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Abstract

The connection between the complex Sine and Sinh-Gordon equations associated with
a Weierstrass type system and the possibility of construction of several classes of
multivortex solutions is discussed in detail. We perform the Painlevé Test and analyse
the possibility of deriving the Backlund transformation from the singularity analysis
of the complex sine-Gordon equation. We make use of the analysis using the known
relations for the Painlevé equations to construct explicit formulse in terms of the
Umemura polynomials which are 7-functions for rational solutions of the third Painlevé
equation. New classes of multivortex solutions of a Weierstrass system are obtained
through the use of this proposed procedure. Some physical applications are mentioned
in the area of the vortex Higgs model when the complex sine-Gordon equation is
reduced to coupled Riccati equations.

1 Introduction

The complex Sine and Sinh-Gordon equations have been of considerable interest recently in
many areas of mathematical physics. They originally appeared in the reduction of the O(4)
nonlinear sigma model [1, 2]. They have also appeared in a number of other physical
contexts, for example, in the study of a massless fermion model with chiral symmetry,
and also in the study of the motion of a vortex filament in an inviscid incompressible
fluid [3] and in a model of relativistic strings [4]. The equations have been found to be
completely integrable, and some work on the construction of multi-soliton solutions has
been carried out [1-5]. It has also been shown that the complex sine-Gordon theory may be
reformulated in terms of the Wess—Zumino—Witten action and interpreted as the integrably
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deformed SU(2)/U(1)-coset model, (as in [6] and references therein). These studies are
based on the complex Sine and Sinh-Gordon theory in (1 + 1)-dimensional Minkowski
space-time. These models have energy functionals which are related to Ginsburg—Landau
type models and can be written as [7]

-]

The complex Sine and Sinh-Gordon equations which are studied here are obtained from
this type of Hamiltonian. In the limit |1|> < 1, equation (1.1) becomes an energy func-
tional for a Ginzburg—Landau type model, which would have applications to superconduc-
tivity. From the physical point of view, this expression constitutes the basis of the phe-
nomenological theory of superfluidity [7, 8] and has appeared in particle physics as well [1].
The Ginsburg-Landau functional is minimized by the Gross—Pitaevski vortices [7]. These
are topological solitons of the form

U(,y) = Pu(r)e™,  lim @y (r) = 1.

V|2

A

d’z. (1.1)

One of the purposes of our work is to study vortex solutions for the equations of interest
discussed in this paper.

Another important physical application is to the area of superconductivity [3], where
vortex solutions play an essential role. The Lagrangian for the superconducting system
usually takes the form

1
L= = F2 + IV = V(). (12)

Here 1) plays the role of the Higgs field, F},, pertains to the electrodynamic term and V' (v)
is the scalar or Higgs potential function which is responsible for mass generation in the
system. This is essentially the Lagrangian of the abelian Higgs model and, although the
equations of motion differ from those we study here, there are known vortex solutions to
them.

In particular the classical sine-Gordon equation has relevance to models which are of
interest to particle theory. The complete integrability of the Gross—Neveu model, in the
large N approximation, is quite analogous to the complete integrability of the classical
sine-Gordon equation, where 1/N plays the role of the coupling constant [1, 4]. For
N =1, a large coupling case, the model reduces to the massless Thirring model, which
is scale invariant with anomalous dimensions. For N > 1 the theory exhibits nontrivial
renormalization group behavior and mass generation through dimensional transmutation.

Another area of recent importance with regard to applications is the area of liquid crys-
tals and membranes [9]. Fluid membranes may be idealized as two-dimensional surfaces
in solution with each membrane being made up of a double layer of long molecules. The
curved fluid membrane may be treated as a bending liquid crystal cell with uniaxial molec-
ular order. Various physical properties of interest can be calculated in terms of quantities
which are directly related to the geometry of the surface. For example in one model for
uniaxial liquid crystals, with normal 77 to the membrane of the liquid crystal, it has been
shown [9] that the elastic energy of curvature per unit area of the membrane is

1 _
F= /gdA, g= 51{:(01 +c9 — 00)2 + kcyes. (1.3)
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Here ¢; and ¢ are the two principal curvatures of the surface of the membrane, and ¢
is called the spontaneous curvature of the surface. The quantity F, is referred to as the
total bending energy of the membrane. The constant ¢y is related to the asymmetry of the
layers. The positive constant k is the bending rigidity and k, which could have either sign,
is the elastic modulus of the Gaussian curvature. The curvature elastic free energy per
unit area of the membrane can also be formulated rigorously in terms of two-dimensional
differential invariants of the surface [9]. Many of these free energies have reductions to
sine-Gordon equations and, hence, their solutions can be connected with Weierstrass data
for surfaces.

We begin this paper with establishing the connection between a generalized Weierstrass
system and the complex Sine and Sinh-Gordon equations. Then we analyze various prop-
erties of the complex sine-Gordon equation and show how they transform to corresponding
properties of the Weierstrass system. The paper is organized as follows. A generalization
of a Weierstrass system for inducing two-dimensional surfaces in R* is presented in Sec-
tion 2. Later in that section it is shown how this system is related to the complex Sine and
Sinh-Gordon equations. Several properties, namely the Lax pair, the Painlevé Property
and the Béacklund transformation following from the singularity analysis, are investigated
for the complex sine-Gordon equation and then extended to the Weierstrass system in
Sections 3 and 4. Multivortex solutions are constructed and the Painlevé structure of the
associated radial equations is studied in Section 5. The 7 functions for the rational class
of solutions of the Painlevé equation, P5, are written in terms of Umemura polynomials
and explicit forms of such solutions are given in that section. We also present a particular
class of solutions of the Weierstrass system via the solution of the complex sine-Gordon
equation. Section 6 contains examples of solving the Weierstrass system by means of
solutions of the complex sine-Gordon equation.

2 The generalized Weierstrass system and associated
complex Sine and Sinh-Gordon equations

The Gauss—Codazzi equations describing a two-dimensional surface immersed in a three-
dimensional sphere which is itself again immersed into a four-dimensional Euclidean space
have been studied by Darboux [10]. He investigated the nonlinear Dirac-type system
for four complex-valued functions ; and ;, i = 1,2 satisfying the following system of
equations

oY1 = 1 <1/J1 + 2 > , My = Q1o

29po o
= P B
0p1r=Q2 (1 — —— |, 02 = Q2p2,
2219
Q1 = |2 £ ¥ 2, Q2 = |p2* £ o1 ?, (2.1)

and its respective complex conjugate equations. The partial derivatives are denoted 0 =
0/0z and 0 = 9/0% and the bar denotes complex conjugation The above system can be
considered as a variant of the Weierstrass representation [11] for surfaces immersed in R*
and we refer to it as such. System (2.1) is a nonlinear first order system of eight equations,
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for which eight of sixteen first order derivatives with respect to z or Z are known in terms
of functions 1; and ;. System (2.1) admits several conservation laws such as

o) = O(In n =9(ln o Y11 :7M
B(Inwg) = 8(1 ”Lﬂg), 8(1 @2) 6(1 (pg), 0 ('@Z%pg) 0 <1/]2902> . (22)

As a consequence of the conservation laws, (2.2), there exist four real-valued functions
X"(z, z) which are defined by

X! :/Inq/)gdz+ln1/12dz, X? :/lng02d2+lncp2dz,
I T

1/J1801d N %1901

dz 2.3
r Y22 Yoo (2:3)

X3 = / In ¥opadz + Inhe@adz, X4 =
I

for any contour I' in the complex plane which begins at a fixed zy and ends at the variable
point z. The right hand side of (2.3) does not depend on the choice of the curve I" since
the differentials of equations (2.3) are exact. Thus equations (2.1) and (2.2) allow us to
identify the real-valued functions, X*(z, %), i = 1,...,4, as the coordinates of a surface
immersed in four-dimensional Euclidean space.

At this point we want to underline that, for the Weierstrass system (2.1), few explicit
solutions have been found up to now, and the link obtained below with the complex Sine
and Sinh-Gordon equations allows us to construct new classes of solutions explicitly. To
our knowledge the connection between these two systems is observed here for the first
time.

We subject system (2.1) to several transformations in order to simplify its structure.
We start by defining two new complex valued functions

(> P2
It is easy to show that, if the complex functions ¢; and ¢;, i = 1,2, are solutions of the

first order system (2.1), then the complex-valued functions u and v defined by (2.4) are
solutions of the first order system of two equations

ou=5 (£ fuP)o,  Fo=—3(1+P)u, (2:5)

and their respective complex conjugate equations. The elimination of one of the functions u
or v in system (2.5) leads to the complex Sinh-Gordon (CShG) equation when the sign
is positive in (2.5), and sine-Gordon (CSG) equation when the sign is negative in (2.5).
Thus we get for both cases

1
d0u F 1i| |28u8u+ 1 (1£u?) = (2.6)

If u is assumed real then the substitutions u = sinh(®/2) for the CShG or u = sin(P/2)
for the CSG yield

00® + (1/4)sinh @ = 0, or  00® + (1/4)sin® =0,

which are the well-known sinh-Gordon and sine-Gordon equations respectively.
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As was shown in [1], equation (2.6) was derived in the context of the reduction of
the O(4) nonlinear sigma model and, as well, the reduction of the self-dual Yang-Mills
equations and relativistic equations [2, 12, 13].

Note that, if v tends to one in the CSG equations (2.5), then @2 vanishes and the
system (2.1) takes the form

01 = <1/11 + %) 7 Mo = Q1o (2.7)
o

Conversely, if u tends to one in CSG equations (2.5), then @1 vanishes and system (2.1)
becomes

— 1
0p1 = Qo (@1 ~ 50, ) , 02 = Q2p2. (2.8)
©2

These limits characterize the properties of the solutions of system (2.1).
Let us now state the following Proposition.

Proposition 1. If the set of complez-valued functions, ;, w;, 1 = 1,2, is a solution of
the system (2.1), and uw and v are defined in terms of them by (2.4), then the pair (u,v)
is a solution of equations (2.5).

Proof. Differentiation of equations (2.4) with respect to z and z gives

M1 Y1 - _ -
ou="""L 2 Elog, gv=""" - Flog,
R 22 @

respectively. Making use of system (2.1), we get

O — 2 4 2 ¥1 : Jv — — 2 4 2 Tﬂl_’
(Joal® £ [¥1]%) e (Jeal® £ [1]%) ool 0n
and, by virtue of (2.4), we obtain (2.5), which ends the proof. [

Now we discuss a set of conditions which allow the system (2.1) to become a decoupled
system of equations.

Proposition 2. Let the complex functions u and v be solutions of system (2.5). Let the
functions ¥; and @; be defined in terms of u and v by

—-1/2 —-1/2
Y1 = eu (1 + |u]2) / , ©1 = €V (1 + |v\2) / ,
2\—1/2 2\—1/2
Yy =€ (1= [ul?) , 2 =€ (1=£|v]?) , e==*£1. (2.9)
Then the general integrals of system (2.1) are given by

U1
(e

where the complex functions A and B satisfy the following conditions,

A(2)e?, 01 = vB(2)e*,

u
A(z)e?, w2 = B(2)€?, (2.10)

AP =G (1 ) (B = e G (1 o) (2:11)
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Proof. Substituting (2.4) into system (2.1) we obtain an overdetermined system for the
functions 9 and s of the following form

A(uthy) = (1 £ [uf?) [¢po]? (u% + 2%}2) ;o Ot = (L [uf?) [1h]*4o,
B(vps) = (1£ [of?) [ al? <90 - %) = (1£ o) leaPen. (2.12)

Consider the first equation in the first line of (2.12). By expansion of the derivative term
O(ut)2) and the use of (2.5) this equation reduces to the form

Oby = (1 [ul?) [o|*bs.

Using (2.9) to eliminate |t2|? in this result, this equation reduces to 9y = 19. In a similar
way, (2.9) can be used to treat the remaining three equations in (2.12). Thus the initial
system (2.1) becomes a linear system of the form

Opg = 1o, O0p2 = po. (2.13)

These two equations can be easily integrated to give 1 and ¢o as given in (2.10).
Then (2.4) can be used to obtain 1; and ¢;. The results in (2.10) must be consistent
with those in (2.9). If we calculate the modulus of 12 and 9 from (2.10) and equate to
the modulus calculated from (2.9), the conditions (2.11) are obtained. In fact, equating 1;,
©; in (2.10) to their corresponding forms in (2.9), we must also have that

-1/2 -1/2

A(2)e” = e (1 £ [ul?) A(z)e?, B(z)e” = e (1 £ |v]?) B(z)e.
A set of differential constraints which must be satisfied can be obtained by the substitution
of (2.9) into (2.13) and we find that

<5uﬂ + %uv (1+ |u|2)> =F2(1+[ul?),
<8vv — %fw (1+ |v\2)> =32 (1% [v]?). [ |

From the computational point of view, it is more convenient to deal with the CShG or
CSG equations (2.5) than with the original system (2.1). From every solution of CShG or
CSG equations (2.5), we can integrate a linear system (2.13) and, consequently, a very large
class of solutions of system (2.1) can be found explicitly by making use of formulae (2.10)
and (2.11).

Using the connection between the CSG equation (2.6) and Weierstrass system (2.1),
we discuss in the next section in detail the Painlevé analysis of the CSG equation which
allows us to extend this analysis to the Weierstrass system.

3 Painlevé analysis of the complex sine-Gordon equation

Integrability of the CSG equation (2.6) is confirmed by tests for the Painlevé Property.
We perform the classical test of [14] extended to partial differential equations in [15],
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assuming a solution in the form of a Laurent series about an arbitrary singularity manifold
F(z,z) = 0 and checking compatibility of the resulting recurrence formulae. Detailed
discussion of the meaning and validity of this test may be found in [16, 17]. The test is
carried out for the CSG equation (2.6) and for the system (2.5). Both versions of the CSG
pass the test. However, the possibility of obtaining the Backlund transformation through
truncation of the Laurent series [15] is restricted to special cases.

For the purpose of the Painlevé test z and z should be treated as two independent vari-
ables and extended to two separate complex planes. Similarly the functions u and @ need
not be complex conjugates of each other when their independent variables are separately
extended; the same holds for v and v. To avoid the misleading complex conjugate symbol,
we denote Z by ¢, @ by w and © by s, while symbols of the derivatives 0 and 0 will be
replaced by alphabetic subscripts z and ¢, respectively.

In principle the Painlevé test could be performed either for the system (2.5) or (2.6).
However, the latter has a singularity at |u| = 1. It is not encompassed by the usual test,
which assumes |u| — co. Therefore we start from equation (2.5).

This system has an apparent symmetry, u < v, z <+ z. For the purpose of the “Painlevé
Test” equations (2.5) constitute a 4 x 4 system. The CSG version (lower sign in (2.5)) in
our notation is given by

uy — (1 —wu)v/2 =0, we — (1 —wu)s/2 =0,
v+ (1 —sv)u/2 =0, sz + (1 —sv)w/2=0. (3.1)

The initial exponent is —1 for u and w and zero for v and s or the other way round.
Both choices are equivalent due to the aforementioned symmetry. The second one implies
uw — 1 when F' — 0. Thus our test encompasses the extra singularity |u| — 1 of
equations (2.6).

At this point we mention the following fact. Usually, the classical “Painlevé Test” is not
possible when the leading order term of an expanded function is of order zero in F'. Such
a term lacks the property (necessary for the algorithm of [14] and [15]) that differentiation
decreases its order of magnitude by one. With the first choice of the exponents this
problem could emerge in the last two equations of (3.1), containing the derivatives vy
and s;. However, in our case the leading terms in these equations are the nonlinear
ones, which are proportional to F~! (their balance is achieved by soug = 1), while the
troublesome derivatives are of order zero in F. Hence the test may be performed in the
usual way.

The initial coefficients for the first choice of the exponents are

up = 2(FF)Y?/Qo,  wo = 2(F.F,)Y?Qo,
v = (F:/F)'?/Qo,  s0=(F/F.)"?Qu, (3.2)

where (g is an arbitrary function of z and ¢. The remaining terms are derived from the
linear system of recurrence formulae

nFu, + (F./QQ) w, + 2F. Fyv,
1 1 n—1 n—1ln—k—1

1
= —(tup-1)z + sUn—2 — o Zwkvn—k ~ 3 Z Z WrUVp— k1, (3.3a)

2
k=1 k=0 I=1
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(FtQ%) Uy, + nFiw, + 2F, Fis,
n—1ln—k—1

(wn 1)t+ 1 wOZuksn k——z Z UWISn—k—1, (3.3b)

(n —1)Fu, — (F. /QO) Sn
n—1n—k—1

—(Up—1)t + uozskvn k+ = Z Z SEUVn—k—1, (3.3c)

—(Fth)vn (n—l)F Sn
n—1ln—k—1

—(8p—1)z + wozvksn k+ o Z Z VW Sp—k—1s (3.3d)

where v and s with negative subscripts are both set equal to zero, but have been included
for reasons of notation.
The determinant of the system (3.3) is

(F.E)*(n+ Dn(n —1)(n —2). (3.4)

Hence the indices at which it becomes zero, are —1, 0, 1 and 2. Tedious but straightforward
calculations show that all the compatibility conditions are satisfied, whence we conclude
that equation (2.5) has the Painlevé Property.

This Painlevé integrability obviously extends to the Weierstrass system (2.1) as the
Painlevé Property is invariant under the homographic transformation (2.4) which converts
the equations (2.5) to (2.1).

The method of the Laurent expansion may often be extended to deriving the Backlund
transformation and further an explicit integration scheme [15]. The usual approach relies
on truncation of the Laurent series, usually at the term of order F°, which is expected
to be the transformed function, satisfying the original equation. The truncation requires
appropriate choice of the arbitrary functions (first integrals). Some extra assumptions on
the coefficients and expansion variable may also be necessary. A systematic approach to
that problem may be found in [16-19].

However, the usual method contains assumptions which are too restrictive for applica-
tion to equations (3.1), namely the Laurent series of v and s, which begin with the F°
terms, reduce to a single term each. This means that v and s would not be transformed at
all. Moreover, the truncation at F° implies vanishing of terms proportional to F'. This
imposes further constraints on these variables: from their recurrence equations (3.3) at
n=1

—(F./Qf)s1 = —(vo) =0, (3.5a)
—(FQg)v1 = —(s0)= = 0. (3.5b)
It follows that vy should be independent of ¢, while sy should be independent of z. As
these coefficients are reciprocals of each other (see 3.2), neither of them may depend on z

or t. This, together with the truncation of the series, reduces v and v to constants. If we
denote

s =k, v=1/k, k = const, (3.6)
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then the original equations (3.1) reduce to a system of coupled Riccati equations

uy — (1 —wu)/(2k) =0, wy — (1 —wu)k/2 =0, (3.7)
which may immediately be linearized by substitution

u=(2/k)(In¥),, w = 2k(InV),, (3.8)
to the Helmholtz equation

U, = (1/4)0. (3.9)

Obviously this linearization also yields an (almost trivial) transformation of u and wv,
a superposition principle and other properties.

We have also tried a more general truncation scheme of [20, 21]. For better comparison
with the usual SG equation we start from a trigonometric representation of (2.6) as in [21].
Let

u = sin(®/2) exp(ic). (3.10)

The polar coordinates ® and « satisfy a system of equations similar to that given by
Lund [4]

90 — 2%8a@a + isin@ =0, (3.11)
9 (tan®(®/2)da) + 0 (tan®(®/2)0a) = 0. (3.12)

Returning to the notation of the Painlevé test, we complete the definition of u by a similar
one for w

w = sin(®/2) exp(—ia). (3.13)

According to [21] we impose constraints on the function defining the singularity mani-
fold F(z,t) = 0. This may be done without actually changing the manifold [17]. The
constraints have the form of Riccati equations

F,=1-AF - BF?,  F,=-C+ (AC+C,)F + (BC — D)F?, (3.14)
where A, B, C, D are functions of both z and ¢, satisfying the following cross-derivative
compatibility conditions

Ay =—(AC), — C., + 2D, B;=D,—-2BC, - B,C — AD. (3.15)

When F' — 0, u = ug/F + O(1), whence ® = £2iln F' + O(1). Therefore the truncated
expansion of ® should read (with the + sign)

& =2ilnF +9. (3.16)

The other dependent variable a should be regular and nonzero when F' — 0 (up to a set
of lower dimensionality) since

u ug + O(F)

exp(2ia) = w Wt OF) (3.17)
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Hence « is also regular at the singularity manifold. It may be expanded in non-negative
powers of F.

Substitution of (3.16) into equation (3.11) together with the constraints (3.14) and the
compatibility conditions (3.15) yields a polynomial in F' containing powers from F° to F'6.
The expansion of o will not spoil the truncation if we assume its truncation at F*, that
is,

a:ao+a1F+a2F2+a3F3+a4F4. (318)
Now we substitute (3.16) and (3.18) into the CSG system in the form (3.11) and (3.12),
make use of the constraints and compatibility conditions, put both equations in a poly-
nomial form and compare coefficients at subsequent powers of F. This way we obtain

a system of 28 differential equations. Detailed analysis shows that those equations are
compatible if and only if

o1 =ag =a3=0oa4 =0, (3.19)
and either

ag = const, (3.20a)
or

¥ = const, (3.20b)

where by const we understand a quantity independent both of z and ¢. In the first case
V4t = (i/16) [Bexp(i)) — B~ exp(—iv)] , (3.21)

where the function B, introduced by the constraints (3.14), must also be a constant to
ensure compatibility of the system. It may play the role of the spectral parameter in the
integration scheme. However, the restrictions (3.19) and (3.20a) imply « = const, which
reduces the CSG system (3.11) and (3.12) to the usual sine-Gordon equation. This way
we have regained the Bécklund transformation for that equation in the version [21].

The second case, (3.19) and (3.20b), allows for limited variation of the phase «,
namely o may be the linear function of x and ¢

a=axr+bt+c, (3.22)

where a, b and ¢ are arbitrary constants. However, the constraint (3.20b) makes this case
trivial.

The above analysis indicates that the only Backlund autotransformation obtainable by
a removal of the solution’s singularity is that of the usual sine-Gordon equation.

4 On equivalence of two forms

of the complex sine-Gordon equation

Throughout this paper we investigate the CSG equation in the form of equations (2.6).
Another form of the CSG equation was given in [18, 19] as follows

We formulate the following statement for systems (2.6) and (4.1).
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Proposition 3. Equation (4.1) is transformed into CSG equation (2.6) through the fol-
lowing relations
Z, q = —sin ® exp(—if3), p = sin ® exp(if), (4.2)

1
52125 n=-

where the phase is given by

8= /Z {[1+ tan?(® (2, z2)/2)] &2, 2)d2’
+0[1 — tan?(®(z, 7)/2)] 0oz, 2')dz'} . (4.3)
The lower limit of integration, zg, is fixed and depends on the initial conditions.
Proof. Substitution of (4.2) and (4.3) into (4.1) yields the system (3.11) and (3.12). W

Note that both equations, (2.6) and (4.1), depend on their phases « and f3, respectively,
through their derivatives only, except for linear dependence on factors exp(ia) and exp(if3).
Therefore any change of 8, which leaves its derivatives unchanged, for example one that
arises from deformation of the integration contour in (4.3), does not affect equivalence of
those equations. Moreover for those u, which satisfy the CSG equation (2.6), the integrand
is an exact differential and the path of integration does not even affect the value of the
phase.

Note also that the form of the equation determining the evolution of the phase (3.12)
suggests integration in terms of an arbitrary potential ¢(z, z)

tan®(®/2)da = 9y,  tan®(®/2)0a = —dp. (4.4)

However, the potential is not arbitrary since the compatibility condition d0a = 00«
imposes a constraint of the form similar to the original phase equation (3.12)

0 (cot2(¢/2)5¢) +0 (cot2(<I>/2)8d}) =0. (4.5)

Obviously, if « is a solution of (3.12) for a given ®, then 1 solves the same equation for ®
shifted by an odd multiple of 7 or subtracted from such a multiple. However, this is not
a symmetry of the CSG equation (2.6) as the signs in the amplitude equation (3.11) are
changed by such a transformation. Finally repetition of the transformation brings us back
to the original equation. A similar property holds for the CSG equation in the form (4.1)
for which the phase equation may be written as

0 (cos_1 ®9PB) — d(cos ®OB) = 0, (4.6)

where the change of independent variables has already been performed.

This symmetry has an additional consequence. The transformations (4.2) and (4.3)
from equations (2.6) to (4.1) have some features of a Backlund transformation, namely
the definition of by means of the contour integral (4.3) is a solution of a coupled pair of
differential equations

9B = [1 +tan*(®/2)] da, 9B = [1 —tan*(®/2)] da. (4.7)
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System (4.7) is overdetermined as the right hand sides of the above equations must satisfy
the compatibility condition 093 = 993. This condition is indeed satisfied as it proves to
be equivalent to equation (3.12). Thus we obtain (3.12) in two ways: either through direct
substitution of (4.7) to (4.6) or from the above compatibility condition.

The transformation defined by (4.2) and (4.3) may be extended to the inverse scattering
method. The inverse scattering technique for (4.1) was given in [18]. Using (4.2) and (4.3),
we obtain the Lax pair for (2.6)

1 ~ 1
where
—1 0 i cos @ sin ®et’
Y_< 0 i)’ Yl_(—sinq)e_w —icos(b)’
0 O(sin @e')

Yo=2i| _ A cos @ . 4.9
275 B(sin de ) (4.9)

B 0

cos ®

Further extension to the Weierstrass system (2.1) is also possible by means of the trans-
formation (2.4). The matrices Y7 and Ys expressed in terms of u become

v i(1 — 2u2e~2i@) V1= (1 — 2u2e—2ia)2¢is
L —/1 = (1 — 2u2e—2ie)2e= —i(1 — 2u2e %) ,

9 <\/1 —(1— 2u26*2i°‘)26iﬁ>
0 .
_ 2,—2ix
Yo=| | Lo 2ute . (4.10)
d <\/1 —(1- 2u26*2m)26_15)
1 — 2u2e— 2
From (2.4) the complex functions u and v are given in terms of 1, ¥ and 1, @2, re-
spectively. Taking into account that the functions u and v satisfy the same equation (2.6),
we can describe the resulting Lax pair (4.8) for Weierstrass system (2.1) by a system of
five two by two matrices Y7, Ys in terms of (¢1,12) and (p1, p2) respectively, and the
constant matrix Y.

0

5 Multivortex solutions

At this point we derive, through the link between first order system (2.1) and equa-
tions (2.6), a procedure for constructing multivortex solutions in explicit form. We concen-
trate on a certain class of multivortex solutions of equations (2.6) in polar coordinates (r, )
on the plane determined by

w= Ap(r)em?, n € Z. (5.1)
Equation (2.6), under the assumption (5.1) is reducible to a second order ODE of the form

d2A, 1dA, A, dA,\? n?
:|: _
dr r2

a2 Tr e T1zaz

+(1£A2) A, =0. (5.2)
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By a homographic transformation of the dependent variable

14+ w(z)
A — - 5.3
n c 1 o 'LU(Z) 9 z r? < )
where ¢ = —i for the CShG system and ¢ = 1 for the CSG system, equation (5.2) has the
structure of the fifth Painlevé (P5) equation

-1 ! —1)2 1
w" 3w w'? w (w ) <a ﬂ) + zw+5w(w+ )
z

= — 5.4
2w(w — 1) z z w+w w—1 " (54)

with the coefficients o and 8 parametrized by a number n € Z and -, § fixed as follows

a=-f="1 y=0, 6=-2. (5.5)

Such a reduction to P5 has recently been performed [7]. In general equation P5 is not
integrable in terms of known classical transcendental functions. However, for specific
values of the parameters, solutions of equation (5.4) can be reduced to two types of non-
transcendental functions, that is, to solutions of a Riccati equation with one arbitrary
parameter or to three types of rational solutions of equation P5 [17, 22]. According to [23]
equation (5.4) with the coefficients (5.5) can be written in an equivalent form as a first
order system of ODEs,

d
2= —ap-pg—phg. =1,
dz 2
d 2
zd—q =222+ eng — 42%p + % + pg?, (5.6)
z

where p = w/(1 — w). The function ¢(z) satisfies a Painlevé-type equation of the form

2 2/
" q Q- t42°¢q q [ 2 2 2 2}
S S ¢ 16n22(2¢ —n) — (¢% — 422)*] .
e q* — 1221 g% — 422 2 + 422(q% — 422) n(2¢ =) = (g &)

The function ¢ — 422 has two roots at ¢ = 2z. Using the transformation

_q+2z
g —27

y(2) q # 2z,

we get that y(z) is also a solution of equation P5 with parameters

(1 —en)?

5 5= —9. )
T ¥ =0, ) (5.7)

a=-3=
Propositions 4 to 6 are special cases studied by V. Gromak [22] (Chapter 12, section 14)
concerning the fifth Painlevé equations with specific parameters. This analysis is used to
construct solutions to Weierstrass system (2.1).

Proposition 4. Let w = w(z) be a solution of the fifth Painlevé equation P5 (5.4) with
parameters given by (5.5) such that the function,

O (w) = 20" — %uﬂ + 22w + % # 0, (5.8)
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does not vanish for any n € Z. Then the function,

_ 4z
<I>1(w)

is a solution of the fifth Painlevé equation (5.4) with parameters given by (5.7).

Proposition 4 establishes the Auto-Bécklund transformation (Auto-BT) for equation
P5 when v =0, § = —2 and o« = —3 are parametrized by n € Z.

We discuss the link between equations P5 with different values of the parameter ¢,
namely, § # 0 and 6 = 0. Note that, for § # 0, the solutions of equation (5.4) are
expressible in terms of Bessel functions whereas, for § = 0, they can be expressed in terms
of Umemura polynomials. This is presented below.

Proposition 5. Let u(z) # 0 be a solution of equation P5 with parameters given by (5.5).
Then the function

2
u(z) = %, (5.10)
where f(z) is defined by
f(z) = di,lz Inu(z) — % <u(z) - u(lz)) , n ez,
is a solution of equation P5 with parameters
(1+n??
B

~ 1
B=0=0, ﬁ:_i, (5.11)

a =

Based on reference [22] and using the result of Proposition 6 in that reference, we can
find in our case the relation between equations P3 with v # 0

2 /
1 w w

1 o
w' = — — — + = (ayw? + B) + Yw® + —, (5.12)
w w z w

and P5 with coefficients given by (5.11). Indeed the third Painlevé equation (5.12) can be
written as a first order system of ODEs

2w’ = (ea — Vw + eyzw? + 2v, €= =1,

2w’ = Bw + 6z 4 (ear — 2)wv + 207 (5.13)
From system (5.13) the elimination of w gives

n v 2 U_/ 8% — (2 —e)?s
R o 22(v? +0)
(-2 §

2
+ ey(v* +9) 2 1S +;(ea—2) =0. (5.14)

[

By a homographic transformation of the dependent variable and a change of the indepen-
dent variable

1
v = —NS%, 2 =27, (5.15)
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we obtain from (5.14) equation P5

" ﬁ& y_/ 1 2 E VT
Y +2y(y—1)y BT (v"-1) Ay+y + (=) Ty =0, (5.16)

where A and B are defined as
A=+ 4(=0)"28 - 5a® — 46 — 2(—0)?eaf + 4eda,
B =60® —2(—6)%eaf + 4(—0)/25 + 46 — 3% — 4edon. (5.17)

Proposition 6. Let y = y(z) be a solution of the fifth Painlevé equation (5.16) with
parameters given by (5.17) such that the function

r(z) =w — (ea — 1)% —eyw? —1#0,
does not vanish. Then the function,
S(r)=1— 2" (\/27) (5.18)

is a solution of the third Painlevé equation (5.12) with parameters v # 0 and 6 = —2.

The 7-functions for the rational class of solutions of the Painlevé equation P3 can
be constructed [23, 24] in terms of the Umemura polynomials, T,, = T, (z,!), which are
determined by a sequence of polynomials in z and defined through the recurrence relation

PTo, (a:rn>2

2 s , (5.19)

3 oT,
Tn+1Tn—l — (% -1+ Zn> Tr,% + 8—ZnTn + z

with initial conditions Ty = 77 = 1. Based on reference [23] we have the following result:
Proposition 7. For the existence of rational solutions of equation P3 of the form

Tzl = DTa(z,0)
w(z) = Tni(z,l)Tn(z,l — 1) (5-20)

where the Umemura polynomials, T,, = T,(z,1), satisfy the recurrence relation (5.19), it
is necessary and sufficient that the parameters of equation P5 satisfy

a:4(n—|—l), 624(77‘_[)’ y=-0=4.

Note that from system (5.13), and the transformation (5.15), there is a connection
between solutions w of the third Painlevé equation (5.12) and the solutions y of the fifth
Painlevé equation (5.16),

2w’ — [(4e(n+1) — 1) + dezw]w + 22
2w’ — [(4e(n+1) — 1) + dezw]w — 2z

Y= (5.21)

Substituting the rational solutions (5.20) into formula (5.21) and next replacing the w
which appears in (5.3) by the function u so obtained, we get multivortex solutions of
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equations (2.6). Consequently, by applying Proposition 3 to the multivortex solution
of (2.6) obtained, we can find certain classes of solutions of system (2.1).

Another class of vortex solutions to CSG equations (2.5) can be provided if we define
functions u and v in the polar form as

u=Ap(r)e™®,  v=A, (r)e™ V0 pez, (5.22)
which transforms the CSG system (2.5) into

L~ dA, n 9
() St TAL = (1= A2) A,
.. dAn_l (77, — 1)
(14) I +
When n = 1, the second equation (5.23) is solved by taking Ayg = 41 and then the
first equation (5.23) becomes a Riccati equation which can be linearized by a Cole-Hopf
transformation and solved in terms of Bessel functions. The vortex solution (5.22) takes
the form

I )
U= 1(T) 610,
Io(r)
where I is the Bessel function of the first order, that is I; = I)(r), and the prime denotes

differentiation with respect to 7. Such a reduction of (5.23) has been recently obtained [7].
Consequently, from transformation (2.4), we get

I -
Y1 = %6291/}2, Y1 = €pP2. (5.25)

Substituting (5.25) into Weierstrass system (2.1) and solving the resulting equations, we
obtain

2 =F (re_w> , (5.26)

Apr = (1-A2_)) A, (5.23)

v=r¢€==l, (5.24)

where F' is an arbitrary function of one variable re~* and the function 1) satisfies the
PDE

Db | 100z

Iy*(r)
or + r 00

- R2(r)’

= 2e"9R(r)|tho|* e,  R(r)=1 (5.27)

Equation (5.27) has a solution of the form

=g (v(r)e‘”’) , (5.28)
where the functions g and v satisfy the following ODEs,

v’+;—R(r))\:0, iA+lglg=0, reC,

and ¢ denotes the derivative of g with respect to s = U(r)e_ie. These two equations can

be integrated to give the following expressions

>

o(r) = 2 /0 " R(r)dr, (5.29)

r

SO
>l
|
O
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From equations (5.25), (5.26) and (5.28) we can summarize the results as follows,

- I(/)(T) o 5\61'9 r B )\671‘9 r
= 1.()—(7")6 g( . /0 TR(T)dT) , o = g< " /0 TR(T)dT) ,

o1 = el (7"6_10) , po=F (re_m) , (5.30)

where g is a function of one variable, which is restricted by relation (5.29). Note that the
solution for the function w in (5.24) has the form of a scalar field which has appeared in the
study of the vortex solutions of superconductivity with asymptotic behavior of the radial
part of the solution going to zero as r goes to zero and to constant as r goes to infinity.
Consequently solutions (5.30) of the Weierstrass system (2.1) possess similar asymptotic
behavior when the functions F' and g are bounded.

6 Examples of solving the Weierstrass system
via the complex sine-Gordon equation

We now investigate the possibility of generating new multisoliton solutions by taking
products of known solutions of the CSG system (2.6). Thus we can formulate the following:

Proposition 8. Suppose u is a solution of equation (2.6) with constant modulus |u|?> =
lc|? # 1. Suppose also that a complex function w exists which satisfies |w|* = 1 and the
differential constraint equation

= w)c|? - 1 - _—
u <88w Fig EE ((‘3w)(8w)> + m(@uaw + dudw) = 0. (6.1)

Then the product function U = uw is a solution of system (2.6).

Proof. Differentiating the function U = uw, we get the following expressions

5(_uw) = (Ou)w + u(Ow), O(uw) = (Qu)w + (Ow)u,

00(uw) = (00u)w + (Ou)(Ow) + (Ou)(Ow) + u(Aow).
Substituting U into equation (2.6), using |u|? = |¢|? and |w|? = 1, we obtain that

(00u)w —i—i(é?:u)(é?w) + (0u) (Ow) + u(00w)

T #Tcp((gu)w + u(0w) (Gu)w + u(@w)) + - (1% |ef?)
= (80u)w + (Ju)(Ow) + (Ou)(dw) + u(ddw) F %(&L}(éu} (6.2)
cl2 _ c? clPuw = uUw
000w F 0w 0u) 3 L 0w 0u) + U (1:£1F).

Substituting the second derivative 9du from equation (2.6) into equation (6.2) and next
collecting terms with respect to first derivatives of u and w and simplifying, we obtain the
differential constraint (6.1). [ |
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Note that in the case of the CShG equation (2.5) the constant ¢ need not necessarily
have modulus different from one. So there is no singularity in the (1+ \c|2)_1 term in
equation (6.2).

At this point we illustrate Proposition 8 for constructing a solution to system (2.6)
with an elementary example. The simplest solution of analytic type, a vacuum solution,
is given by

u = ce(Az=A2), (6.3)

where ¢ and A are complex constants. By substituting the function w in (6.3) into (2.6),
we easily show that this is a solution provided that the following constraint holds between
constants ¢ and A,

2e|Al =14+ |c|?, €=+l

Suppose that f is a complex-valued function of one complex variable z and define the
function w as follows,

— f:(z) |w‘2
fz)
such that f(z) satisfies the constraint (6.1), namely,

Of(2)0f(2) + Adf(2)[(2) + Af(2)0f(2) = 0. (6.4)

=1,

Then Proposition 8 implies that the function,

— Ce(ﬁzfAZ) M
U & (6.5)

is also a solution to system (2.6) and represents a one-soliton solution.
We introduce a new dependent variable

_of . _0f
y=p V= (6.6)

Then (6.4) takes the form
yy + Ay + Ay = 0. (6.7)

We write y and A in terms of real and imaginary parts, namely y = a(z, z) + ib(z, Z) and
A = A, +iA;. Substituting them into (6.7), we obtain

a? 4+ b2+ 24,0 — 24;b = 0.

Note that the above expression is quadratic in a(z,z) and b(z, Z). So we can solve this
expression for the imaginary part b(z, Z) in terms of a(z, z) to give

1/2

b=A; +¢(A2 - a(z,2)? — 24,a(z, 7)) /% (6.8)
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To ensure that (6.8) gives a real-valued b(z, Z), we require that a(z, Z) satisfy the inequality
A? > a(z,2)* + 24,a(z, 2).
Thus we obtain two possible solutions for y

y:a—l—i(Ai—l—e(A?—a(z,Z)Z—2Ara(z,2))l/2) , e=+1.

Substituting y into (6.6), we can integrate (6.6) to obtain

Inf= / (a +1 (AZ- + € (A? — a® — 24,q) 1/2)) dz + q(2). (6.9)
Here ¢(z) is an arbitrary function of z. Now from (6.5) and (6.9), we obtain

e (q(z) +f (a t (A,- be(A2—a? - 2Ara)1/2)> dz) 6.0
R R o e

Using (2.5) we obtain the explicit form for the expression for v,

v LGAZ_AZM [f_l +a+1 (Ai + € (AZ2 —a® - 2Ara)1/2>

RECE f(2)
__L<aq+(a—z'(A-+e(A2_a2—2A a)1/2>))] (6.11)
f(2) '
Once functions v and v are found, equations (2.1) and (2.4) allow us to determine the
functions 1; and ;. Consider the exponential solution (6.3) for A = —ia. Elimination

of u from the pair of equations in (2.5) results in an equation which is identical to (2.6)
but with u replaced by v. We can assign the solution obtained from the second order
equation (2.6) to either the u or in the v variable. We take for example u = ce?®*+2), The
second function v is obtained from (2.5), that is

o 29 o
u = Ceza(z-i—z)’ v = T‘ZP — jeceia(ztE) (6.12)

Functions u and v satisfy (2.5) provided that 2ae = 1 + |c|2. From (2.4) we can write
11 = uthg and @1 = vPe, and calculate the quantities @1 and Q2 from (2.1)

Q= (L£1d?),  Qa=lpl (1£]c). (6.13)

We now show that we can find an explicit class of solutions which satisfy (2.1). Elimina-
ting v and v from equations (2.1) and (6.13), we get

Iy = thal* (L £ |c|?) o (6.14)

From equation (6.14) the function 1, obeys 15 = €?*=%) provided that b = —2ae be
consistent with the condition 2ea = 1 4 |c[?. Using equations (2.1) and (6.13), we obtain
a solution of the form

0y = eQae(z—E)'
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In this case equations (2.1) can be integrated and give

Py = etz H7) g2ac(z=2) Wy = e—2a€(z=2)

)

o1 = iceiae(z+2)672ae(sz)7 oy = 62ae(272)' (615)

)

Substituting (6.15) into (2.3) and integrating with respect to z and Z, we obtain the
parametric form of a surface

X' = —ae(z — 2)% + 2ae|2|* = ae (y* + 2r?),

X2 = ae(z — 2)? — 2ae|z|* = —ae (y2 + 27"2) ,

X3=0, X*'=i|c}(z-2) = —|c|*, (6.16)
where we set z — Z = iy and |z|?> = 2. Treating  and r > 0 as parameters, one can plot

X1 X2 and X* to get the surface, which has the form of a parabolic cylinder. Moreover,
from (6.16), we can calculate the components of the induced metric

4
Gor = z:(X;)2 = 8a’ (22 — 4|Z!2 + 452) - \C|4 = Jzz,
=1
4 .
ges = 3 XIXE=80%(25 + 2)( — 22) + |e] .
i=1

A procedure for obtaining solutions to (2.1) as a result of using Proposition 8 can
be developed from the above example. The new product solution can be called either u
or v. One substitutes this in the corresponding equation in (2.5) to obtain the remaining
unknown solution v or u. Using these results in (2.4) to eliminate functions (12, $2), one
tries to integrate the nonlinear system (2.1) to obtain the required complex functions ;
and 1. The solutions of the Weierstrass system (2.1) obtained in this way are used to
construct the surface by means of (2.3).

7 Final remarks

Equations (2.1) and (2.5) under investigation here have long been of interest in field theory.
In particular there has been the extensive use of applying soliton solutions to construct
models of extended particles [6, 25]. The sine-Gordon equation, it seems, is the only
Lorentz-invariant, nonlinear equation whose initial value problem has been solved [4]. This
equation also describes a completely integrable Hamiltonian system. It would certainly
be of great interest to find other Lorentz-invariant integrable systems. Of more recent
interest is the study of vortex tubes [26]. The motion of vortex tubes in an inviscid
incompressible fluid is described by the Biot—Savart law. The recently proposed localized
induction equation is the simplest model to capture the leading order behavior of the
three-dimensional self-induced motion of a vortex filament. This type of equation is in fact
related to the cubic nonlinear Schrodinger equation for a complex variable, and implies that
the localized induction equation is completely integrable. Note that from solutions (5.30),
when the functions F' and g are real polynomials in a single variable, the vortex structure
of the solutions is preserved at the level of the functions v, and ¢g. These functions
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are applied to generate surfaces. Consequently, by plotting such results in two or three
dimensions, these surfaces could model a vortex filament in such a fluid [25, 26].

We have presented a new approach to the study of the Weierstrass system (2.1) in
connection with CShG and CSG equations (2.6). It proved to be particularly effective
in constructing multivortex solutions of (2.1) in terms of 7-functions based on rational
solutions of the third and fifth Painlevé equations. It is worth noting that the approach to
the Weierstrass system (2.1) proposed here can be applied, with some necessary modifica-
tions, to more general cases of Weierstrass type systems describing more diverse surfaces
immersed in multi-dimensional Minkowski and pseudo-Riemannian spaces. The task of
obtaining new types of minimal surfaces described by system (2.1) will be undertaken in
our future work.
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