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Abstract

Each Hk inner product, k ∈ N, endows the diffeomorphism group of the circle with
a Riemannian structure. For k ≥ 1 the Riemannian exponential map is a smooth local
diffeomorphism and the length-minimizing property of geodesics holds.

1 Introduction

Some equations of mathematical physics arise as geodesic equations for certain right-
invariant Riemannian metrics on diffeomorphism groups [1]. These groups have an infi-
nite dimensional Lie group structure. Since their differentiable structure is modelled on
a Fréchet space, the analysis is intricate and few rigourous results are available. The aim
of this work is to report on a special case in which infinite-dimensional counterparts of
results from classical Riemannian geometry can be established.

The family D of increasing diffeomorphisms of the unit circle S ⊂ C is an infinite-
dimensional Lie group. Its Lie algebra TIdD is the space C∞(S) of real smooth periodic
maps of period one. A right-invariant Riemannian metric on the diffeomorphism group D
is determined by its value on TIdD = C∞(S). That is, there is a one-to-one correspondence
between right-invariant Riemannian metrics on D and inner products on C∞(S). We study
Riemannian structures associated with the family of Hk inner products. Here Hk(S)
is the Hilbert space of all L2(S)-functions f (square integrable periodic functions) with
distributional derivatives ∂i

xf in L2(S) for i = 0, . . . , k, endowed with the inner product

〈f, g〉k =
k∑

i=0

∫
S
∂i

xf(x) ∂
i
xg(x) dx, f, g ∈ Hk(S).

In the next section we highlight some aspects of the diffeomorphism group D while in
Section 3/Section 4 we present some results about the geodesic flow of Hk right-invariant
metrics. The considerations presented here are detailed and developed in [10].
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2 The diffeomorphism group

The group D is an open subset of C∞(S,S), which is itself a closed subset of C∞(S,C).
We will describe the Fréchet manifold structure of D.

The tangent space

For a C1-path t �→ ϕ(t) in D with ϕ(0) = Id, we have ϕ′(0)(x) ∈ TxS at x ∈ S ⊂ C.
Therefore ϕ′(0) is a vector field on S and we can identify TIdD with Vect(S), the space of
smooth vector fields on S. If ξ(x) is a tangent vector to S at x ∈ S ⊂ C, then 
e [x ξ(x)] = 0
and u(x) = 1

2πi x ξ(x) ∈ R. This allows us to identify the space of smooth vector fields on
the circle with C∞(S). The latter may be thought of as the space of real smooth periodic
maps of period one and will be used as a model for the construction of local charts on D.
Note that C∞(S) is a Fréchet space, its topology being defined by the countable collection
of Cn(S)-seminorms: a sequence uj → u as j → ∞ if and only if for all n ≥ 0 we have
uj → u in Cn(S) as j → ∞.

Local charts

To define a local chart around the point ϕ0 ∈ D, we take the neighborhood U0 = {ϕ ∈ D :
‖ϕ− ϕ0‖C0(S) < 1/2} of ϕ0 and we define

u(x) = Ψ0(ϕ) =
1
2πi

log(ϕ0(x)ϕ(x)), x ∈ S.

Note that u(x) is a measure of the angle between ϕ0(x) and ϕ(x). We obtain the local
charts {U0,Ψ0}, with the change of charts given by

Ψ2 ◦Ψ−1
1 (u1) = u1 +

1
2πi

log(ϕ2 ϕ1).

The previous transformation being just a translation on the vector space C∞(S), the
structure described above endowsD with a smooth manifold structure based on the Fréchet
space C∞(S).

Lie group structure

A direct computation (see [12]) shows that the composition and the inverse are both
smooth maps from D ×D → D, respectively D → D, so that the group D is a Lie group.

The Lie bracket on the Lie algebra TIdD ≡ C∞(S) of D is given by

[u, v] = −(uxv − uvx), u, v ∈ C∞(S).

Each v ∈ TIdD gives rise to a one-parameter group of diffeomorphisms {η(t, ·)} ob-
tained by solving ηt = v(η) in C∞(S) with initial data η(0) = Id ∈ D. Conversely,
each one-parameter subgroup t �→ η(t) ∈ D is determined by its infinitesimal generator
v = ∂

∂t η(t)
∣∣∣
t=0

∈ TIdD. Evaluating the flow t �→ η(t, ·) at t = 1 we obtain an element

expL(v) of D. The Lie-group exponential map v → expL(v) is a smooth map of the Lie
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algebra to the Lie group [18]. Although the derivative of expL at 0 ∈ C∞(S) is the iden-
tity Id, expL is not locally surjective [18]. This failure, in contrast with the case of Hilbert
manifolds [16], is due to the fact that the inverse function theorem does not necessarily
hold in Fréchet spaces [14].

3 Hk metrics

The inertia operator

For k ≥ 0 and u, v ∈ TIdD ≡ C∞(S), observe that

〈u, v〉k =
∫

S

k∑
i=0

(∂i
xu) (∂

i
xv) dx =

∫
S

Ak(u) v dx, (3.1)

where Ak : C∞(S) → C∞(S) is the linear continuous isomorphism

Ak = 1− d2

dx2
+ · · ·+ (−1)k d

2k

dx2k
.

Note that Ak is symmetric in the sense that
∫

S1

Ak(u) v dx =
∫

S1

uAk(v) dx, u, v ∈ C∞(S).

For η ∈ D, let Rη∗ : TIdD → TηD, u �→ u ◦ η, be the derivative of the right-translation
Rη : D → D, ϕ �→ ϕ ◦ η. We extend the inner product (3.1) to each tangent space TηD,
η ∈ D, by right-translation

〈V,W 〉k :=
〈
Rη−1∗V, Rη−1∗W

〉
k
, V,W ∈ TηD.

This way we obtain a smooth right invariant metric on D.

The connection

Since the previously defined right-invariant metric defines a weak topology on D, the
existence of an associated Levi–Civita connection is not certain. However, the existence of
a connection is ensured [9] if there exists a bilinear operator B : C∞(S)×C∞(S) → C∞(S)
with the property that

〈B(u, v), w〉 = 〈u, [v, w]〉, u, v, w ∈ TIdD = C∞(S).

In the case of the Hk right-invariant metric, the operator is given by

Bk(u, v) = −A−1
k (2vxAk(u) + vAk(ux)) , u, v ∈ C∞(S).

We have the following result.

Theorem 1. Let k ≥ 0. There exists a unique Riemannian connection ∇k on D associated
to the right-invariant metric defined on TIdD by (3.1).
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4 The geodesic flow

The geodesic equation

The existence of the connection ∇k enables us to define parallel translation along a curve
on D. Throughout the discussion, let I ⊂ R be an open interval with 0 ∈ I. If α : I → D
is a C2-curve, a lift γ : I → TD is called α-parallel if

vt =
1
2
(vux − vxu+Bk(u, v) +Bk(v, u)) , t ∈ I,

where u, v ∈ C1(I, C∞(S)) are defined by u = αt ◦ α−1, respectively v = γ ◦ α−1. A C2-
curve ϕ : I → D with the property that ϕt is ϕ-parallel is called a geodesic. That is,
a curve ϕ ∈ C2(I,D) with ϕ(0) = Id is a geodesic if and only if

ut = Bk(u, u), t ∈ I, (4.1)

where u = ϕt ◦ ϕ−1 ∈ TIdD ≡ C∞(S). Equation (4.1), called the Euler equation, is the
geodesic equation transported by right-translation to the Lie algebra TIdD. Problems of
type (4.1) arise in fluid mechanics.

Example 1. For k = 0, that is, for the L2 right-invariant metric, equation (4.1) becomes
the inviscid Burgers equation

ut + 3uux = 0. (4.2)

Equation (4.2) can be studied quite explicitly [15]. All solutions of (4.2) but the constant
functions have a finite life span and (4.2) is a simplified model for the occurence of shock
waves in gas dynamics.

Example 2. For k = 1, that is, for the H1 right-invariant metric, equation (4.1) becomes
cf. [19] the Camassa–Holm equation

ut + uux + ∂x (1− ∂x2)−1

(
u2 +

1
2
ux2

)
= 0. (4.3)

Equation (4.3) is a model for the unidirectional propagation of shallow water waves [2].
It has a bi-Hamiltonian structure [13] and is completely integrable [4, 11]. Some solutions
of (4.3) exist globally in time [3, 6], whereas others develop singularities in finite time
[3, 7, 17]. The blowup phenomenon can be interpreted as a simplified model for wave
breaking – the solution (representing the surface water wave) stays bounded while its
slope becomes vertical in finite time [5].

Conservation of momentum

As a consequence of the right-invariance of the metric by the action of the group on itself,
we obtain a particularly useful form of the conservation of momentum. If ϕ ∈ C2(I,D)
with ϕ(0) = Id is a geodesic and u = ϕt ◦ ϕ−1, then

mk(ϕ, t) = Ak(u) ◦ ϕ · ϕ2
x, (4.4)

satisfies mk(t) = mk(0) as long as mk(t) is defined.
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Existence of geodesics

Standard local existence theorems for differential equations with smooth right-hand side,
valid for Hilbert spaces [16], do not hold in C∞(S) cf. [14]. The strategy we develop to
prove the existence of geodesics is the following. In a local chart the geodesic equation (4.1)
can be expressed as the Cauchy problem

ϕt = v,

vt = Pk(ϕ, v), (4.5)

with ϕ(0) = Id, v(0) = u(0). The operator Pk in (4.5) is specified by

Pk(ϕ, v) =
[
Qk

(
v ◦ ϕ−1

)] ◦ ϕ,
where Qk : C∞(S) → C∞(S) is the operator

Qk(w) = Bk(w,w) + wwx, w ∈ C∞(S).

Since C∞(S) =
⋂

k≥nH
k(S) for all n ≥ 0, we may consider the problem (4.5) on each

Hilbert space Hn(S). If k ≥ 1 and n ≥ 3, then Pk is a smooth map from Un × Hn(S)
to Hn(S), where Un ⊂ Hn(S) is the open subset of all functions having a strictly positive
derivative. The classical Cauchy–Lipschitz theorem in Hilbert spaces [16] yields the exis-
tence of a unique solution ϕn(t) ∈ Un of (4.5) for all t ∈ [0, Tn) for some maximal Tn > 0.
Relation (4.4) can be used to prove that Tn = Tn+1 for all n ≥ 3. We obtain the following
result.

Theorem 2. Let k ≥ 1. For every u0 ∈ C∞(S), there exists a maximal T > 0 and a unique
geodesic ϕ ∈ C∞([0, T ),D) for the right-invariant metric (3.1), starting at ϕ(0) = Id ∈ D
in the direction u0 = ϕt(0) ∈ TIdD. Moreover, the solution depends smoothly on the initial
data u0 ∈ C∞(S).

Remark. For k = 0, we have P0(ϕ, v) = −2 v·vx
ϕx

, which is not an operator from Un×Hn(S)
into Hn(S). Therefore the approach used for Theorem 2 is not suitable in this case.
Nevertheless, the method of characteristics applied to the equation (4.2) can be used to
show that even for k = 0 the statement of Theorem 2 holds [9].

The Riemannian exponential map

The previous results enable us to define the Riemannian exponential map ex p for the Hk

right-invariant metric (k ≥ 0). In fact, there exists δ > 0 and T > 0 so that for all
u0 ∈ D with ‖u0‖2k+1 < δ the geodesic ϕ(t;u0) is defined on [0, T ]. The homogeneity
property ϕ(t; su0) = ϕ(ts;u0) of the geodesics, valid for all t, s ≥ 0 for which both sides
of the equality are well-defined, enables us to define ex p(u0) = ϕ(1;u0) on the open set
{u0 ∈ D : ‖u0‖2k+1 <

2 δ
T } of D. The map u0 �→ ex p(u0) is smooth and its Fréchet

derivative at zero, Dex p0, is the identity operator. However, since we work on a Fréchet
manifold, these facts do not necessarily ensure that ex p is a C1 local diffeomorphism [14].
We proceed as follows. Working in Hk+3(S), we deduce from the inverse function theorem
in Hilbert spaces that ex p is a smooth diffeomorphism from an open neighborhood Ok+3 of
0 ∈ Hk+3(S) to an open neighborhood Θk+3 of Id ∈ Uk+3. Moreover, we may choose Ok+3
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such thatDex pu0
is a bijection ofHk+3(S) for every u0 ∈ Ok+3. Given n ≥ k+3, using (4.4)

and the geodesic equation, we can show that there is no u0 ∈ Hn(S), u0 �∈ Hn+1(S), with
ex p(u0) ∈ Un+1. Therefore for every n ≥ k+3, ex p is a bijection from On = Ok+3 ∩ Hn(S)
to Θn = Θk+3 ∩ Hn(S). Hence ex p is a bijection from O = Ok+3 ∩ C∞(S) to Θ =
Θk+3 ∩ C∞(S). At this point, (4.4) and the geodesic equation can be used to prove that
there is no u0 ∈ Hn(S), u0 �∈ Hn+1(S), with Dex pu0

(v) ∈ Hn+1(S) for some u0 ∈ O.
This shows that for every u0 ∈ O and n ≥ k + 3, the bounded linear operator Dex pu0

is
a bijection from Hn(S) to Hn(S). We obtain the following result.

Theorem 3. The Riemannian exponential map for the Hk right-invariant metric on D,
k ≥ 1, is a smooth local diffeomorphism from a neighborhood of zero on TIdD to a neigh-
borhood of Id on D.

Remark. Note that for k = 0, ex p is not a C1 local diffeomorphism from a neighborhood
of 0 ∈ TIdD to a neighborhood of Id ∈ D cf. [9].

Length-minimizing property

Let O and Θ be the open neighborhoods of 0 ∈ C∞(S), respectively Id ∈ D, defined above.
Then the map

G : D ×O → D ×D, (η, u) �→ (η,Rη ex p(u)) ,

is a smooth diffeomorphism onto its image. For η ∈ D, let Θ(η) = RηΘ = Rηex p(O).
We define the polar coordinates (r, w) of ϕ ∈ Θ(η) by setting v = rw with r ∈ R+ and
〈w,w〉k = 1, where v ∈ O is uniquely determined by ϕ = ex p(v) ◦ η. If γ : [a, b] → Θ(η) is
a piecewise C1-curve, then

l(γ) ≥ |r(b)− r(a)|,

where l(γ) is the length of the curve and (r(t), w(t)) are the polar coordinates of γ(t).
Moreover, equality holds if and only if the function t �→ r(t) is monotone and the map
t �→ w(t) ∈ O is constant. This leads to

Theorem 4. Consider D endowed with the Hk right-invariant metric (k ≥ 1). If η, ϕ ∈ D
are close enough, more precisely, if ϕ ◦ η−1 ∈ Θ, then η and ϕ can be joined by a unique
geodesic in Θ(η). Among all piecewise C1-curves joining η to ϕ on D, the geodesic is
length minimizing.

Specializing k = 1 in Theorem 4 we obtain that for the Camassa–Holm model for
shallow water waves (Example 2) the Least Action Principle holds. That is, a state of the
system is transformed to another nearby state through a uniquely determined flow of (4.3)
that minimizes the kinetic energy cf. [8].
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