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Abstract

We propose a way of discretization for the soliton equations associated with the
toroidal Lie algebra based on the direct method. By the discretization, the sym-
metry of the system is modified so that the discrete time evolutions are no longer
compatible with the original continuous ones. The solutions of the discrete soliton
equations are explicitly given in terms of the Casorati determinants.

1 Introduction

As is well known, the hierarchies of soliton equations have the symmetries described by
the infinite dimensional Lie algebras, affine or toroidal. All of the KP hierarchies are
derived from the symmetries of affine Lie algebras[6], while the toroidal Lie algebras are
associated with the 2+1 dimensional generalization of the 1+1 dimensional reduced KP
hierarchies[1, 5, 4, 7]. For example, the 2+1 dimensional KdV equation[3]

ut = uxxy + 2uuy + ux

∫ x

uydx

and the 2+1 dimensional nonlinear Schrödinger equation[12]

iut = uxy + u

∫ x

(|u|2)ydx

belong to the 2-toroidal hierarchy. In the above equations, the variable x is derived from
the action of the usual affine part of the toroidal Lie algebra, while the evolutions in y and
t are induced by the action of the genuine toroidal part. The weight of u and the relative
weight of y and t are balanced with that of x, so we have two freedoms to determine the
weights for all of the variables, the weight of x itself and the absolute value of weight of y
(or t), which is one of the features of the 2-toroidal hierarchy. Another famous example is
the self-dual Yang-Mills equation[11]

(JyJ
−1)ȳ + (JzJ

−1)z̄ = 0
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which has the 3-toroidal Lie algebra symmetry, where we have three freedoms to balance
all of the weights.

The integrable discretizations for the equations in KP hierarchies, i.e. affine case, have
been investigated widely and deeply for many years from various standing points of view.
For example, the Miwa transformation[9]

∂k = a∂x1 +
a2

2
∂x2 +

a3

3
∂x3 + · · ·

∂l = b∂x1 +
b2

2
∂x2 +

b3

3
∂x3 + · · ·

∂m = c∂x1 +
c2

2
∂x2 +

c3

3
∂x3 + · · ·

...

can always produce integrable discrete analogues for a given continuous soliton equation
in KP hierarchies, because the discrete evolutions in k, l, m, · · · are nothing but the chains
of Bäcklund transformations.

On the other hand, nothing has been studied for the integrable discretization in the
case of toroidal Lie algebra. In this paper, we investigate how to discretize the soliton
equations associated with the toroidal Lie algebra keeping integrability and propose a
way of discretization by using the Hirota’s direct method of soliton theory. The discrete
equations are bilinearized by introducing the auxiliary independent variables which come
from affine symmetry and the solutions are directly constructed in the form of Casorati
determinants.

2 Discretization for toroidal case

In the KP case, i.e. affine case, the solution depends on all of the continuous independent
variables x1, x2, x3, · · · and the discrete ones k, l, m, · · · simultaneously, and all of the
flows induced by these continuous and discrete variables are compatible on the space of
solution. Both the continuous and the discrete flows are described by the action of the
same affine Lie algebra. Thus in which form we write down the equation is just a matter
of choice of the variables. If we choose the continuous independent variables, we get the
(hierarchy of) continuous soliton equations, and if we choose the discrete variables, we get
the discrete analogues of soliton equations, and of course by choosing both continuous and
discrete variables, we get the partial differential difference equations. Therefore in the KP
case, we can easily derive integrable discrete analogues for a given continuous equation,
because it is sufficient to change the choice of independent variables without changing the
structure of the space of solution.

On the other hand in the case of toroidal symmetry, the solution depends on the
continuous and discrete variables, x1, x2, x3, · · · and k, l, m, · · · which come from the
affine part and the continuous variables only, y1, y2, y3, · · · which come from the genuine
toroidal part. The point is that there is no discrete compatible flow associated with the
genuine toroidal part because all of the Bäcklund transformations can be described by the
affine part only and no discrete variable associated with y1, y2, y3, · · · can be introduced.
For example, there is no Miwa transformation for y1, y2, y3, · · · . The essential difficulty
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to construct discrete anologues for the case of toroidal Lie algebra comes from the above
fact.

In order to discretize y1, y2, y3, · · · , we give up keeping compatibility of all of the
flows and break the affine symmetry. In other words, in order to introduce the discrete
independent variables K, L, M , · · · associated with the toroidal part, with keeping the
continuous toroidal variables y1, y2, y3, · · · , we modify the structure of the space of
solution so that the original affine symmetry is killed and only A

(1)
∞ symmetry survives.

In the following sections, we are going to explain concretely how to modify by taking a
typical example of the soliton equations with toroidal symmetry.

3 Modified Bogoyavlenskii-Schiff equation

The modified Bogoyavlenskii-Schiff equation[2, 10]

4uy3 = ux1x1y1 − 4u2uy1 − 2ux1

∫ x1

(u2)y1dx

which has sltor
2 symmetry, is bilinearized into the bilinear form

D2
x1

g · f = 0

(Dy1D
2
x1

− 4Dy3)g · f = 0

(D3
x1

− 4Dx3)g · f = 0

through the dependent variable transformation

u =
(
log

g

f

)
x1

where x3 is the auxiliary independent variable. The evolutions along the variables xk are
described by the affine symmetry A

(1)
1 and those for yk are induced by the genuine toroidal

part.
The solution of the bilinear equations is given in the form of the Wronski determinant

f = det
(
ϕ

(j−1)
i

)
g = det

(
ϕ

(j)
i

)

where ϕ
(j)
i are arbitrary functions satisfying the following dispersion relations associated

with the affine part and genuine toroidal part respectively

∂xk
ϕ

(j)
i = ϕ

(j+k)
i

∂y3ϕ
(j)
i = ∂y1ϕ

(j+2)
i

and also satisfying the condition of 2-reduction

ϕ
(j)
i � ϕ

(j+2)
i

where � means ‘equal up to gauge’, i.e., equal up to multiplication of exponential function
of linear combination of the independent variables.
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4 Discrete modified Bogoyavlenskii-Schiff equation

In the above modified Bogoyavlenskii-Schiff equation, discretizing the affine variables xk

is quite simple and straightforward[8], because we can just apply the Miwa transformation
on xk and replace the continuous affine variables by the compatible discrete ones. Our
purpose here is to discretize the genuine toroidal variables yk.

In order to discretize yk, the affine symmetry A
(1)
1 is modified to A

(1)
∞ . Under this

modification, we will have all of the even and odd affine variables X1, X2, X3, · · · , instead
of just odd ones x1, x3, x5, · · · for A

(1)
1 . Let us denote the discrete independent variables

corresponding to yk as nk, then this modification is simply given by introducing some
shifts into the components of determinant in the following manner.

fn1n3 = det
(
ϕ

(j−1)
i (n1 − j, n3 + j)

)
gn1n3 = det

(
ϕ

(j)
i (n1 − j, n3 + j)

)

where ϕ
(j)
i are arbitrary functions satisfying the dispersion relations of continuous affine

and discrete toroidal types

∂Xk
ϕ

(j)
i (n1, n3) = ϕ

(j+k)
i (n1 − k, n3 + k)

∆3ϕ
(j)
i (n1, n3) = ∆1ϕ

(j+2)
i (n1, n3)

where ∆k is the backward difference operator with respect to nk defined as ∆kF (nk) =
F (nk)− F (nk − 2). And ϕ

(j)
i should also satisfy

ϕ
(j)
i (n1, n3) � ϕ

(j+2)
i (n1, n3)

We should note that this is not the condition of 2-reduction, because the components of
determinant have shifted indices. Therefore the original A(1)

1 flows are no longer compatible
and the solution has only A

(1)
∞ symmetry as the affine part.

The bilinear equations satisfied by the above Casorati determinants with the shifted
indices of components are

(D2
X1

− DX2)gn1−1,n3+1 · fn1n3 = 0

(D2
X1

+ DX2)gn1+1,n3−1 · fn1n3 = 0

gn1+1,n3+1fn1n3 − gn1+1,n3−1fn1,n3+2 =
1
2
(D2

X1
− DX2)gn1+1,n3+1 · fn1n3

gn1n3fn1+1,n3+1 − gn1,n3+2fn1+1,n3−1 =
1
2
(D2

X1
+ DX2)gn1n3 · fn1+1,n3+1

Here the later two bilinear equations are new. Finally by introducing the dependent
variable transformation

un1n3 =




(
log

gn1−1,n3+1

fn1n3

)
X1

n1, n3 : even
(
log

fn1−1,n3+1

gn1n3

)
X1

n1, n3 : odd

Qn1n3 =




(
log

gn1+1,n3

gn1−1,n3

)
X1

n1 : even, n3 : odd

(
log

fn1+1,n3

fn1−1,n3

)
X1

n1odd, n3 : even
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we obtain the discrete modified Bogoyavlenskii-Schiff equation

∆e
∫ X1 ∆3un1n3dX1 = (Qn1n3)X1 − Qn1n3(un1+1,n3 − un1,n3−1)

∆Qn1n3 = ∆1un1+2,n3

where ∆ is the difference operator defined as ∆F (n1, n3) = F (n1, n3 +1)−F (n1 +1, n3).

5 Concluding remarks

The way to discretize the genuine toroidal independent variables of the soliton equations
associated with the toroidal Lie algebra symmetry was given by modifying the structure of
the space of solution, i.e., by introducing the shifts of discrete variables into the components
of the Casorati determinant solutions. Since the structure is changed, the symmetry of
the system is not preserved, which is quite different from the case of usual discretization
of affine flows. This method of discretization is applicable to any 2-toroidal Lie algebras
but not to the 3-toroidal case, thus the discretization of the self-dual Yang-Mills equation
would be a future work.

The author thanks to Dr. Kakei for valuable discussions.
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totics and Physical Applications, Editors: Levi D and Winternitz P, Plenum Press, New York,
1992, 393–405.



148 Y OHTA

[11] Yang C N, Condition of Self-Duality for SU(2) Gauge Fields on Eudulidean Four-Dimensional
Space, Phys. Rev. Lett. 38 (1977), 1377–1379.

[12] Zakharov V E, The Inverse Scattering Method, in Solitons, Editors: Bullough R K and
Caudrey P J, Springer-Verlag, Berlin, Heidelberg, 1980, 243–285.


