn−2)/ψ2. (2.12)

Thus we know that

ψn(u) ∈ C[x, λ0, λ1, λ2] for odd n,

ψn(u) ∈ C[x, λ0, λ1, λ2]y for even n. (2.13)

When n is odd, ψn is a polynomial of x whose order is (n2 − 1)/2 and, for an even n, the
order of x for ψn/y is (n2 − 4)/2. For specific curves, we give explicit forms of ψn in the
Appendix.

We comment on the properties of ψ functions. We note that σ(u) is characterized by
the property that it has no singularity with respect to u ∈ C and its zeros are identified
with a lattice points generated by the periodicity 2ω of ℘(u), ℘(u + 2ω) = ℘(u). In
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other words the zero of σ is congruent to the origin of the local parameter u modulo the
lattice. Accordingly, as ψ function is a function over the curve C, we conclude that a point
satisfying

ψn(u) = 0 (2.14)

is a point for which nu is equal to the lattice point again. In other words we have n-cyclic
points as zeros of ψn. Conversely it can be shown that the polynomial of x and y whose
zeros multiplied by n are lattice points must be ψn modulo constant factors.

Hence, if n is a factor of m, i.e., n|m, it is clear that ψm is divided by ψn,

ψn|ψm. (2.15)

For mutually coprime numbers p, q and an integer n0, we introduce

φ j
i := ψn0+pi+qj . (2.16)

By letting n ≡ n0 + pi+ qj we have

ψn+pψn−p = ψ2
nψp+1ψp−1 − ψ2

pψn+1ψn−1,

ψn+qψn−q = ψ2
nψq+1ψq−1 − ψ2

qψn+1ψn−1. (2.17)

The components ψn+1ψn−1 in both formulae give a relation, viz(
ψn+pψn−p − ψ2

nψp+1ψp−1

)
ψ2

q =
(
ψn+qψn−q − ψ2

nψq+1ψq−1

)
ψ2

p. (2.18)

Noting n ≡ n0 + pi + qj (2.18) can be regarded as an evolution equation for i and j
when we consider ψq, ψp and ψq±1 as initial values. Let us assume that ψq, ψp and
ψp±q are not equal to zero by choosing the parameter u. By letting δ := ψq/ψp and
c(1− δ) := −ψp+qψp−q/(ψq)2 we have

φ j+1
i φ j−1

i − c
(
1− δ2

)
φ j

i φ j
i − δ2φ j

i+1φ
j

i−1 = 0. (2.19)

For later convenience we do not fix c and define

V j
i :=

(
φ j

i+1φ
j

i−1

φ j
i φ j

i

)
− c. (2.20)

Then we obtain

log




(
c+ V j

i

)2

(
c+ V j+1

i

) (
c+ V j−1

i

)

 = log




(
c+ δ2V j

i

)2

(
c+ δ2V j

i+1

) (
c+ δ2V j

i−1

)

 . (2.21)

When c = 1, this equation is one of discrete versions of the Toda equation, which appeared
in [7].

The condition c = 1 means that

ψp+qψp−q + ψpψp − ψqψq = 0, (2.22)
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which is an equation of (p2 + q2 − 2)-order with respect to x. In other words, for a point u
satisfying (2.22), we have a solution of the discrete Toda equation in [7] in terms of ψ
functions.

Further we introduce U j
i :=

(
V j

i + c
)
which satisfies


(
U j

i

)2

(
U j+1

i

) (
U j−1

i

)

 =




(
c
(
1− δ2

)
+ δ2U j

i

)2

(
c (1− δ2) + δ2U j

i+1

) (
c (1− δ2) + δ2U j

i−1

)

 . (2.23)

We investigate this equation with general c and go on to call it the discrete Toda equation
in this article. We note that this solution is due to the recursion relation (2.9) which comes
from the addition formula (2.4).

2.3 Periodic solutions of discrete Toda equation

For general c in (2.20) we consider a periodic solution of (2.23). It is obvious that, when
ψn = 0, ψnr = 0. Thus there may exist a point, u1, such that

ψi(u1) = ψn+i(u1). (2.24)

In fact we have solutions of (2.23) for a curve y2 = x2(x+ 1/4) and its point x = −1 (see
the Appendix). The ψ function has values as in Table 1.

Table 1. ψn at x = −1

n 0 1 2 3 4 5 6 7 8 9 10 11 12

ψn 0 1 −√−3 2 −√−3 1 0 −1
√−3 −2

√−3 −1 0

For (p, q) = (3, 2) and n0 = 0, i.e., δ2 = −3/4 and c(1− δ2) = 1/4, we have a periodic
solution of (2.23).

Table 2. U j
i (p = 3, q = 2 case)

j\i 0 1 2 3

0 ∞ 0 ∞ 0
1 1/3 3 1/3 3
2 1/3 3 1/3 3
3 ∞ 0 ∞ 0

For (p, q) = (2, 3) and n0 = 0, i.e., δ2 = −4/3 and c(1 − δ2) = 1/3, another periodic
solution of (2.23) is given in Table 3.

Table 3. U j
i (p = 2, q = 3 case)

j\i 0 1 2 3

0 ∞ 0 0 ∞
1 1/4 −2 −2 1/4
2 ∞ 0 0 ∞
3 1/4 −2 −2 1/4
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2.4 Ultradiscrete Toda equations

In this subsection we investigate the ultradiscrete version of the Toda equation using ψ
functions.

For the elliptic curve C1 a local parameter t should be characterized by

for a generic point x0 in C1, : t = x− x0,
for a finite branch point bi in C1, : t =

√
x− bi,

for the infinity point ∞ in C1, : t = 1/
√
x.

(2.25)

Let a localization of the commutative ring R = C[x, y]/(y2 − f(x)) at u0 be denoted
by Ru0 . Let Ku0 be a field of Laurent transformations at u0 of rational functions. The
valuation of the field Ku0 is given that for f ∈ Ku0 , let val(f) = ∞ if f = 0, and if f is
given by

f(u) = a(u− u0)m +O (
(u− u0)m+1

)
(2.26)

for a �= 0, let val(f) = m [6]. Denoting set of integers by Z, the discrete valuation is
known as a map

val : Ku0 → Z +∞, (2.27)

which satisfies

val(fg) = val(f) + val(g),
val(f + g) ≥ min(val(f), val(g)). (2.28)

For example the inequality in (2.28) appears due to a case, k = m and a = −b for
f = a(u − u0)m + · · · and g = b(u − u0)k + · · · with (a, b �= 0). Inversely, as long as we
avoid such a case, we can regard the second relation in (2.28) as an equality.

Ru0 can be expressed as

Ru0 = { f ∈ Ku0 | val(f) ≥ 0 }. (2.29)

R×
u0

:= { f ∈ Ku0 | val(f) = 0 } is a multiplication group in Ru0 . An element in R×
u0

is
called unit. The subset m := { f ∈ Ku0 | val(f) > 0 } of Ru0 is a unique maximal ideal in
Ru0 and thus we have a filter structure,

mk ⊃ mk+1. (2.30)

Here the multiplication among ideals is given as a set of sum of multiplications of elements
in the ideals. Due to the filter structure there naturally appears a nonarchimedean distance
given by

|f − g|val := exp(−val(f − g)). (2.31)

Thus an element f in m is a smaller element than unity, i.e., |f |val < 1. When δ behaves
like a small parameter [7], we regard it as an element of m, i.e.,

δ ≡ ψq

ψp
(u) ∈ m. (2.32)
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We now consider the point satisfying

c
(
1− δ2

)
=

ψp+q(u)ψp−q(u)
ψp(u)2

∈ R×
u . (2.33)

Define

f j
i := −val(U j

i ), d := −val
(
δ2

)
. (2.34)

When we expand them as U j
i δ

2 = a(u− u0)m + · · · and c
(
1− δ2

)
= b(u− u0)k + · · · with

a, b �= 0, we assume that for any i and j, k is not equal to m or a is not equal to −b if
k = m. Then (2.23) becomes

f j+1
i − 2f j

i + f j−1
i

= max
(
0, f j

i+1 + d
)
− 2max

(
0, f j

i + d
)
+max

(
0, f j

i−1 + d
)
. (2.35)

This is identified with the ultradiscrete Toda equation in [15].
Let us consider solutions of the ultradiscrete Toda equation (2.35). By letting gn :=

val(ψn),

f j
i = g j

i+1 − 2g j
i + g j

i−1. (2.36)

For the curve y2 = x3 + 1/4, and u0 at x(u0) = (−1/4)1/3, we have gi as in Table 4:

Table 4. gn at y = 0

n 0 1 2 3 4 5 6 7 8 9 10 11 12 · · ·
gn ∞ 0 1 0 1 0 1 0 1 0 1 0 1 · · ·

Then we have a solution of (2.35) for p = 3, q = 2 and n0 = 0: d = −2, val
(
c
(
1− δ2

))
=

0,

Table 5. f j
i (p = 3, q = 2 case)

j\i 1 2 3 4 5 · · ·
0 ∞ −2 2 −2 2 · · ·
1 2 −2 2 −2 2 · · ·
2 2 −2 2 −2 2 · · ·
3 2 −2 2 −2 2 · · ·
...

...
...

...
...

...
. . .

Next we deal with a curve y2 = x3 − x and a point u0(x = 0). The values of gi are
given in Table 6.

Table 6. gn at x = 0

n 0 1 2 3 4 5 6 7 8 9 10 11 12 · · ·
gn ∞ 0 1 4 5 8 13 16 21 28 33 40 49 · · ·
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When (p, q, n0) = (5, 2, 0), we have val(c(1− δ2)) = 0, d = 14 and Table 7.

Table 7. f j
i (p = 5, q = 2 case)

j\i 1 2 3 4 · · ·
0 ∞ 18 14 18 · · ·
1 18 14 18 18 · · ·
2 14 18 18 14 · · ·
...

...
...

...
...

. . .

In this case, |δ|val > 1.

3 Genus two case

In this section we investigate genus two solutions of the Toda equations using the hyper-
elliptic σ functions and ψ functions.

The hyperelliptic σ function was defined by Klein after the prototype had been discov-
ered by Weierstrass [1, 10, 19]. Let us fix a hyperelliptic curve with genus two,

C2 : y2 = x5 + λ4x
4 + λ3x

3 + λ2x
2 + λ1x+ λ0, (3.1)

where λi, i = 0, 1, . . . , 4 are complex numbers. For a point in the symmetric product space
of the curve C2, ((x1, y1), (x2, y2)) ∈ Sym2C2, its corresponding point u ≡ (u1, u2) in the
Jacobi variety J2 is given by

u1 :=
∫ (x1,y1)

∞

dx

y
+

∫ (x2,y2)

∞

dx

y
, u2 :=

∫ (x1,y1)

∞

xdx

y
+

∫ (x2,y2)

∞

xdx

y
. (3.2)

Here ∞ means the infinity point of the curve C2. At the point, ℘ functions of genus two
are defined as

℘11 =
f(x1, x2)− 2y1y2

(x1 − x2)2
, ℘12 = x1x2, ℘22 = x1 + x2, (3.3)

where f(x, z) :=
2∑

j=0
xjzj(λ2j+1(x+ z) + 2λ2j). It is known that there is a global function

over C2 such that

℘ij = − ∂2

∂ui∂uj
log σ, (3.4)

which is the σ function of genus two.

3.1 Continuous Toda equation

Though there were found solutions of the continuous Toda equation in terms of the θ func-
tion related to a hyperelliptic curve of genus g in [5], in this article we give another type
of expression of solutions in terms of σ functions related to a curve with genus two.
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The additive formula of σ function of genus two is given by [2],

σ(v + u)σ(v − u)
[σ(v)σ(u)]2

= −(℘11(u)− ℘11(v) + ℘12(u)℘22(v)− ℘12(v)℘22(u)). (3.5)

By letting

Q(u, v) := −(℘11(u)− ℘11(v) + ℘12(u)℘22(v)− ℘12(v)℘22(u)), (3.6)

we have

− ∂2

∂ui∂uj
log(Q(u, v)) = ℘ij(u+ v)− 2℘ij(u) + ℘ij(u− v). (3.7)

Let us fix u = nu0 + t, v = u0, constant numbers bij := ℘ij(u0) and

∆ :=
∂2

∂t1∂t1
+ b22

∂2

∂t1∂t2
+ b12

∂2

∂t2∂t2
. (3.8)

Then we have a relation,

Q((n+ 1)u0 + t, u0)− 2Q(nu0 + t, u0) +Q((n− 1)u0 + t, u0)
= −∆ logQ(nu0 + t, u0). (3.9)

By considering the relations (3.3) we let u0 correspond to a point ((x̄1, ȳ1), (x̄2, ȳ2)) ∈
Sym2C2 and then have

b22 = x̄1 + x̄2, b12 = x̄1x̄2. (3.10)

If the points are mutually conjugate or identical, i.e., x̄1 ≡ x̄2,

∆ =
(

∂

∂t1
+ x̄1

∂

∂t2

)2

. (3.11)

Hence for t := t1 + t2/x̄1,

qn := logQ(nc+ t, c), (3.12)

obeys the continuous Toda equation,

− d2

dt2
qn = eqn+1 − 2eqn + eqn−1 . (3.13)

As we showed in the genus one case, this genus two solution also comes from the addition
formula (3.5).
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3.2 Discrete Toda equation

We give relations between the discrete Toda equation and ψ functions of genus two as
follows. Generalizations of the ψ function in (2.8) to genus two curves are given by two
different definitions; one is defined over the Jacobi variety J2 and another is defined over
the curve C2. The former is studied by Kanayama [8] and the latter is investigated by
Grant, Cantor, Ônishi and this author (see the references in [13]). The definition by
Kanayama is [8]

ψn(u) =
σ(nu)
σ(u)n2 . (3.14)

Further he showed that ψn obeys the same recursion relation as (2.9), viz

ψn+mψm−n =
∣∣∣∣ ψm−1ψn ψmψn+1

ψmψn−1 ψm+1ψn

∣∣∣∣ , (3.15)

basically using the the addition formula (3.5). Hence ψk obeys a relation which has the
same form as (2.12). Kanayama gave the explicit forms of ψ1, ψ2, ψ3 and ψ4 in terms of
℘ functions (3.3) in [8]. We can compute an explicit form of any ψn as a rational function
of the affine coordinates (x1, y2) and (x2, y2) of the curves Sym2C2 even though it is too
large to give its explicit form here.

Due to its form, it is obvious that (3.15) is also related to the discrete Toda equation.
For mutually prime integers p, q and an integer n0, we define quantities,

φ j
i := ψn0+pi+qj , (3.16)

δ := ψq/ψp and c
(
1− δ2

)
= ψp+qψp−q/ψ

2
p. Then (3.15) becomes

δ−2φ j+1
i φ j−1

i + c
(
1− δ−2

)
φ j

i φ j
i − φ j

i+1φ
j

i−1 = 0. (3.17)

Hence we have a solution of the discrete Toda equation (2.21) in [7] as shown in Section 2.2.
As a simple Abel variety has a division field as its endomorphism in the category of the

Abel variety as it is known as Poincaré’s complete reducibility theorem [11]. Hence, even
though the Jacobi variety J2 is two-dimensional, an isometry ϕ : J2 → J2 is characterized
by an integer. The zeros of ψn belonging to Z/nZ determine the isometry. Thus, as long
as we deal with isometries of Jacobi variety, an extension of the ψn functions to functions
with double-index must fail. It implies that (3.16) is a natural in the sense of a realization
of the discrete equation in category of the Abel variety.

3.3 Ultradiscrete Toda equation

We consider the Jacobi variety J2 as a commutative ring and its localization ring Ru0

and/or a field Ku0 related to Ru0 . Similar to the case of genus one, we deal with a point
of curve satisfying

c
(
1− δ2

)
=

ψp+q(u)ψp−q(u)
ψp(u)2

∈ R×
u . (3.18)
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By letting

f j
i := −val

(
φ j+1

i φ j−1
i

φ j
i φ j

i

)
, d := −val

(
δ2

)
, (3.19)

and being supposed that for all of i and j, the valuations of the additions of f ’s expressed
by the minimal functions like the equality case in the second relation of (2.28), we find
a solution of the ultradiscrete Toda equation in [15],

f j+1
i − 2f j

i + f j−1
i

= max
(
0, f j

i+1 + d
)
− 2max

(
0, f j

i + d
)
+max

(
0, f j

i−1 + d
)
. (3.20)

Even though the case of genus one gives us trivial solutions, genus two case is expected
to provide us nontrivial solutions because it has larger degree of freedom than the elliptic
curve case.

4 Discussion

In this article we have considered the relations between the Toda equations in the con-
tinuous, discrete and ultradiscrete levels and σ functions of genera one and two. We
showed that these solutions, in principle, come from the addition formulae of the algebraic
functions of algebraic curves of genera one and two.

As we started from the curves, all of the solutions are expressed by points at curves (2.1)
and (3.1). As we gave some explicit solutions related to elliptic curves, we can basically
find explicit forms of the other solutions in terms of points of the curves even of genus two,
though they might be slightly complicated. As a next step, we should give more explicit
computations of the ψ functions on the genus two case by finding a nicer strategy to
handle the huge polynomials. However, it is remarkable that in our solutions, there do not
appear excess parameters except the coefficients λi, i = 0, 1, . . . , 4 in (2.1) and (3.1). In
other words we have no ambiguity for the parameters even in genus two case and it means
that we are free from the so-called Schottky problem. This contrasts with the solutions in
terms of the θ functions over the Jacobi variety [5, 17]. Of course as it might be difficult
to deal with the hyperelliptic integrals, thus we should select the methods according to
the circumstances.

Further it is interesting that the ultradiscrete equations can be defined on the Jacobi
varieties associated with nondegenerate algebraic curves over a field with character zero
using the concept of discrete valuation. (In [14] we show that the ultradiscrete equations
can be defined over fields with nonvanishing character.) It means that, if we find a recursion
relation over an algebraic variety, we might have its ultradiscrete version by taking its
discrete valuation.

Finally we comment on the higher genus case. Unfortunately since the addition formula
is not simple [1, 4], we could not deal with σ functions associated with a curve with a higher
genus as mentioned above. We hope that we can obtain such solutions in future. We note
that the paper [4] may have some effects on the study.
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Appendix

Let us deal with y2 = x3 + 1/4, y2 = x3 − x and y2 = x2(x + 1/4) and show explicit
function forms of their ψ functions.

A.1. y2 = x3 + 1/4

ψ1 = 1, (A.1)
ψ2 = −2y, (A.2)

ψ3 = 3x(1 + x)
(
1− x+ x2

)
= 3x

(
1 + x3

)
, (A.3)

ψ4 = ψ2

(−1 + 10x3 + 2x6
)
, (A.4)

ψ5 = −1− 25x3 − 15x6 + 95x9 + 5x12, (A.5)

ψ6 = ψ2ψ3

(−2 + x3
) (

1− 3x+ 3x2 + x3
)

× (
1 + 3x+ 6x2 + 11x3 + 12x4 − 3x5 + x6

)
, (A.6)

ψ7 =
(
1− x3 + 7x6

)
× (

1− 48x3 − 741x6 − 1924x9 − 363x12 + 141x15 + x18
)
, (A.7)

ψ8 = ψ4

(−1− 104x3 − 952x6 − 4124x9 − 3430x12

− 1544x15 − 7336x18 + 616x21 + 2x24
)
, (A.8)

ψ9 = 3ψ3

(
1− 3x2 + x3

) (
1 + 3x2 + 2x3 + 9x4 + 3x5 + x6

)
× (

1 + 9x2 + 3x3 + 18x5 − 24x6 + 9x8 + x9
)

× (
1− 9x2 + 6x3 + 81x4 − 45x5 − 39x6 + 324x7

+ 153x8 − 142x9 + 486x10 + 396x11 + 582x12

+ 324x13 + 198x14 − 48x15 + 81x16 − 9x17 + x18
)
, (A.9)

ψ10 =
1
2
ψ2ψ5

(
1− 177x3 − 474x6 − 7070x9 − 104805x12

− 542232x15 − 862941x18 − 1404072x21 − 368055x24

+ 29380x27 − 55284x30 + 1173x33 + x36
)
, (A.10)

ψ11 = −1− 242x3 + 605x6 + 102729x9 + 2270301x12 + 17393277x15

+ 59389374x18 + 189881835x21 + 1106263389x24 + 4869514969x27

+ 10595519759x30 + 8054721004x33 − 22319781x36 − 4760052033x39

− 8579472693x42 − 1596123771x45 + 66133914x48 − 62045313x51

− 1153603x54 + 23221x57 + 11x60, (A.11)

ψ12 = ψ3ψ4

(−2 + x3
) (

1− 3x+ 3x2 + x3
)

× (
1 + 3x+ 6x2 + 11x3 + 12x4 − 3x5 + x6

)
× (−2− 32x3 − 84x6 − 134x9 + x12

)
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× (
1 + 6x+ 12x2 + 4x3 + 45x4 + 36x5 + 60x6

+ 72x7 − 45x8 + 58x9 − 48x10 + 12x11 + x12
)

×(
1− 6x+ 24x2 − 64x3 + 75x4 + 456x5 − 620x6 + 252x7 + 2070x8

− 1618x9 − 3072x10 + 3216x11 + 4003x12 − 9696x13 + 1416x14

+ 11396x15 + 1548x16 − 5058x17 + 460x18 + 1632x19 + 1653x20

+ 692x21 + 192x22 − 12x23 + x24
)
, (A.12)

ψ13 =
(
1 + 16x3 + 96x6 + 13x9 + 13x12

)
× (

1− 354x3 − 17247x6 + 92420x9 − 6264417x12 − 91630974x15

− 414038735x18 − 631690011x21 + 3596512338x24 + 43118516972x27

+ 215967505719x30 + 533661527514x33 + 582732421153x36

+ 284118813696x39 + 450924775284x42 + 1313707269872x45

+ 1846766455056x48 + 403474854555x51 − 263110973327x54

− 22534762701x57 + 685417938x60 − 111537892x63 − 798438x66

+ 5748x69 + x72
)
, (A.13)

ψ14 = ψ2ψ7

(
1− 48x3 − 741x6 − 1924x9 − 363x12 + 141x15 + x18

)
× (1 + 504x3 + 2421x6 + 5676x9 + 166356x12 + 3098475x15 + 22597638x18

+ 56826270x21 − 73281168x24 − 582904249x27 − 862862121x30

+ 133470252x33 + 317907519x36 − 632536713x39 − 77646699x42

− 41502855x45 − 2997252x48 + 8847x51 + x54
)
, (A.14)

ψ15 = ψ3ψ5

(−5 + 65x3 + 685x6 + 3410x9 + 11425x12

+ 5735x15 + 3145x18 − 520x21 + x24
)

× (1− 6x+ 6x2 + 44x3 + 21x4 − 21x5 + 676x6 + 9x7 − 9x8 + 569x9

+ 2841x10 − 2841x11 − 1694x12 + 13119x13 − 13119x14 + 10019x15

− 4284x16 + 4284x17 + 4591x18 − 1446x19 + 1446x20

− 496x21 − 24x22 + 24x23 + x24
)

× (
1 + 6x+ 30x2 + 124x3 + 279x4 − 495x5 + 3036x6 + 2871x7 − 2790x8

+ 60959x9 − 13686x10 − 19695x11 + 469946x12 − 200034x13 + 128295x14

+ 602229x15 − 2440926x16 + 3056445x17 − 422129x18 − 9809094x19

+ 18607485x20 + 20165779x21 + 8262864x22 + 74286585x23 + 94839246x24

+ 74286585x23 + 94839246x24 + 71549460x25 + 150594579x26

+ 118349119x27 − 3156510x28 + 30275751x29 − 36357239x30 − 138954870x31

− 1389186x32 + 73952184x33 + 20894985x34 − 28859229x35 + 22894661x36

− 28859229x35 + 22894661x36 + 16500675x37 − 2444511x38 − 2237686x39

+ 1693800x40 + 672156x41 + 324606x42 + 58950x43 + 11034x44

− 416x45 + 600x46 − 24x47 + x48
)
. (A.15)
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A.2. y2 = x(x2 − 1)

ψ1 = 1, (A.16)
ψ2 = −2y, (A.17)

ψ3 = 3(−2 + x)x2(2 + x), (A.18)

ψ4 = −4yx2
(−6− 15x2 + x4

)
, (A.19)

ψ5 = x4
(−192 + 1632x2 − 496x4 − 220x6 + 5x8

)
, (A.20)

ψ6 = −6y(−2 + x)x6(2 + x)

× (−336 + 912x2 − 1348x4 − 100x6 + x8
)
, (A.21)

ψ7 = x8
(
27648 + 483840x2 − 2951424x4 + 2595456x6 − 1101888x8

+ 447840x10 − 31376x12 − 1544x14 + 7x16
)
, (A.22)

ψ8 = −8yx10
(−6− 15x2 + x4

)
× (−18432 + 603648x2 − 2432640x4 + 2577312x6

− 702392x8 + 47744x10 − 23070x12 − 412x14 + x16
)
, (A.23)

ψ9 = −3(−2 + x)x14(2 + x)
(
16367616− 154607616x2 + 1527054336x4

− 5301780480x6 + 4162000896x8 + 567207936x10 − 1938695936x12

+ 731321472x14 − 1489472x16 + 5367072x18 − 164000x20

− 2316x22 + 3x24
)
. (A.24)

A.3. y2 = x2(x+ 1/4)

ψ1 = 1, (A.25)
ψ2 = −2y, (A.26)

ψ3 = x3(1 + 3x), (A.27)

ψ4 = −2yx5(1 + 2x), (A.28)

ψ5 = x10
(
1 + 5x+ 5x2

)
, (A.29)

ψ6 = −2yx14(1 + x)(1 + 3x), (A.30)

ψ7 = x21
(
1 + 7x+ 14x2 + 7x3

)
, (A.31)

ψ8 = −2yx27(1 + 2x)
(
1 + 4x+ 2x2

)
, (A.32)

ψ9 = x36(1 + 3x)
(
1 + 6x+ 9x2 + 3x3

)
, (A.33)

ψ10 = −2yx44
(
1 + 3x+ x2

) (
1 + 5x+ 5x2

)
, (A.34)

ψ11 = x55
(
1 + 11x+ 44x2 + 77x3 + 55x4 + 11x5

)
, (A.35)

ψ12 = −2yx65(1 + x)(1 + 2x)(1 + 3x)
(
1 + 4x+ x2

)
, (A.36)

ψ13 = x78
(
1 + 13x+ 65x2 + 156x3 + 182x4 + 91x5 + 13x6

)
, (A.37)

ψ14 = −2yx90
(
1 + 5x+ 6x2 + x3

) (
1 + 7x+ 14x2 + 7x3

)
, (A.38)

ψ15 = x105(1 + 3x)
(
1 + 5x+ 5x2

) (
1 + 7x+ 14x2 + 8x3 + x4

)
, (A.39)

ψ16 = −2yx119(1 + 2x)
(
1 + 4x+ 2x2

) (
1 + 8x+ 20x2 + 16x3 + 2x4

)
. (A.40)
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