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Abstract

Each H* inner product, k € N, endows the diffeomorphism group of the circle with
a Riemannian structure. For k£ > 1 the Riemannian exponential map is a smooth local
diffeomorphism and the length-minimizing property of geodesics holds.

1 Introduction

Some equations of mathematical physics arise as geodesic equations for certain right-
invariant Riemannian metrics on diffeomorphism groups [1]. These groups have an infi-
nite dimensional Lie group structure. Since their differentiable structure is modelled on
a Fréchet space, the analysis is intricate and few rigourous results are available. The aim
of this work is to report on a special case in which infinite-dimensional counterparts of
results from classical Riemannian geometry can be established.

The family D of increasing diffeomorphisms of the unit circle S C C is an infinite-
dimensional Lie group. Its Lie algebra T14D is the space C*°(S) of real smooth periodic
maps of period one. A right-invariant Riemannian metric on the diffeomorphism group D
is determined by its value on 11D = C*°(S). That is, there is a one-to-one correspondence
between right-invariant Riemannian metrics on D and inner products on C*°(S). We study
Riemannian structures associated with the family of H* inner products. Here H*(S)
is the Hilbert space of all L?(S)-functions f (square integrable periodic functions) with
distributional derivatives 0% f in L%(S) for i = 0,...,k, endowed with the inner product

(g = é [, 00 (x) Big(x) da, f.g € H(S).

In the next section we highlight some aspects of the diffeomorphism group D while in
Section 3/Section 4 we present some results about the geodesic flow of H* right-invariant
metrics. The considerations presented here are detailed and developed in [10].
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2 The diffeomorphism group

The group D is an open subset of C*°(S,S), which is itself a closed subset of C*°(S, C).
We will describe the Fréchet manifold structure of D.

The tangent space

For a Cl-path t — ¢(t) in D with (0) = Id, we have ¢'(0)(z) € T,S at x € S C C.
Therefore ¢'(0) is a vector field on S and we can identify TigD with Vect(S), the space of
smooth vector fields on S. If £(z) is a tangent vector to S at x € S C C, then Re [z £(z)] = 0
and u(z) = 5= T &(x) € R. This allows us to identify the space of smooth vector fields on
the circle with C°(S). The latter may be thought of as the space of real smooth periodic
maps of period one and will be used as a model for the construction of local charts on D.
Note that C*°(S) is a Fréchet space, its topology being defined by the countable collection
of C™(S)-seminorms: a sequence u; — u as j — oo if and only if for all n > 0 we have
uj — u in C™(S) as j — oo.

Local charts

To define a local chart around the point ¢ € D, we take the neighborhood Uy = {p € D :
o — <P0HCO(S) < 1/2} of po and we define

1 [

u(@) = Uo(p) = 5 —log(po(@)elx), v €S.

Note that u(x) is a measure of the angle between ¢o(x) and ¢(z). We obtain the local
charts {Up, ¥y}, with the change of charts given by

_ 1 __
Wy 0 Wy (un) = up + 5~ log(72 ¢1).

The previous transformation being just a translation on the vector space C*°(S), the
structure described above endows D with a smooth manifold structure based on the Fréchet
space C°(S).

Lie group structure

A direct computation (see [12]) shows that the composition and the inverse are both
smooth maps from D x D — D, respectively D — D, so that the group D is a Lie group.
The Lie bracket on the Lie algebra TigD = C*°(S) of D is given by

[u,v] = —(uzpv — uvy), u,v € C(S).

Each v € TigD gives rise to a one-parameter group of diffeomorphisms {n(¢,-)} ob-
tained by solving n; = v(n) in C°°(S) with initial data n(0) = Id € D. Conversely,
each one-parameter subgroup ¢ — n(t) € D is determined by its infinitesimal generator

v = %n(t) 06 TigD. Evaluating the flow ¢ — n(¢,-) at ¢ = 1 we obtain an element
t_

expy (v) of D. The Lie-group exponential map v — exp; (v) is a smooth map of the Lie
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algebra to the Lie group [18]. Although the derivative of exp; at 0 € C*°(S) is the iden-
tity Id, exp;, is not locally surjective [18]. This failure, in contrast with the case of Hilbert
manifolds [16], is due to the fact that the inverse function theorem does not necessarily
hold in Fréchet spaces [14].

3 HF metrics

The inertia operator

For k > 0 and u,v € TigD = C*°(S), observe that

k
(u, V) = /S;(O;u) (OLv)dx = /SAk(u) vdz, (3.1)

where Ay : C°(S) — C*°(S) is the linear continuous isomorphism

d2 ko
Ap=1— —+ 4+ (-DF—_.
F dx? o+ (= dz2k
Note that A is symmetric in the sense that

Ap(u)vde = / u Ag(v) dz, u,v € C(S).

St st

For n € D, let Ry : 171D — T,D, u +— w o1, be the derivative of the right-translation
R, :D — D, ¢ — ¢omn. We extend the inner product (3.1) to each tangent space 7}, D,
n € D, by right-translation

(VW) == (Ry-1,V, Ry 1, W) V,W € T,D.

k )

This way we obtain a smooth right invariant metric on D.

The connection

Since the previously defined right-invariant metric defines a weak topology on D, the
existence of an associated Levi—Civita connection is not certain. However, the existence of
a connection is ensured [9] if there exists a bilinear operator B : C°(S) x C*°(S) — C*°(S)
with the property that

(B(u,v), w) = (u, [v,w]), u,v,w € T1gD = C(S).
In the case of the H* right-invariant metric, the operator is given by
Bi(u,v) = — A1 (2u Ak (u) + vAg(ug)), u,v € C(S).
We have the following result.

Theorem 1. Let k > 0. There exists a unique Riemannian connection V¥ on D associated
to the right-invariant metric defined on TigD by (3.1).
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4 The geodesic flow

The geodesic equation

The existence of the connection V¥ enables us to define parallel translation along a curve
on D. Throughout the discussion, let I C R be an open interval with 0 e I. If a: I — D
is a C%-curve, a lift v : I — TD is called a-parallel if
1
v = 5 (Vup — vou+ Bi(u,0) + By(v,w)), el

where u,v € C1(I,C>(S)) are defined by u = ay o a™ !, respectively v = yoa~l. A C?-
curve ¢ : I — D with the property that ¢; is ¢-parallel is called a geodesic. That is,
a curve p € C%(I,D) with (0) = Id is a geodesic if and only if

ut = By (u,u), tel, (4.1)

where u = ¢; 0 p~1 € TigD = C*(S). Equation (4.1), called the Euler equation, is the
geodesic equation transported by right-translation to the Lie algebra T34 D. Problems of
type (4.1) arise in fluid mechanics.

Example 1. For k = 0, that is, for the L? right-invariant metric, equation (4.1) becomes
the inviscid Burgers equation

ug + 3uu, = 0. (4.2)

Equation (4.2) can be studied quite explicitly [15]. All solutions of (4.2) but the constant
functions have a finite life span and (4.2) is a simplified model for the occurence of shock
waves in gas dynamics.

Example 2. For k = 1, that is, for the H! right-invariant metric, equation (4.1) becomes
cf. [19] the Camassa—Holm equation

1
w4 wtty + 0y (1 — 9p2) (u2 + 3 uxz> =0. (4.3)

Equation (4.3) is a model for the unidirectional propagation of shallow water waves [2].
It has a bi-Hamiltonian structure [13] and is completely integrable [4, 11]. Some solutions
of (4.3) exist globally in time [3, 6], whereas others develop singularities in finite time
[3, 7, 17]. The blowup phenomenon can be interpreted as a simplified model for wave
breaking — the solution (representing the surface water wave) stays bounded while its
slope becomes vertical in finite time [5].

Conservation of momentum

As a consequence of the right-invariance of the metric by the action of the group on itself,
we obtain a particularly useful form of the conservation of momentum. If ¢ € C2(I,D)
with ¢(0) = Id is a geodesic and u = ¢; o ¢~ !, then

my(p,t) = Ap(u) o - 2, (4.4)

satisfies my(t) = my(0) as long as my(t) is defined.
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Existence of geodesics

Standard local existence theorems for differential equations with smooth right-hand side,
valid for Hilbert spaces [16], do not hold in C*°(S) cf. [14]. The strategy we develop to
prove the existence of geodesics is the following. In a local chart the geodesic equation (4.1)
can be expressed as the Cauchy problem

Yt =",
vy = Pr(p,v), (4.5)

with ¢(0) = Id, v(0) = u(0). The operator Py in (4.5) is specified by
Pi(p,v) = [Qk (voyp™)] o,

where Qf, : C®(S) — C°°(S) is the operator
Qr(w) = Bi(w, w) + ww,, w e C(S).

Since C®(S) = Nys,, H¥(S) for all n > 0, we may consider the problem (4.5) on each
Hilbert space H™(S). If k > 1 and n > 3, then P is a smooth map from U™ x H"(S)
to H™(S), where U™ C H™(S) is the open subset of all functions having a strictly positive
derivative. The classical Cauchy—Lipschitz theorem in Hilbert spaces [16] yields the exis-
tence of a unique solution ¢, (t) € U™ of (4.5) for all t € [0,T},) for some maximal 7;, > 0.
Relation (4.4) can be used to prove that T,, = T, for all n > 3. We obtain the following
result.

Theorem 2. Let k > 1. For everyug € C™(S), there exists a maximal T > 0 and a unique
geodesic ¢ € C*([0,T),D) for the right-invariant metric (3.1), starting at p(0) =1d € D
in the direction ug = @¢(0) € TiqD. Moreover, the solution depends smoothly on the initial
data ug € C*(S).

Remark. For k = 0, we have Py(y,v) = —2 =, which is not an operator from U" x H"(S)
into H"™(S). Therefore the approach used for Theorem 2 is not suitable in this case.
Nevertheless, the method of characteristics applied to the equation (4.2) can be used to
show that even for k = 0 the statement of Theorem 2 holds [9].

The Riemannian exponential map

The previous results enable us to define the Riemannian exponential map exp for the H*
right-invariant metric (k& > 0). In fact, there exists 6 > 0 and T > 0 so that for all
ug € D with ||upll2k+1 < 0 the geodesic ¢(t;up) is defined on [0,7]. The homogeneity
property ¢(t; sug) = (ts;ug) of the geodesics, valid for all ¢,s > 0 for which both sides
of the equality are well-defined, enables us to define exp(ug) = ¢(1;ug) on the open set
{up € D : Juollarx+1 < QT‘;} of D. The map uy — erplup) is smooth and its Fréchet
derivative at zero, Derfy, is the identity operator. However, since we work on a Fréchet
manifold, these facts do not necessarily ensure that expis a C* local diffeomorphism [14].
We proceed as follows. Working in H*+3(S), we deduce from the inverse function theorem
in Hilbert spaces that exrpis a smooth diffeomorphism from an open neighborhood Oy 3 of
0 € H**3(S) to an open neighborhood ©y3 of Id € U**3. Moreover, we may choose Oy 3
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such that Dexp, is a bijection of H*3(S) for every ug € Ogy3. Givenn > k+3, using (4.4)
and the geodesic equation, we can show that there is no ug € H™(S), up ¢ H"T(S), with
exp(ug) € UL, Therefore for every n > k+3, expis a bijection from O,, = O3 N H™(S)
to ©, = Opys N H™(S). Hence erpis a bijection from O = Oy N C(S) to O =
Oka3 N C(S). At this point, (4.4) and the geodesic equation can be used to prove that
there is no ug € H™(S), uo ¢ H"(S), with Derp,,(v) € H"T(S) for some uy € O.
This shows that for every ug € O and n > k + 3, the bounded linear operator Derp,, is
a bijection from H"(S) to H™(S). We obtain the following result.

Theorem 3. The Riemannian exponential map for the H* right-invariant metric on D,
k > 1, is a smooth local diffeomorphism from a neighborhood of zero on TigD to a neigh-

borhood of 1d on D.

Remark. Note that for k = 0, expis not a C' local diffeomorphism from a neighborhood
of 0 € T4D to a neighborhood of Id € D cf. [9].

Length-minimizing property

Let O and © be the open neighborhoods of 0 € C*°(S), respectively Id € D, defined above.
Then the map

G:Dx0O—-DxD, (n,u) — (n, Ryexpu)),

is a smooth diffeomorphism onto its image. For n € D, let ©(n) = R,0 = R,expO).
We define the polar coordinates (r,w) of ¢ € O(n) by setting v = rw with » € R4 and
(w,w) =1, where v € O is uniquely determined by ¢ = exp(v) on. If v : [a,b] — O(n) is
a piecewise C'-curve, then

() = [r(b) —r(a)l;

where [(y) is the length of the curve and (r(t),w(t)) are the polar coordinates of ~(t).
Moreover, equality holds if and only if the function ¢ — r(¢) is monotone and the map
t — w(t) € O is constant. This leads to

Theorem 4. Consider D endowed with the H* right-invariant metric (k >1). Ifn, o € D
are close enough, more precisely, if pon~! € O, then n and ¢ can be joined by a unique
geodesic in ©(n). Among all piecewise C*-curves joining 1 to @ on D, the geodesic is
length minimizing.

Specializing £k = 1 in Theorem 4 we obtain that for the Camassa—Holm model for
shallow water waves (Example 2) the Least Action Principle holds. That is, a state of the
system is transformed to another nearby state through a uniquely determined flow of (4.3)
that minimizes the kinetic energy cf. [8].
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