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Abstract

Möbius invariant versions of the discrete Darboux, KP, BKP and CKP equations are
derived by imposing elementary geometric constraints on an (irregular) lattice in a
three-dimensional Euclidean space. Each case is represented by a fundamental theorem
of plane geometry. In particular, classical theorems due to Menelaus and Carnot are
employed. An interpretation of the discrete CKP equation as a permutability theorem
is also provided.

1 Introduction

The KP, BKP and CKP hierarchies [1] and their multi-component analogues constitute
the fundamental hierarchies of integrable equations in soliton theory. Proto-typical ex-
amples of integrable equations which may be located in these hierarchies are the sine-
Gordon, Korteweg-de Vries, nonlinear Schrödinger, Kadomtsev-Petviashvili (KP) and
Davey-Stewartson equations. Remarkably, the entire KP and BKP hierarchies may be
retrieved from Hirota’s [2] and Miwa’s [3] integrable discrete master equations respec-
tively by taking sophisticated continuum limits. The classical Darboux system governing
conjugate coordinate systems is likewise integrable and contains as reductions a variety of
nonlinear equations such as the Maxwell-Bloch and 2+1-dimensional sine-Gordon equa-
tions [4]. In fact, the Darboux system has been identified as a ‘squared-eigenfunction’
symmetry of the 2-component KP hierarchy [5]. The Darboux system possesses an inte-
grable discrete counterpart which, in fact, represents an analogous geometric situation in
the framework of discrete geometry [6].

In the present paper, we record a novel geometric characterization of the discrete Dar-
boux system and show how the discrete KP, BKP and CKP equations may be obtained as
specializations by imposing elementary geometric constraints. These constraints on an (ir-
regular) lattice in a three-dimensional Euclidean space naturally lead to Möbius invariant
versions of the discrete KP, BKP and CKP equations by employing fundamental theorems

Copyright c© 2003 by W K Schief



Lattice Geometry of the Discrete Darboux, KP, BKP and CKP Equations 195

Figure 1. An octahedron embedded in an elementary cube

of plane geometry. Specifically, the Möbius invariant discrete Darboux system is encoded
in a generalization of Menelaus’ classical theorem [7, 8]. In a canonical degenerate geo-
metric situation, Menelaus’ theorem yields the discrete KP equation. The discrete BKP
equation is encapsulated in a theorem related to Maxwell’s reciprocal quadrangles [9, 10].
Carnot’s classical theorem [11] is shown to enshrine the discrete CKP equation. The lat-
ter may also be interpreted as a permutability theorem associated with a binary Darboux
transformation applied to the CKP hierarchy.

2 Geometric preliminaries and notation

In the present paper, we are concerned with the geometry of maps v of the type

v : F → R
3,

where F constitutes the set of face centres of a simple cubic lattice Z
3. The set F does not

represent a proper but ‘irregular’ lattice since it is not translationally invariant. The six
face centres of any elementary cube of the cubic lattice may be regarded as the vertices
of an octahedron as displayed in Figure 1. The twelve face centres which are inside a
cube composed of eight adjacent elementary cubes are taken as the vertices of a cubo-
octahedron. The eight octahedra inscribed in the elementary cubes are linked to the
cubo-octahedron as indicated in Figure 2 so that the set F may be associated with the
‘tiling’ of Euclidean space by octahedra and cubo-octahedra. In this sense, we may refer
to an edge, triangle or square of an octahedron or cubo-octahedron as an edge, triangle
or square in F.

In the context of difference equations, it proves convenient to label the three types of
face centres f i, i = 1, 2, 3 by

f1(n) = (1, 12 ,
1
2) + n, f2(n) = (1

2 , 1,
1
2) + n, f3(n) = (1

2 ,
1
2 , 1) + n,

where n = (n1, n2, n3) ∈ Z
3, and identify a map v with three maps

vi : Z
3 → R

3, vi(n) = v(f i(n)).

In connection with the discrete BKP equation, it is useful to introduce auxiliary maps of
the type

w : M → R
3
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Figure 2. The ‘tiling’ of space by octahedra and cubo-octahedra

which are defined on the set M of centres of the elementary cubes. If the centres m are
labelled by

m(n) = (1
2 ,

1
2 ,

1
2) + n

then we may make the natural identification of w with

w : Z
3 → R

3, w(n) = w(m(n)).

We usually suppress the argument of a function g(n) but indicate increments of the
independent variables ni by, for instance,

g = g(n1, n2, n3), g1 = g(n1 + 1, n2, n3)
g11 = g(n1 + 2, n2, n3), g23 = g(n1, n2 + 1, n3 + 1).

Moreover, throughout the paper, it is assumed that i, k, l ∈ {1, 2, 3} are distinct.
The multi-ratio of 2n complex numbers is defined by

M2n = M(P1, . . . , P2n) =
(P1 − P2)(P3 − P4) · · · (P2n−1 − P2n)
(P2 − P3)(P4 − P5) · · · (P2n − P1)

.

It is invariant under the group of Möbius transformations acting on the complex plane. In
the context of integrable systems, the geometric importance of multi-ratios has recently
been revealed by various authors [10, 12, 13, 14, 15].

3 Darboux lattices. A generalization of Menelaus’ theorem

We now select particular maps v by imposing a simple geometric condition:

Definition 1. A map v : F → R
3 is termed a discrete Darboux map if the four images of

the vertices of any square in F are collinear.

In the case of a generic map v, the squares of the cubo-octahedra are mapped to the
quadrilaterals (vi,vk,vi

k,v
k
i ). These quadrilaterals degenerate to (parts of) straight lines
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Lik = Lki if v constitutes a discrete Darboux map. The latter is therefore characterized
by the six linear relations

∆kv
i = ρik(vk

i − vi
k), (3.1)

where the difference operators ∆k are defined by ∆kg = gk − g. However, the coefficients
ρik are constrained by the compatibility conditions ∆l∆kv

i = ∆k∆lv
i which imply that

there exist potentials H i such that

ρik =
∆kH

i

H i
. (3.2)

It is then readily shown that the system (3.1) is compatible if and only if the functions H i

obey the nonlinear difference equations

∆ikH
l =

∆kH
i
l

H i
l

∆iH
l +

∆iH
k
l

Hk
l

∆kH
l (3.3)

with the second-order difference operator ∆ik = ∆i∆k. This system is integrable and has
come to be known as the ‘discrete Darboux system’ since it governs conjugate lattices
in Euclidean space [16, 17]. Nevertheless, as established in the preceding, the discrete
Darboux system affords an alternative geometric interpretation. Darboux lattices v(F) as
delineated in Definition 1 may therefore be considered integrable.

In order to proceed, we recall an important theorem [8] of planar geometry. Thus,
consider a planar polygon (P1, . . . , Pn), n ∈ N and denote by Qm the points of intersection
of a coplanar straight line L with the (extended) edges (Pm, Pm+1), m = 1, . . . , n. Here,
we make the natural identification Pn+1 = P1. Then, the ratios of the directed lengths
PmQm and QmPm+1 obey the algebraic relation

n∏
m=1

PmQm

QmPm+1

= (−1)n.

In the case of a triangle corresponding to n = 3, Menelaus’ classical theorem is retrieved [7].
The link with Darboux lattices is now established as follows:

It is evident that the vertices vi,vi
k,v

i
kl of a Darboux lattice corresponding to the

twelve vertices of a cubo-octahedron are coplanar. These vertices lie on the six straight
lines Lik, Lik

l which we may associate with (the squares of) that cubo-octahedron. A
prototypical planar configuration of six lines and twelve points is displayed in Figure 3.
Now, as indicated in Figure 3 for (i, k, l) = (1, 2, 3), the four lines Lik, Lil

k , L
ik
l , L

il give rise
to the quadrilateral (P1, P2, P3, P4) = (vi,vi

k,v
i
kl,v

i
l). The points of intersection with the

line Lkl
i are given by (Q1, Q2, Q3, Q4) = (vk

i ,v
l
ik,v

k
il,v

l
i). Thus, if we identify the plane

with the complex plane and regard the eight points Pm, Qm as complex numbers then the
above theorem for n = 4 implies that

(vi − vk
i )(v

i
k − vl

ik)(v
i
kl − vk

il)(v
i
l − vl

i)
(vk

i − vi
k)(v

l
ik − vi

kl)(v
k
il − vi

l)(v
l
i − vi)

= 1

or

M(vi,vk
i ,v

i
k,v

l
ik,v

i
kl,v

k
il,v

i
l,v

l
i) = 1. (3.4)
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Figure 3. The image of a cubo-octahedron under a discrete Darboux map

It is evident that the above multi-ratio condition is invariant under the symmetry group
of the quadrilateral formed by the lines Lik, Lil

k , L
ik
l , L

il. Thus, there essentially exists
one multi-ratio condition M8 = 1 corresponding to any five squares of a cubo-octahedron.
Moreover, it may be shown [15] that only three of the six multi-ratio conditions associated
with any cubo-octahedron are independent.

The above multi-ratio conditions are only valid locally since we have identified the
coplanar vertices with complex numbers. In order to obtain a set of difference equations
governing Darboux lattices, we now consider scalar-valued solutions vi of the linear system
(3.1), that is

vki − vi
vki − vik

=
H i

k

H i
. (3.5)

This system is compatible modulo the discrete Darboux system. Equivalently, it may be
regarded as a linear system for the coefficients H i. The compatibility conditionsH i

kl = H i
lk

then deliver the three multi-ratio lattice equations

M(vi, vki , v
i
k, v

l
ik, v

i
kl, v

k
il, v

i
l , v

l
i) = 1. (3.6)

By construction, this system constitutes a Möbius invariant version of the discrete Darboux
system (3.3). Its geometric origin has been demonstrated to reside in the generalization
(n = 4) of Menelaus’ theorem.

4 KP lattices. Menelaus’ theorem

There exist particular Darboux lattices for which the configurations of six lines and twelve
points degenerate to configurations consisting of four lines and six points. In order to define
lattices of this type, it is noted that F contains eight families of parallel triangles of the
same orientation. Each family corresponds to one of the triangles of a cubo-octahedron.
This gives rise to the following definition:

Definition 2. Let T be one of the eight families of triangles in F which are parallel and
of the same orientation. Then, a discrete Darboux map v : F → R

3 is termed a discrete
KP map if the three vertices of any triangle in T are mapped to the same point.
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v̄12 v̄23 v̄2

v̄1

v̄31

v̄3v̄

Figure 4. A Menelaus figure

Since the eight families of triangles appear on an equal footing, we may assume without
loss of generality that the vertices v1,v2 and v3 coincide. Thus, if we set

vi = v̄

then the vertices {v̄i, v̄ik, v̄il} ⊂ Li are collinear and there exists a line L passing through
the points v̄1, v̄2, v̄3. The vertex v̄ also lies on the line L but is insignificant since it does
not constitute a point of intersection of lines. Accordingly, in the case of discrete KP
maps, the planar configurations consist of the four lines L,Li and the six points v̄i, v̄ik

(cf. Figure 4). Menelaus’ theorem then implies that the points (P1, P2, P3) = (v̄31, v̄12, v̄23)
and (Q1, Q2, Q3) = (v̄1, v̄2, v̄3) regarded as complex numbers obey the algebraic relation

(v̄31 − v̄1)(v̄12 − v̄2)(v̄23 − v̄3)
(v̄1 − v̄12)(v̄2 − v̄23)(v̄3 − v̄31)

= −1

or

M(v̄31, v̄1, v̄12, v̄2, v̄23, v̄3) = −1. (4.1)

The discrete symmetries of the multi-ratio condition M6 = −1 guarantee that this multi-
ratio condition is equivalent to the multi-ratio conditions

M(v̄k, v̄ik, v̄kl, v̄il, v̄l, v̄i) = −1,

which are obtained by setting vi = v̄ in (3.4). The linear system (3.1) simplifies to

v̄k − v̄ = µik(v̄i − v̄), µik =
ρik

ρik + 1
(4.2)

which is compatible if and only if the coefficients µik may be parametrized according to

µik =
φk

φi
,

where the ‘potential’ φ obeys the difference equation

φ3 − φ1

φ31
+
φ1 − φ2

φ12
+
φ2 − φ3

φ23
= 0.

The latter constitutes nothing but the discrete modified Kadomtsev-Petviashvili (mKP)
equation which is related to the discrete KP equation by a discrete Miura-type transfor-
mation (see, e.g., [13]).
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A Möbius invariant form of the discrete (m)KP equation may be obtained by consid-
ering a scalar-valued solution v̄ of the linear system (4.2), that is

v̄k − v̄
v̄i − v̄ =

φk

φi
.

Once again, this system is compatible modulo the discrete mKP equation but may also be
regarded as a linear system for the potential φ. The associated compatibility conditions
lead to multi-ratio conditions which are equivalent to the scalar version of (4.1), that is

M(v̄31, v̄1, v̄12, v̄2, v̄23, v̄3) = −1.

The latter integrable lattice equation therefore governs KP lattices v(F) as delineated in
Definition 2. It may be regarded as a ‘Schwarzian’ version of the discrete KP equation
and has been discussed in detail in [13] in connection with Menelaus’ theorem and the
inversive geometry of the plane.

5 BKP lattices. Reciprocal quadrangles

Another class of particular Darboux lattices is obtained by relating a discrete Darboux
map v to a map w defined on the centres M of the cubic lattice. We first note that any
face centre f ∈ F constitutes the centre of the line segment (m,m′), where m,m′ ∈ M

are the centres of the two adjacent elementary cubes. Thus, if we regard M itself as a
cubic lattice then it is natural to state that the vertex v(f) and the edge (w(m),w(m′))
correspond. The following definition is based on the assumption that the relation between
f and m,m′ is preserved by the maps v and w:

Definition 3. A discrete Darboux map v : F → R
3 is termed a discrete BKP map if

the vertices v constitute the centres of the corresponding edges associated with a map
w : M → R

3.

If v constitutes a discrete Darboux map and w is a map defined on the centres M then
the condition for v being a discrete BKP map is given by

vi =
w + wi

2
. (5.1)

This specialization reduces the linear system (3.1) to

wik − w = ρik(wk − wi). (5.2)

The associated compatibility conditions wikl = wkli = wlik imply that the coefficients
ρik = −ρki may be parametrized according to

ρ21 =
τ1τ2
ττ12
, ρ32 =

τ2τ3
ττ23
, ρ13 =

τ3τ1
ττ31
,

where the potential τ obeys the integrable discrete BKP equation [3]

ττ123 + τ1τ23 + τ2τ31 + τ3τ12 = 0.
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Figure 5. Reciprocal quadrangles

The latter encodes the complete hierarchy of KP equations of B type.
BKP lattices v(F) and their associated lattices w(M) possess interesting geometric

properties. Thus, if we regard the points (w23,w31,w12,w) and (w1,w2,w3,w123) as the
vertices of two (planar) quadrangles then the linear system (5.2) together with

wikl − wl = ρikl (wkl − wil)

show that any of the six edges of one quadrangle corresponds to a parallel edge of the
other quadrangle as indicated in Figure 5. In fact, the six edges are parallel to the six lines
Lik, Lik

l . In the terminology of Maxwell [9], the two quadrangles constitute ‘reciprocal’
quadrangles. Accordingly, under a discrete BKP map, each cubo-octahedron is mapped to
a pair of reciprocal quadrangles. Reciprocal figures were investigated in detail by Maxwell
in connection with graphical statics and diagrams of forces [9]. In [10], various reciprocal
figures have been related to integrable lattice equations of BKP type. In particular, the
inversive geometry of reciprocal quadrangles has been discussed. These considerations have
led to the observation that the cross-ratios associated with any two reciprocal quadrangles
coincide, that is

(w23 − w31)(w12 − w)
(w31 − w12)(w − w23)

=
(w1 − w2)(w3 − w123)
(w2 − w3)(w123 − w1)

or

M(w23,w31,w12,w) = M(w1,w2,w3,w123). (5.3)

Here, the vertices w, . . . ,w123 have been identified with complex numbers. This is admis-
sible since the two planes spanned by the two quadrangles are parallel. It is evident that
the ordering of the four points in one of the multi-ratios M4 is irrelevant as long as the
ordering of the arguments in the second multi-ratio corresponds. At an algebraic level,
this is due to the discrete symmetries of the classical cross-ratio. For this reason, the
multi-ratio conditions (3.4) are equivalent to (5.3) if the reduction (5.1) is made.
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Scalar-valued solutions w of the linear system (5.2) obeying

w12 − w =
τ1τ2
ττ12

(w1 − w2)

w23 − w =
τ2τ3
ττ23

(w2 − w3)

w31 − w =
τ3τ1
ττ31

(w3 − w1)

give rise to a Möbius invariant avatar of the discrete BKP equation. Indeed, elimination
of the ‘τ -function’ via compatibility leads to multi-ratio conditions which are equivalent
to a scalar version of (5.3), that is

M(w23, w31, w12, w) = M(w1, w2, w3, w123).

This lattice equation may be regarded as a discrete ‘Schwarzian’ BKP equation since it
constitutes a compact form of the hierarchy of singular manifold equations [18] associated
with the BKP hierarchy. Thus, the Schwarzian BKP hierarchy may, in principle, be
obtained from the geometrically defined discrete BKP maps considered in this section.

6 CKP lattices. Carnot’s theorem

The final section is concerned with a reduction of the discrete Darboux system associated
with a theorem due to Carnot. Thus, based on the observation that there exist four
planar hexagons formed by the edges of a cubo-octahedron, each of which divides the
cubo-octahedron into two halves, we adopt the following definition:

Definition 4. A discrete Darboux map v : F → R
3 is termed a discrete CKP map if the

six images of the vertices of any planar hexagon belonging to a cubo-octahedron lie on a
conic.

In order to derive the difference equations governing CKP lattices v(F), we first recall
Carnot’s theorem [11]. Thus, consider a triangle (A,B,C) and denote by (Pm, Qm, Rm),
m = 1, . . . , n the points of intersection of a curve of degree n ∈ N with the (extended)
edges (A,B), (B,C), (C,A) respectively. Then, the algebraic relation

n∏
m=1

APm

PmB

BQm

QmC

CRm

RmA
= (−1)n

obtains. If the curve is a straight line (n = 1) then Menelaus’ theorem is retrieved. More-
over, since a curve of second degree (conic) is determined by five points, the converse of the
above theorem is valid in the case n = 2. Accordingly, if v constitutes a discrete Darboux
map and the choice (A,B,C) = (v1,v2,v3) is made then the six points (P1, P2) = (v1

2,v
2
1),

(Q1, Q2) = (v2
3,v

3
2), (R1, R2) = (v3

1,v
1
3) lie on a conic (cf. Figure 6) if and only if

(v1 − v1
2)(v

2 − v2
3)(v

3 − v3
1)

(v1
2 − v2)(v2

3 − v3)(v3
1 − v1)

=
(v2

1 − v2)(v3
2 − v3)(v1

3 − v1)
(v2 − v3

2)(v3 − v1
3)(v1 − v2

1)

or

M(v1,v1
2,v

2,v2
3,v

3,v3
1) = M(v2

1,v
2,v3

2,v
3,v1

3,v
1). (6.1)
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Figure 6. A Carnot figure (n = 2)

Here, the usual identification of the vertices with complex numbers has been made. It may
be shown that the multi-ratio conditions M6 = M6 associated with the remaining three
families of hexagons are equivalent to the multi-ratio condition (6.1). The specialization
of discrete Darboux maps to discrete CKP maps is therefore encoded in the multi-ratio
condition (6.1).

In terms of the coefficients ρik, the above multi-ratio condition may be expressed as

ρ12(ρ12 + 1)
ρ21(ρ21 + 1)

ρ23(ρ23 + 1)
ρ32(ρ32 + 1)

ρ31(ρ31 + 1)
ρ13(ρ13 + 1)

= 1 (6.2)

by virtue of the linear system (3.1). The scalar version (3.5) of the latter system then
implies that CKP lattices are governed by the three lattice equations (3.6), that is

M(vi, vki , v
i
k, v

l
ik, v

i
kl, v

k
il, v

i
l , v

l
i) = 1, (6.3)

subject to the constraint

M(v1, v12, v
2, v23, v

3, v31) = M(v21, v
2, v32, v

3, v13, v
1). (6.4)

In the remainder of this paper, it is shown that the overdetermined system (6.3), (6.4) is
compatible and constitutes a Möbius invariant version of the ‘symmetric’ discrete Darboux
system which, in turn, may be regarded as a discrete CKP equation.

The discrete Darboux system may be cast into the form of an equivalent first-order
system, namely

βik
l =

βik + βilβlk

(Γkl)2
, (Γkl)

2
= 1− βklβlk. (6.5)

The functions βik are related to the coefficients H i by

H i
k =
H i + βkiHk

(Γik)2
. (6.6)

If a solution βik of the nonlinear system (6.5) is prescribed then (6.6) may be regarded as a
compatible linear system for the coefficients H i which, in turn, obey the discrete Darboux
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system (3.3). Conversely, for any given solution H i of the discrete Darboux system, the
system (6.6) may be solved for the functions βik which then satisfy the system (6.5). The
latter admits a set of potentials ai defined by

aik = Γikai

since the associated compatibility conditions

Γ12
3

Γ12
=

Γ23
1

Γ23
=

Γ31
2

Γ31
(6.7)

are indeed satisfied. These potentials may be used to formulate the discrete Darboux
system in a different ‘gauge’. Thus, if we make the definitions

H̄ i = aiH i, β̄ik =
ak

ai
βik

then the systems (6.5), (6.6) become

β̄ik
l =

β̄ik + β̄ilβ̄lk

ΓilΓkl
, H̄ i

k =
H̄ i + β̄kiH̄k

Γik
. (6.8)

It is noted that the quantities Γik are symmetric in their indices, that is Γik = Γki, and
that Γ̄ik = Γik.

In view of the parametrization (3.2) of the coefficients ρik, it is now seen that

ρik(ρik + 1)
ρki(ρki + 1)

=
βki

βik

(
Hk

H i

)2

so that, on introduction of the quantities Qik according to

Qik =
β̄ki

β̄ik
,

the CKP constraint (6.2) assumes the form

Q12Q23Q31 =
β̄21β̄32β̄13

β̄12β̄23β̄31
= 1. (6.9)

In this case, the coefficients Qik depend only on two variables ni and nk since

∆lQ
ik = 0

modulo (6.9). The condition (6.9) then gives rise to the factorization Qik = f ik(ni)gik(nk).
However, on use of the invariance H̄ i → f i(ni)H̄ i, β̄ik → fk(nk)β̄ik/f i(ni) of the system
(6.8), it may be achieved that

Qik = 1 ⇔ β̄ik = β̄ki.

This evidently constitutes an admissible reduction of the discrete Darboux system (6.8)1.
Thus, it has been established that the geometric system (6.3), (6.4) constitutes a Möbius
invariant version of the ‘symmetric’ reduction [19, 20, 21] of the discrete Darboux system.



Lattice Geometry of the Discrete Darboux, KP, BKP and CKP Equations 205

The symmetric discrete Darboux system may be written as a single equation if one
exploits the relations (6.7). Indeed, the latter give rise to the parametrization

(Γik)
2
=
ττik
τiτk
, (β̄ik)

2
= 1− ττik

τiτk
(6.10)

so that, in terms of the potential τ , the system (6.8)1 becomes

(ττ123 − τ1τ23 − τ2τ31 − τ3τ12)2
= 4(τ1τ2τ23τ31 + τ2τ3τ31τ12 + τ3τ1τ12τ23 − τ1τ2τ3τ123 − ττ12τ23τ31). (6.11)

This quartic integrable lattice equation may also be obtained in a different manner. Thus,
it is observed that the discrete KP equation may be identified with the superposition
principle of solutions of the KP hierarchy generated by the classical Darboux transforma-
tion (see, e.g., [22]). In a similar manner, the generic binary Darboux transformation [23]
associated with the KP hierarchy gives rise to the discrete Darboux system. The binary
Darboux transformation may be specialized in such a way that it induces a Bäcklund
transformation for the BKP hierarchy. The corresponding permutability theorem is pre-
cisely of the form of the discrete BKP equation [24]. The KP hierarchy of C type is
generated via the compatibility of an infinite hierarchy of linear differential equations of
the type

ψtn = Ln(∂x)ψ =
2n+1∑
m=0

Ln
m∂

m
x ψ, (6.12)

where the differential operators Ln are skew-symmetric, that is

Ln + Ln† = 0,

and normalized by Ln
2n+1 = 1. The first non-trivial member of this linear hierarchy is

given by

ψt = ψxxx + 2qψx + qxψ (6.13)

with t = t1. If ψα, α ∈ N constitute particular solutions of (6.13) then ‘squared eigenfunc-
tions’ Mαβ may be introduced via

Mαβ
x = ψαψβ , Mαβ

t = ψαψβ
xx + ψα

xxψ
β − ψα

xψ
β
x + 2qψαψβ .

The latter are compatible modulo the evolution (6.13). It is now readily verified that (6.13)
is invariant under the binary Darboux transformations Dα : (ψ, q) → (ψα, qα), where

ψα = ψ − ψαM
α0

Mαα
, qα = q +

3
2
(lnMαα)xx

and ψ0 = ψ. Here, it is required to impose the admissible constraint Mαβ = Mβα. The
binary Darboux transformation D may be iterated in a purely algebraic manner. In fact,
if we define a τ -function according to

q =
3
2
(ln τ)xx
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then its iterated analogues are readily shown to be [25]

τν1···νµ = τ det(Mαβ), α, β ∈ {ν1, . . . , νµ}, µ ∈ N.

In particular, elimination of the bilinear potentials M1,M2,M3,M12,M23,M31 between
the expressions for τ1, τ2, τ3, τ12, τ23, τ31, τ123 leads to the quartic equation (6.11) which is
now interpreted as a superposition principle.

The above superposition principle is readily shown to hold for the entire CKP hierarchy
if the definition of the bilinear potentialsMαβ is suitably extended to include all ‘times’ tn.
This also applies to the ‘negative’ members of the CKP hierarchy which are obtained
by adding compatible hyperbolic linear equations to the hierarchy (6.12). The first two
members which may be generated in this manner are the asymmetric modified Nizhnik-
Veselov-Novikov (mNVN) equation [23] and

Ξ2
xyz = 4ΞxyΞyzΞxz. (6.14)

The latter equation has been recorded by Darboux [4] and is equivalent to the natural
continuum limit of the symmetric discrete Darboux system. Indeed, in the limit

β̄ik → εβ̄ik, xi = εni, ε→ 0,

the symmetric discrete Darboux system (6.8)1 reduces to the classical symmetric Darboux
system

β̄ik
,l = β̄ilβ̄lk,

where ,l indicates the partial derivative with respect to the continuous variable xl. The
symmetric Darboux system admits the relations β̄12β̄12

,3 = β̄23β̄23
,1 = β̄31β̄31

,2 which may be
used to parametrize the coefficients β̄ik in terms of a potential. In fact, the continuum
limit of (6.10)2 reads

(β̄ik)
2
= −(ln τ),i,k = Ξ,i,k

so that the symmetric Darboux system becomes (6.14) with (x, y, z) = (x1, x2, x3). In
analogy with the KP and BKP hierarchies, one may therefore refer to (6.11) as a discrete
CKP equation. By construction, the discrete CKP equation constitutes a discretization
of Darboux’s equation (6.14) expressed in terms of τ .
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