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Abstract

In this paper we discuss the Moyal deformed 2D Euler flows and its Lax pairs. This
in turn yields the semi-discrete version of 2D Euler equation.

1 Introduction

The geometry approach to fluid mechanics has a century old long history. In post war
period, this activity started again from the work of Arnold [1], who showed in 1966 that
if u(z,t) is a time dependent divergence free vector field on a compact Riemannian n-
manifold M and if n(z, t) is the volume preserving flow, then u satisfies the Euler equation

% + Vyu = —grad p
if and only if the curve t — (-, t) is an L? geodesic in D, (M), the group of C*° volume
preserving diffeomorphism on M.

In a celebrated paper, Ebin and Marsden [6] developed the analytic geometrical side of
Arnold’s paper. They showed that the spray of the Euler equation is smooth. They also
proved that on manifold without boundary, the solutions of the Navier-Stokes equation
converge to those of the Euler equations when viscosity tends to zero.

The integrable discretization of an integrable mechanical system is always a challenging
problem. Recently, in a series of papers, Bobenko and Suris [2,3] discussed integrable
discretization based on the discretization of variational principles. They are motivated
by the work of Moser and Veselov [16] in which an integrable discretization of the N-
dimensional rigid body was investigated. In particular, they studied [17] an integrable
discrete-time Lagrangian system on the group of area preserving plane diffeomorphisms
SDif f(R?).
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A further development of the general theory was undertaken in [4], where general
discrete-time Euler-Poisson equations on semidirect product Lie algebras were obtained
as a result of a reduction procedure , applied to discrete-time Lagrangian systems on Lie
groups.

Variational principles for mechanical systems with symmetry and their applications
to integration algorithms were studied by Marsden and Wendlandt [13]. The general
idea for these variational integrators is to directly discretize Hamilton’s principle rather
than the equations of motion in a way that preserves the original system’s invariants,
notably the symplectic form and, via a discrete version of Noether’s theorem, the mo-
mentum map. The resulting mechanical integrators are second-order accurate, implicit,
symplectic-momentum algorithms. In other papers, Marsden et. al. [14,15] showed
geometric-variational approach to continuous and discrete mechanics and field theories.
Using multisymplectic geometry, they showed that the existence of the fundamental ge-
ometric structures as well as their preservation along solutions can be obtained directly
from the variational principle. In the case of mechanics, they recover the variational sym-
plectic integrators of Veselov type [25], while for PDEs we obtain covariant spacetime
integrators which conserve the corresponding discrete multisymplectic form as well as the
discrete momentum mappings corresponding to symmetries.

Following the method of Strachan’s [21,22] deformation of Plebanski’s first heavenly
equation [3], {Qp, Qv = 1, where  is an unknown Kéhler potential on the space-time
with coordinates p, ¢, D, g, we propose the deformation of our equations. Later Takasaki
[21,22] proved the integrability of Strachan’s equation using the dressing operator method.

Using the close similarities between integrable systems and their ¢-deformations with
Moyal brackets and associative x-products, a-version of the discretization procedure of R.
Kemmoku and S. Saito is given in [11]. This leads to a new g-Moyal type bracket [5].
Using this scheme we propose a discrete version of 2D Euler equation of incompressible
fluid, this actually yields a sort of ¢g-version of the deformation quantization programme.
We have encountered such systems in string theory also [10]. This method can be applied
to any geodesic equation on area preserving diffeomorphism group [9].

2 Preliminaries

The three-dimensional incompressible Euler equation can be expressed in vorticity form,
W+ (u-V)Q—(Q-V)u=0, (2.1)

where u = (u1,ug,u3) is the velocity, Q = (Q1,Q9,Q3) is the vorticity, V = (9,0, 0,),
Q=Vxu,and V-u=0.
Dropping the third subscript of €2, the 2D Euler equation can be written as
o+ {Q, ¥} =0, (2.2)

where the bracket is given by {f,g} = 0,f0yg — 0yf0,g, and ¥ is the stream function
given by
Q=AV.

The Lax pair of the 2D Euler equation [12] is given by
Lo =Xrp, Op+ Ap=0, (2.3)
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where
Compatibility of equation (3) yields:

Proposition 1.
L+ [A L =0,Q+{Q, ¥} =0.

Outline of Proof:
(0L)g = {(0:92), 9},

[A7 L]¢ = _{\Ij7 {Qa ¢}} + {Qv {\I]a qb}}
= Jacobi identity + {¢,{V,Q}}.
Thus the proof solely depends on the Jacobi identity. [J

REMARK: The barotropic quasigeotropic flow equation on the (-plane is expressible
in the form

o0 ov
S TV -po— =0, (2.4)
where U = W(x,y) is the stream function which is is proportional to the pressure fluc-
tuation and Q = AW + k3 is the vortex density. Here A is the two dimensional Laplace
operator, kg 1'is the Rossby deformation radius and § is the lattitude derivative of the
Coriolis parameter which is supposed to be constant.

The Rossby equation is equivalent to 2D Euler equation under transformations

Q+— Q4+ By.

We can apply this scheme to Rossby equation. The Lax pair of the Rossby equation is
given by . }
Lé={0,6}, Ap+{¥,¢}=0 with Q=0+ 8y,

or by change of variables

Lo={0.0} O Ab+{¥,6} =0

EXAMPLE 2: Let us give you another example of 2D Euler type equation. It is
known that geodesics on SO(N) is equipped with the Manakov metric. This generalizes
the ”classical” integrable system of Fuler’s equations for a top with one fixed point, and
this corresponds to N = 3. It was shown by Ward [26] that the limit N — oo corre-
sponds to replacing SU(N) by a certain Lie algebra of vector fields of the area preserving
diffeomorphic group, hence the geodesic flow on SO(c0) group is given by

O ={Q, U}, where ¥ = £(z)Q,

and this leads to
Q= -¢ Q0.

The Lax pair of this equation must be same as 2D Euler equation.
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3 Moyal Deformation of 2D-Euler system and Lax Pair

We will study the Moyal algebraic deformation of the geodesic flows on the area preserving
diffeomorphic group. Recently Strachan introduced a (formal) Moyal algebraic algebraic
deformation of self dual gravity, replacing a Poisson bracket of the Plebanski equation by
a Moyal bracket [18]. Later Moyal deformation of KP and Toda hierarchies have been
studied by Takasaki [23, 24].

The Poisson bivector P on R?* determines a linear operator on the tensor square of
the function space

P:FRG—PFG) =) (F, &Gy, —F, ®Gy,).
=1

It is known that the operator tr is the restriction to the diagonal R «— R x R, and hence
tr(F ® G) = FG.
The Moyal product is defined by

ih
Fx, G=Fexp [Z—

— — — —
5 (020~ ayam] G

[75(811692 a“”26"91 )}F(xh yl)G('T27 y2)’(x’y)7

n

—Z 'n' SO (1) @R @ TOG),
0

where & is a formal parameter.
Replacing ih/2 by k, one obtains

R omF oG
FxG =
20: m! Z — )il 9y~ 9xt Dx™ Oy

Historically this * product appeared in a seminal but somewhat unappreciated paper of
H. Groenewold [8]. This paper fully understands the Weyl correspondence and produces
Wigner function as the classical kernel of the density matrix.

The Moyal bracket is defined by

FxG—-G+*F
2K '

{F, G} Moyal = (3.1)

Lemma 1. The xj satisfies following properties for F, G € C*°(R?") and constant c,
1. limp_oF %, G = FG,
2. ¢cxp F = cF,
3. *p is associative,
4. limp—o{F, G} Moyat = {F, G} Poisson;

5. {F, G} Moyal is bilinear, skew-symmetric and satisfies Jacobi identity.
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3.1 Deformation equation and its Lax Pair

Following Strachan and Takasaki we deform the 2D Euler flow as

00
B +{Q, ¥} proyar = 0. (3.2)

This equation is the quantum Liouville equation, for which Moyal originally intro-
duced his bracket [18]. There are three equivalent methods of quantization: Hilbert space
method, path integral approach and quantization via Wigner’s phase space distribution
function. We are focussing on the last method.

Lax Pair. The Lax pair of the Moyal deformed 2D Euler equation is closely related to
the Lax pair of the original equation.

Lh(b = )‘(ba at¢ + Aﬁ(b =0, (33)

where
Lh¢ = {Qv ¢}Moyal; Ah(b + {\ij ¢}Moyal =0.
Compatibility yields

Proposition 2.
atLh + [Aa L]h = atQ + {Qa ‘I/}Moyal =0.

Sketch of Proof: The Moyal deformation preserves the skew symmetric condition. [

4 Discretization of 2D Euler Flows
The operator e? acts as a shift operator
e f(x) = f(z+n). (4.1)
We demonstrate some applications [22]. Let L be an operator
L=e+u+ve?,

where ) is a parameter. The evolution equations for the fields u and v are given by

oL
E = {BvL}Moyala
where B = e* 4 u. This gives equations
2 o0 H23+1
- = 628+1
u /1[52:0 9251 (25 4 1)1°" Jo(z)
1
= ~fole+/2) — ol — /2)
2v(z) - R 2s+1
s Ty [SZ:; (s e @)
v(z)

= T[u(x + £/2) —u(z — K/2)]
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REMARK: There exists a natural isomorphism between the space of tensor densities
of degree A on S', Fy, and the space of functions on R?/{0} homogeneous of degree —2\.
For the affine parameter ¢, this isomorphism corresponds to

6(t)(dt) — b 6(7).

This isomorphism lifts the Moyal-Weyl star-product to the space of tensor densities, and
this yields the Gordan’s transvectant [19,20].

We wish to extend the above scheme to two variables, i.e. to the original Moyal defor-
mation. In the case of Moyal bracket for two variables one has

FxG=F(z+ Kk0y,y — k0z)G = G(x — KOy, y + KkOy)F. (4.2)

This powerful functional x-eigenvalue equation was developed by Fairlie [7]. It is known
that the systematic solution of time-dependent equation quantum Liouville equation is
usually predicted on the spectrum of stationary ones. But time-independent pure-state
Wigner functions x- commute with the Hamiltonian.

Lemma 2. The semi-discrete Moyal bracket is given by

2
{F, G}semi—discrete = ;F(SU + Klap,p - /fag;)G - G(SU + Iiap,p - K@x)F

2
= E[F(:c + kOp,p — KOy) — F(z — kOp, p + KO,)|G
Proof. It follows from the definition (5). O

Proposition 3. The semi-discrete 2D Euler equation is given by

?9_? + %[Q(x + KOp, p — K0y) — Q(x — KOp,p + K0:)|¥ = 0 (4.3)

5 Conclusion and outlook

In this paper we have studied the semi-discrete version of 2D Euler equation of incom-
pressible fluid using the techniques of Moyal deformation. This method can be applied
to dispersionless KP and Toda hierarchies, since both hierarchies are shown to possess a
quasi-classical limit with Moyal algebra structures replaced by Poisson algebra structures.
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