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Abstract

The procedure of Dirac reduction of Poisson operators on submanifolds is discussed
within a particularly useful special realization of the general Marsden-Ratiu reduc-
tion procedure. The Dirac classification of constraints on ‘first-class’ constraints and
‘second-class’ constraints is reexamined.

1 Introduction

Dirac bracket as well as Dirac’s classification of constraints is nowadays a well recognized
and very useful tool in the construction of Poisson dynamics on admissible submanifolds
from a given Poisson dynamics on a given manifold. In this paper we consider the Dirac
reduction procedure in a more general setting than is usually met in literature. In Section 2
we implement the Dirac reduction procedure into a particularly useful special realization
of the general Marsden–Ratiu reduction scheme, based on the concept of transversal dis-
tributions. In Section 3 we reconsider the Dirac concept of first class constraints as it
seems to be too restrictive.

Firstly we recall few basic notions from Poisson geometry. Given a manifold M,
a Poisson operator π on M is a mapping π : T ∗M → TM that is fibre-preserving (i.e.
π|T ∗

xM : T ∗
xM → TxM for any x ∈ M) and such that the induced bracket on the space

C∞(M) of all smooth real-valued functions on M

{·, ·}π : C∞(M)× C∞(M) → C∞(M), {F,G}π
def= 〈dF, π dG〉 , (1.1)

where 〈·, ·〉 is the dual map between TM and T ∗M, is skew-symmetric and satisfies Jacobi
identity (the bracket (1.1) always satisfies the Leibniz rule {F,GH}π = G {F,H}π +
H {F,G}π). The symbol d denotes the operator of exterior differentiation. The operator
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π can always be interpreted as a bivector, π ∈ Λ2(M) and in a given coordinate system
(x1, . . . , xm) on M we have

π =
m∑

i<j

πij ∂

∂xi
∧ ∂

∂xj
.

A function C : M → R is called a Casimir function of the Poisson operator π if for
an arbitrary function F : M → R we have {F,C}π = 0 or, equivalently, if πdC = 0.

2 Marsden–Ratiu reduction for transversal distributions

The Marsden–Ratiu reduction theorem [1] describes the procedure of reducing a Poisson
operator π on arbitrary submanifold S of our manifold M. This general procedure exists
only if some conditions are satisfied. These conditions involve a distribution E (in the
original notation of Marsden and Ratiu) that is a subbundle of TM. By a simple as-
sumption, namely that this distribution is transversal, one can, however, satisfy all these
conditions automatically. Below we reformulate the Marsden–Ratiu theorem in this more
limited but useful setting.

Consider an m-dimensional manifold M equipped with a Poisson operator π and an
s-dimensional submanifold S of M. Fix a distribution Z of constant dimension k = m−s,
that is a smooth collection of m-dimensional subspaces Zx ⊂ TxM at every point x in M,
which is transversal to S in the sense that no vector field Z ∈ Z is at any point tangent
to the submanifold S. Hence we have

TxM = TxS ⊕ Zx

for every x ∈ S and, similarly,

T ∗
xM = T ∗

xS ⊕ Z∗
x,

where T ∗
xS is the annihilator of Zx and Z∗

x is the annihilator of TxS. That means that if
α is a one form in T ∗

xS then α(Z) = 0 for all vectors Z ∈ Zx and if β is a one-form in Z∗
x

then β vanishes on all vectors in TSx.

Definition 1. A function F : M → R is invariant with respect to Z if LZF = Z(F ) = 0
for any Z ∈ Z.

We observe that for any function f : S → R there exists a unique Z-invariant prolon-
gation F : M → R, (so that F |S = f). Here and in what follows the symbol LZ means
the Lie derivative along the vector field Z.

Definition 2. The operator π is called invariant with respect to the distribution Z if the
functions that are invariant along Z form a Poisson subalgebra, that is, if F , G : M → R

are two functions invariant with respect to Z, then {F,G}π is again invariant with respect
to Z.

We denote this Poisson subalgebra by A.



Dirac Reduction Revisited 453

Theorem 1 (Marsden and Ratiu [1]). Let S be a submanifold of M equipped with
a Poisson operator π and let Z be a distribution in M that is transversal to S. If the
operator π is invariant with respect to the distribution Z, then the Poisson operator π is
reducible on S in the sense that on S there exists a (uniquely defined) Poisson operator πR

such that for any f, g : S → R we have

{f, g}πR
= {F,G}π |S (2.1)

for the Z-invariant prolongations F and G of f and g respectively.

The proof of this theorem is obvious. Since π is invariant with respect to Z, {F,G}π

is also invariant along Z and can thus be considered as a Z-invariant prolongation of
a function on S. Moreover, since π satisfies Jacobi identity, so does πR (because πR = π|A).

The above construction, however, is difficult to perform in practice since it is often
impossible to find explicit expressions for the prolongations F and G. We now show how
this difficulty can be omitted.

Firstly, suppose that our submanifold S is given by k functionally independent equa-
tions ϕi(x) = 0, i = 1, . . . , k (constraints) and that our transversal distribution Z is
spanned by k vector fields Zi chosen such that the following orthogonality relation holds

〈dϕi, Zj〉 = Zj(ϕi) = δij , (2.2)

(this is no restriction since for any distribution Z transversal to S we can choose its basis
so that (2.2) is satisfied). We observe that in this case we have [Zi, Zj ]ϕk = 0 for all k,
where [X,Y ] = LXY = X(Y ) − Y (X) is the Lie bracket (commutator) of the vector
fields X, Y , so that [Zi, Zj ] is always tangent to S. Then, in case that the distribution Z
is involutive (integrable), this means that [Zi, Zj ] = 0 for all i, j. Moreover, we define the
vector fields Xi as

Xi = πdϕi, i = 1, . . . , k. (2.3)

There exists an important class of Z-invariant Poisson operators.

Lemma 1 ([2]). If

LZiπ =
k∑

j=1

W
(i)
j ∧ Zj , i = 1, . . . , k (2.4)

for some vector fields W (i)
j , then the Poisson operator π is invariant with respect to Z.

We sketch the proof here for the clarity of the text.

Proof. Assume, that LZiF = LZiG = 0 for all i. We have to show that LZi {F,G}π = 0
for all i, but, due to (2.4)

LZi {F,G}π = LZi〈dF, πdG〉 =
k∑

j=1

〈dF, (W (i)
j ∧ Zj)dG〉

since LZi(dF ) = d(LZiF ) = 0 (and similarly for G). On the other hand

〈dF, (W (i)
j ∧ Zj)dG〉 = Zj(G)W

(i)
j (F )− Zj(F )W

(i)
j (G) = 0

since Zj(F ) = LZjF = 0 (and similarly for G). �
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The condition (2.4) is sufficient but not necessary. For example, if

LZiπ =
k∑

j=1

Wj ∧ [Zi, Zj ] , i = 1, . . . , k

for some vector fields Wi, then the operator π is also Z-invariant (one shows it by com-
putations similar to those in the above proof).

In the case π satisfies (2.4) we apply the Lie derivative LZj to both sides of the equation
(2.3). Due to (2.4) we obtain

[Zj , Xi] = LZjXi = (LZjπ)dϕi =

(∑
l

W
(j)
l ∧ Zl

)
dϕi

=
∑

l

(
Zl(ϕi)W

(j)
l −W

(j)
l (ϕi)Zl

)
= W

(j)
i −

∑
l

W
(j)
l (ϕi)Zl. (2.5)

We observe that, if F and G are two Z-invariant functions on M and Vj are arbit-
rary vector fields, then 〈dF,∑

j
Vj ∧ Zj dG〉 = 0 since 〈dF, Vj ∧ Zj dG〉 = Zj(G)Vj(F ) −

Zj(F )Vj(G) = 0. Thus the Poisson operator π and its deformation of the form

πD = π −
∑

j

Vj ∧ Zj (2.6)

both act in the same way on the Poisson subalgebra A so that both can be used to define
our restricted operator πR on S through (2.1). Of course, the deformed operator πD does
not have to be Poisson, but nevertheless its restriction to S through (2.1) must be Poisson
since it naturally coincides with similar restriction of π to S. It turns out that we can
choose our (undetermined so far) vector fields Vj in (2.6) so that

πD(αx) ∈ TxS for any αx ∈ T ∗
xM (2.7)

which has a far reaching consequence.

Lemma 2. The deformation πD given by (2.6) that also satisfies (2.7) is Poisson.

Proof. The condition that πD(αx) is tangent to S for any αx ∈ T ∗
xM is equivalent to

the requirement that 〈dϕi, πD(αx)〉 = 0 for all i. Due to the antisymmetry of πD this
requirement can be rewritten as 〈αx, πD(ϕi)〉 = 0 for all i. Since αx is arbitrary, the
condition attains the form πD(dϕi) = 0 for i = 1, . . . , k. We now complete the set of
functions ϕi with some functions xj to a coordinate system (x, ϕ) on M. Then the matrix
of the operator πD has the last k rows and last k columns equal to zero while the m− k
dimensional upper left block coincides with πR which is Poisson by the Marsden–Ratiu
construction. �

Lemma 3. The condition (2.7) can be written as

Vi −
k∑

j=1

Vj(ϕi)Zj = Xi. (2.8)
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Proof. We know that the condition (2.7) can be written as πD(dϕi) = 0 for i = 1, . . . , k.
An easy calculation yields now that

0 = πD(dϕi) = π(dϕi)−
k∑

j=1

(Zj(ϕi)Vj − Vj(ϕi)Zj) = Xi − Vi +
k∑

j=1

Vj(ϕi)Zj

due to the normalization condition (2.2). �

We now restrict ourselves to only two limit cases, when all Xi are tangent to S and
when Xi span Z.

2.1 The case when Xi are tangent to S
We firstly assume that all the vectors Xi are tangent to S and that π satisfies (2.4) (to
guarantee the invariance of π with respect to Z). We have then naturally Xi(ϕj) = 0.
This in turn means that {ϕi, ϕj}π = 〈dϕi, πdϕj〉 = 〈dϕi, Xj〉 = 0 so that all the vector
fields Xi commute. In this case the simplest solution of (2.8) has the form Vi = Xi and
the corresponding deformation (2.6) attains the form

πD = π −
k∑

i=1

Xi ∧ Zi. (2.9)

This deformation has been recently widely used for projecting Poisson pencils on symplec-
tic leaves of one of their operators [3, 4, 5].

Lemma 4 ([3]). The vector fields W
(k)
j in (2.4) can, in the case that all Xi are tangent

to S, be chosen as tangent to S.

Proof. Consider the projections W̃ (i)
j of the vector fields W (i)

j onto S:

W̃
(i)
j = W

(i)
j −

k∑
r=1

W
(i)
j (ϕr)Zr.

If W (i)
j are in Z, then W̃

(i)
j = 0. The vector field W̃

(i)
j is indeed tangent to S since

W̃
(i)
j (ϕl) = W

(i)
j (ϕl)−

k∑
r=1

W
(i)
j (ϕr)δlr = 0.

Now

k∑
j=1

W̃
(i)
j ∧ Zj =

k∑
j=1

W
(i)
j ∧ Zj −

k∑
j,r=1

W
(i)
j (ϕr)Zr ∧ Zj

the last term being equal to zero since LZk
{ϕi, ϕj}π = 0 implies W

(i)
j (ϕr) = W

(i)
r (ϕj).

Thus
k∑

j=1
W

(i)
j ∧ Zj =

k∑
j=1

W̃
(i)
j ∧ Zj . �
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Due to this gauge freedom, if we choose W
(i)
j as tangent to S (which means that

W
(i)
j (ϕr) = 0) then the formula (2.5) yields that W (i)

j = [Zi, Xj ]. Thus, due to the fact
that we assumed (2.4),

LZiπ =
k∑

j=1

[Zi, Xj ] ∧ Zj . (2.10)

Remark 1. In the case that the functions ϕi are Casimir functions of π we have Xi =
πdϕi = 0 so that the formula (2.10) yields LZiπ = 0 for all i, i.e. the vector fields Zi are
symmetries of π. In this case the Marsden–Ratiu reduction procedure (2.1) coincides with
the standard restriction to a level set of Casimir functions (symplectic leaf in case there
are no other Casimirs apart from ϕi) [6].

From what we have said above it becomes clear that the Marsden–Ratiu reduction
scheme can be interpreted as a two-step procedure: firstly we deform the original Poisson
tensor π to a Poisson tensor πD and then we obtain πR as standard restriction of πD to
the level set S of its Casimirs ϕi (thus we need not calculate the prolongations F and G
in order to define {f, g}πR

).
Now we check what can be said about our vector fields Zi.
According to Remark 1 LZiπD = 0. On the other hand, due to (2.9),

0 = LZiπD =
k∑

j=1

[Zi, Xj ] ∧ Zj −
k∑

j=1

LZiXj ∧ Zj −
k∑

j=1

Xj ∧ LZiZj

so that
k∑

j=1
Xj ∧ [Zi, Zj ] = 0. Of course one of the possible realizations of this condition

is the case that the distribution Z be integrable since then [Zi, Zj ] = 0. There are,

however, other possibilities here. For example, if [Zi, Zj ] =
k∑

s=1
csijXs with csij = cisj ,

k∑
j=1

Xj ∧ [Zi, Zj ] = 0 as well.

2.2 The case when Xi span Z
This time we assume that Xi =

∑
k

ϕkiZk for some real valued functions ϕij , which due

to (2.2) yields

ϕij =
∑

k

ϕkjZk(ϕi) = Xj(ϕi) = {ϕi, ϕj}π . (2.11)

The functions ϕij define a k-dimensional skew-symmetric matrix ϕ = (ϕij), i, j = 1, . . . , k.
The only condition imposed on ϕ is related to the demand that Xi span Z, i.e. detϕ �= 0.
We thus do not have to assume (2.4) this time since now the distribution Z is spanned by
the Hamitlonian vector fields Xi and thus π is automatically invariant with respect to Z
as LXiπ = 0 for all i. It can be easily shown that

[Xj , Xi] = X{ϕi,ϕj}π
= π d{ϕi, ϕj}π = π dϕij .
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Now we look for solutions of (2.8) in the simple form Vi = αXi. Inserting this into (2.8)
and using the fact that ϕij = −ϕji we obtain

0 = αXi − α
k∑

j=1

Xj(ϕi)Zj −Xi = αXi + α
k∑

j=1

ϕjiZj −Xi = (2α− 1)Xi

so that a = 1/2 and Vi = 1
2Xi. In this case the deformation (2.6) attains the form:

πD = π − 1
2

k∑
i=1

Xi ∧ Zi (2.12)

and is, as mentioned above, Poisson. It is easy to check that our operator πD defines the
following bracket on M

{F,G}πD = {F,G}π −
k∑

i,j=1

{F,ϕi}π(ϕ−1)ij{ϕj , G}π, (2.13)

where F,G : M → R are now two arbitrary functions on M, which is just the well known
Dirac deformation [7] of the bracket {·, ·}π associated with π.

Remark 2. If C : M → R is a Casimir function of π, then it is also a Casimir function
of πD since in this case (2.13) yields

{F,C}πD = {F,C}π −
m∑

i,j=1

{F,ϕi}π(ϕ−1)ij{ϕj , C}π = 0− 0 = 0. (2.14)

We also know that the constraints ϕi are Casimirs of the deformed operator πD. Thus we
can state that Dirac deformation preserves all the old Casimir functions and introduces
new Casimirs ϕi.

It is now possible to restrict our Poisson operator πD (or our Poisson bracket {·, ·}πD) to
a Poisson operator πR (bracket {·, ·}πR) on the submanifold S, i.e. the level set ϕ1 = · · · =
ϕm = 0 of Casimirs of πD, in a standard way through the Marsden–Ratiu procedure (2.1),
where now we can use arbitrary prolongations F and G of f and g. Again, the Dirac
reduction, as a special case of the Marsden–Ratiu reduction scheme, has two steps: we
firstly deform π to πD and then restrict πD to the level set S.

3 Existence of Dirac reduction

We now present some realizations of the above Dirac case and discuss the classical concept
of the Dirac classification of constraints. We will show that the classification of constraints
as being either of first-class or of second-class, proposed by Dirac, should be reexamined
when one looks at the problem from a more general point of view.

We recall that a constraint ϕk is of first class if its Poisson bracket with all the remaining
constants ϕi vanishes on S, that is if

{ϕk, ϕi}π|S = 0, i = 1, . . . ,m. (3.1)
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Otherwise ϕk is of second-class. In the case that at least one of the constraints is of the
first class, the matrix ϕij in (2.11) is singular on S so that the formula (2.13) cannot be
used in order to define πR. However, it may still be possible to define πR via the above
general scheme. This indicates that the concept of first class constraint is too narrow.
Below we demonstrate the examples of Dirac reduction in case when constraints are of
first class.

We start with a simple example. Consider a 2n-dimensional manifold M parametrized
by coordinates (q1, . . . , qn, p1, . . . , pn) and equipped with a Poisson operator of the form

π =
[

0 Qn

−Qn 0

]
,

where Q is a diagonal matrix of the form Qn = diag(q1, . . . , qn). Consider a submanifold S
given by a pair of constraints ϕ1(q, p) ≡ qn = 0 and ϕ2(q, p) ≡ pn = 0. Then the matrix ϕ
has the form

ϕ =
[

0 qn

−qn 0

]
so that it is clearly singular on S (det(S) = 0 on S)and

ϕ−1 =
1
qn

[
0 1
−1 0

]
so that the Dirac formula (2.13) cannot be applied. However, the vector fields Z1 = q−1

n X2

and Z2 = −q−1
n X1 that span our distribution Z are not singular on S sinceX1 = −qn∂/∂pn

and X2 = qn∂/∂qn so that the deformation (2.12) becomes

πD = π − 1
qn

X1 ∧X2 = π − qn
∂

∂qn
∧ ∂

∂pn
=

n−1∑
i=1

qi
∂

∂qi
∧ ∂

∂pi

and can easily be restricted to S. The operator πR obtained on S parametrized by coor-
dinates (q1, . . . , qn−1, p1, . . . , pn−1) is

πR =
[

0 Qn−1

−Qn−1 0

]
.

This simple example clearly illustrates that Dirac’s classification is too strong. As a second
example we consider a particle moving in a Riemannian manifold Q of dimension three
with a contravariant metric tensor

G =

 0 0 1
0 1 0
1 0 0


given in some coordinates

(
q1, q2, q3

)
. Suppose that this particle is subordinated to a holo-

nomic constraint on Q given by

ϕ1(q) ≡ q1q2 + q3 = 0. (3.2)
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This defines a submanifold of Q. The velocity v =
3∑

i=1
vi∂/∂qi of this particle must then

remain tangent to this submanifold so that

0 = 〈dϕk, v〉 =
3∑

i=1

∂ϕk

∂qi
vi.

and thus in our coordinates vi =
∑
j
Gijpj the motion of the particle in the phase space

M = T ∗Q is constrained not only by (3.2) but also by the relation

ϕ2(q, p) ≡
3∑

i,j=1

Gij ∂ϕ1(q)
∂qi

pj ≡ p1 + p2q
1 + p3q

2 = 0 (3.3)

that is nothing else than the lift of (3.2) to M. The constraints (3.2)–(3.3) define a four-
dimensional submanifold S of M. We now introduce the following Poisson structure
on M:

π =



0 0 0 q1 −1 0
0 0 0 q2 0 −1
0 0 0 2q3 q2 q1

−q1 −q2 −2q3 0 p2 p3

1 0 −q2 −p2 0 0
0 1 −q1 −p3 0 0

 .

Again the matrix ϕ is singular, since ϕ12 = 2
(
q1q2 + q3

)
= 2ϕ1 which obviously va-

nishes on S. One can, however, perform the deformation (2.12). A quite lengthy but
straightforward computation shows that in this case

πD =



0 0 0 q1 −1 0
0 0 0 q2 0 −1
0 0 0 −2q1q2 q2 q1

−q1 −q2 2q1q2 0 p2 p3

1 0 −q2 −p2 0 0
0 1 −q1 −p3 0 0


and this operator can be restricted to S. To do this, one can first pass to the Casimir
variables(

q1, q2, ϕ1(q), ϕ2(q, p), p2, p3

)
since, due to the fact that it is easiest to eliminate q3 and p1 from the system of equations
ϕ1 = ϕ1(q) = 0, ϕ2 = ϕ2(q, p) = 0, we parametrize our submanifold by the coordinates(
q1, q2, p2, p3

)
. In these variables the operator πR attains the canonical form

πR =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 .
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Our two examples show that the condition (3.1) is only a necessary condition for non-
existence of πR on S, but is not a sufficient one. Hence the definition of first class con-
straints has to be made weaker. Even in the case when we deal with a real first class
constraint we can obtain πR on S coming from the Dirac reduction of π. We demonstrate
this below.

Firstly we assume that we have a pair of constraints ϕ1, ϕ2 that define our subma-
nifold S = {ϕ1 = 0, ϕ2 = 0} and such that they are of second class, i.e. that ϕ12|S =
{ϕ1, ϕ2} |S �= 0. It is clear that our submanifold S can be parametrized in infinitely many
different ways by constraints ϕ̃1 = 0, ϕ̃2 = 0, where

ϕ̃1 = ψ1ϕ1 + ψ2ϕ2, ϕ̃2 = ψ3ϕ1 + ψ4ϕ2 (3.4)

and where ψi are some functions on M such that ψi|S �= 0 and such that

D ≡
∣∣∣∣D(ϕ̃1, ϕ̃2)
D(ϕ1, ϕ2)

∣∣∣∣ = ψ1ψ4 − ψ2ψ3 �= 0. (3.5)

One can prove the following

Lemma 5. The deformations (2.12) given by the pair ϕ1, ϕ2 of constraints and by the
pair ϕ̃1, ϕ̃2 of constraints define the same reduced Poisson operator πR on S.

Proof. For the moment we denote the deformation (2.12) defined through ϕ1, ϕ2 by πD

and the corresponding deformation defined through ϕ̃1, ϕ̃2 by π̃D. Applying (2.12) we
easily get that for any two functions A,B : M → R

{A,B}πD
= {A,B}π +

{A,ϕ2}π {B,ϕ1}π − {A,ϕ1}π {B,ϕ2}π

{ϕ1, ϕ2}π

,

where we have assumed that {ϕ1, ϕ2}π does not vanish on S. Similarly

{A,B}π̃D
= {A,B}π +

{A, ϕ̃2}π {B, ϕ̃1}π − {A, ϕ̃1}π {B, ϕ̃2}π

{ϕ̃1, ϕ̃2}π

, (3.6)

where {ϕ̃1, ϕ̃2}π does not vanish on S due to (3.5). Using the relations (3.4) between the
deformed constraints ϕ̃i and the original constraints ϕi, the Leibniz property of Poisson
brackets and the fact that the functions ϕi vanish on S we obtain

{ϕ̃1, ϕ̃2}π

∣∣
S = D {ϕ1, ϕ2}π

∣∣
S

and

({A, ϕ̃2}π {B, ϕ̃1}π − {A, ϕ̃1}π {B, ϕ̃2}π)
∣∣
S

= D ({A,ϕ2}π {B,ϕ1}π − {A,ϕ1}π {B,ϕ2}π)
∣∣
S

so that the nonzero terms D in the numerator and denominator of (3.6) cancel and we
obtain {A,B}πD

∣∣
S = {A,B}π̃D

∣∣
S which implies that the projections of πD and π̃D onto S

coincide. �
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In this nonsingular case the distribution Z along which we project a Poisson ten-
sor π usually changes after reparametrization, but Z|S remains the same as can be easily
demonstrated. Thus in case of the second class constraints one has a “canonical” way of
projecting π onto S.

We now suppose that the constraints ϕi are of first class, that is {ϕ1, ϕ2}π|S = 0
and that the singularity in πD is not removable. We may still attempt to define the
projection πR by reparametrizing S as in (3.4) above. It turns out that among an infinite
set of admissible reparametrizations there are some exceptional which, although they fulfil
the condition (3.1), nevertheless eliminate the singularity in πD. In this case, however,
by choosing a new parametrization ϕ̃1, ϕ̃2 of S we change the distribution Z even on S
so that we cannot expect that the projection πR will be independent of the choice of the
parametrization. We lose a natural, “canonical” choice of projection, but we still can
perform the projection, although in infinitely many nonequivalent ways. We illustrate this
below in a sequence of examples.

Consider a six-dimensional manifold M parametrized with coordinates (q1,q2, q3, p1, p2,
p3) with the following Poisson operator:

π =



0 0 0 1 q1 0
0 0 0 q1 2q2 + 1 q3
0 0 0 0 q3 0
−1 −q1 0 0 −p1 0
−q1 −2q2 − 1 −q3 p1 0 p3

0 −q3 0 0 −p3 0

 .

Consider now a four-dimensional submanifold S in M given by the relations

ϕ1(q, p) = q3 = 0, ϕ2(q, p) = p3 = 0. (3.7)

It is clear that {ϕ1, ϕ2}π vanishes on the whole manifold M (and thus on S) so that these
constraints do not define any Dirac deformation at all. We now deform (3.7) as

ϕ̃1 = ϕ1 + ϕ2, ϕ̃2 = (−p2 − q1p1)ϕ1 + ϕ2. (3.8)

Calculation shows {ϕ̃1, ϕ̃2}π = (p3 − q3)q3 so that {ϕ̃1, ϕ̃2}π|S = 0. One can show that
after introducing the Casimir variables (q1, q2, ϕ̃1, p1, p2, ϕ̃2) the deformed operator πD

attains the form

πD =



0 2
q1q3

q3 − p3
0 1 −q1 0

−2 q1q3
q3 − p3

0 0 q1 + 2
p1q3

q3 − p3
−q2

1 + θ 0

0 0 0 0 0 0

−1 −q1 − 2
p1q3

q3 − p3
0 0 −p1 0

q1 −q2
1 − θ 0 p1 0 0

0 0 0 0 0 0


,

where now q3 = q3(q, p, ϕ̃) and p3 = p3(q, p, ϕ̃) and θ = (q3 + p2q3 + q1q3p1)/(q3 − p3), and
as such is clearly singular on S and thus unreducible. This situation seems to be the most



462 K Marciniak and M Blaszak

common, i.e. a spontaneous choice of parametrization almost always leads to a singularity.
However, if we perform a slightly different deformation of (3.7):

ϕ̃1 = ϕ1, ϕ̃2 = (−p2 − q1p1)ϕ1 + ϕ2 (3.9)

so that {ϕ̃1, ϕ̃2}π = −q2
3 is again zero on S, then the operator πD becomes nonsingular

and its projection on S has the following form

πR =


0 0 1 −q1
0 0 q1 1− q2

1

−1 −q1 0 p1

q1 q2
1 − 1 −p1 0


in the variables (q1, q2, p1, p2). Yet another deformation (even this time of the form (3.4)):

ϕ̃1 = q2ϕ1, ϕ̃2 = (p2 + ϕ2)ϕ1 (3.10)

yields a quite complicated expression on {ϕ̃1, ϕ̃2}π:

{ϕ̃1, ϕ̃2}π = (3q2 + 1)q2
3 + q3

3,

so that it again vanishes on S, but πD is again nonsingular and in the same variables
(q1, q2, p1, p2) its projection becomes

πR =



0 0 1− q2
1

3q2 + 1
0

0 0
q1q2

3q2 + 1
0

q2
1

3q2 + 1
− 1 − q1q2

3q2 + 1
0 − q1p2

3q2 + 1

0 0
q1p2

3q2 + 1
0


which concludes our series of examples.

4 Conclusions

In this article we have focused on two issues involving Dirac reductions of Poisson operators
on submanifolds. In the first part of the article we have shown how the Dirac reduction
procedure fits in a natural way, i.e. as a result of two natural assumptions about the
deformation πD of π, in the general Marsden–Ratiu reduction scheme. In the second
part of our considerations we have demonstrated that the Dirac reduction procedure is
often possible even in cases when the constraints that define our submanifold are of first
class (in Dirac terminology), possibly after some suitably chosen reparametrization of the
submanifold S.
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