Journal of Nonlinear Mathematical Physics Volume 10, Supplement 2 (2003), 166-180 SIDE V

The Hasse-Weil Bound and Integrability
Detection in Rational Maps

John A G ROBERTS T, Danesh JOGIA 1 and Franco VIVALDI *

T School of Mathematics, The University of New South Wales, Sydney NSW 2052,
Australia
E-mail: jagr@maths.unsw.edu.au, daneshj@maths.unsw.edu.au

Y School of Mathematical Sciences, Queen Mary, University of London, London E1 /NS,
United Kingdom
E-mail: f.vivaldi@qmul.ac.uk

This paper is part of the Proceedings of SIDE V;
Giens, June 21-26, 2002

Abstract

We reduce planar measure-preserving rational maps over finite fields, and study their
discrete dynamics. We show that application to the orbit analysis over these fields of
the Hasse-Weil bound for the number of points on an algebraic curve gives a strong
indication of the existence of an integral for the map. Moreover, the method is ideally
suited to separating near-integrability from genuine integrability.

1 Introduction

Suppose a rational symplectic map of the plane has a rational integral. Can we infer the
existence of such an integral by studying (a reduction of) this map over a finite phase
space? If the map depends on parameters, can we identify from such finite measurements
the parameter values at which the integral occurs? This is the topic of this paper (see also
[14]).

Various criteria for integrability are available for maps (for background on integrable
mappings, see [4, 17]). The most prominent are singularity confinement [5, 7, 9] (a discrete-
time version of the Painlevé criterion for differential equations) and the algebraic entropy
test [3, 7, 16, 18]. There are other methods as well [1, 12].

Phase spaces are real or complex manifolds, and hence the underlying number systems
are the real or complex fields. In this paper we take an arithmetical perspective, and
replace the latter with finite fields, via an algebraically natural discretization process
that does not require rounding-off. With this device the phase space becomes finite, and
endowed with a rich arithmetical structure. In the presence of an integral of the motion,
the points in the orbits are roughly equidistributed among the level sets of the integral.
This phenomenon is a consequence of an important result in arithmetic geometry, the
so-called Hasse-Weil bound for the number of points on algebraic curves over finite fields.
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The implication of this theorem to the question of integrability is the main theme of
this paper. We will show that in an integrable map, the maximal orbit length is much
shorter than in the non-integrable case, and we will construct effective algorithms that
turn measurements on finitely many orbits into an integrability test. A unique feature
of this approach is the complete absence of the concept of ‘near integrability’. Due to
a singular change in topology, parameter values converging to an integrable value in C
typically do not converge in F,, at all, and consequently the value of an observable will
not converge to its integrable value.

In the next section we introduce the main ideas through the analysis of a specific
example. The Hasse-Weil theorem is presented in Section 3, together with some basic
constructions. The statistics of orbit lengths in the integrable and non-integrable case
are compared in Section 4, where we also describe some numerical techniques. Finally,
in Section 5 we briefly discuss the sieve algorithm that allows one to recover integrable
parameter values from measurements over several finite fields. We also discuss the lack of
the concept of near-integrability over finite fields. Although we confine ourselves to maps
of the plane, we are hopeful that aspects of the ideas described will also work in higher
dimensions (this is currently being investigated).

2 Integrable rational maps over finite fields: a motivating
example

Consider the following rational planar map L

, y+1 , -1

I S 2.1
Gy S e PP (2.1)

This map is area-preserving. It is also integrable, being a special case of a QRT map [11],
[13, Appendix A]. We have

I(z'y) = I(z,y), I(z,y) =2y’ +2® + > +ay + 2 —y. (2:2)
Furthermore, L is reversible [13] meaning it has the time-reversal property:
L'=GoLoG™, G:2x'=—-y, o =-ux (2.3)

The map G is an involution and reversibility is equivalent to saying that L can be written
as the composition of two involutions. All QRT maps are reversible and reversibility is a
ubiquitous property of integrable maps in any dimension.

Whilst we usually think of the action of (2.1) on R? or C?, we could equally well think
of it as a map on the ‘rational plane’ Q?, by restricting coordinates to rational values.
(This is because the coefficients of the map are rational.) It is clear from (2.1) that if
the initial point of an orbit is rational, so are all points in that orbit (in particular, the
denominators never vanish). Here we are interested in letting (2.1) act on the finite phase
space Fz (or its projective version, see below), where F;, — the set of integers modulo a
prime p — is the simplest instance of a finite field. To reduce the map L from Q? to FZQ,, it
suffices to reduce modulo p the result of the arithmetical operations involved in computing
(2.1). This creates no difficulties, although we have to allow for the possibility that the
denominators in (2.1) could now vanish.
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Height | Cycle lengths | # points on level set
0 2,2,2,2 8
1 9,9 18
2 7,7 14
3 none 0
4 13 13
) 7,7 14
6 9,5 10
7 11 11
8 9 9
9 3,3,3,3 12
10 6,6 12

Table 1. Cycle length data for the rational map (2.1) modulo 11, organized by level set height of
its integral (2.2).

With a finite phase space, all the dynamics induced by L can be charted (albeit at the
expense of a total loss of familiar topology). Importantly, the possession of the integral
(2.2) is a purely algebraic property that can be studied over any field: it entails that iterates
of an initial point (xg,yo) under L will lie on the integral level set I(z,y) = I(z¢, yo) (and,
likewise, for iterates of (xg,y0) under L=! when L is invertible). On the real plane, this
leads to the signature integrable phase portrait of a foliation by curves (see, e.g., [11, 8] for
many such phase portraits). When the phase space is finite, each level set of the integral
is a finite set of points which can be decomposed into the orbits induced by the action of
the rational map.

For illustration, we consider (2.1-2.2) when p = 11. Since 11 = 3 (mod 4), standard
number theory [6, Theorem 82] tells us that the denominators in (2.1) do not vanish. It
follows that (2.1) is invertible over F2,, and induces a permutation of the 121 phase space
points. In Table 1, we indicate the number of points in each level set of I(x,y) together
with the breakdown of those points into cycles (see also Figure 1). The longest cycle has
length 13 and constitutes the level set I(x,y) = 4. The largest level set is the 18 points
derived from I(z,y) = 1 which decompose into two 9-cycles. The actual points belonging
to the level sets are organized by the reversibility property (2.3). Since G, as well as L
and I, reduces well modulo p, we deduce from (2.3) the standard property that a point
x and its image Gx have the same period. They belong to one symmetric cycle invariant
under G or belong in an asymmetric pair of cycles interchanged by G (as illustrated in
Figure 1). Moreover, we observe that the integral I(x,y) is invariant under G so that x
and Gx always belong to the same level set. We observe that the cardinality of the level
sets of I(x,y) is always bounded by

HW(11) =114+ 2V11 +1=18.63.... (2.4)

Here HW (p) is the so-called Hasse- Weil bound for the number of points on an irreducible
algebraic curve of genus one defined over the finite field F),. We will explain its origin and
significance in the next section.
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Figure 1. Some orbits of the map (2.1) on the finite phase space F?,. Shown is the 13-cycle
which constitutes the level set of height 4 of the integral (2.2), and the two 5-cycles which make
up the level set I(z,y) = 6. The former is symmetric with respect to the reversing symmetry G of
(2.3), whereas the latter form an asymmetric pair with respect to G.

In general, studying rational maps like (2.1) exclusively over Fg, the affine plane,
is inadequate due to the presence of singularities when the denominators vanish, which
occurs in (2.1) when p = 1 (mod 4). The standard algebraic-geometric device is to work
with the projective plane P(FIQJ) with homogeneous coordinates (X,Y,Z). It comprises
p? + p -+ 1 points: the affine plane (X,Y,1) (p? points) together with the line at infinity
(X,1,0) U (1,0,0) (p + 1 points). To obtain the projective version of a given rational
map of the affine plane, we introduce x = X/Z, y = Y/Z and then define Z’ so as to
(minimally) clear the denominators in X’ and Y’ !. Applied to (2.1), this procedure
yields the projective map L (with all operations performed modulo p):

X' = N(D*+ N?)

Y = —(Y?+Z*)(YN?+YD?+DNZ — D?*2)

7' = D(D*+ N?) (2.5)
where

N=—(XY*4+XZ>+YZ*+ 7%, D= Z(Y*+ Z%). (2.6)

An immediate consequence of (2.2) is that L inherits an integral, I[(X',Y", Z2") = I(X,Y, Z)
with

_ 2v2 2 2 2 3 _
iy - XY 2 +YZIXY)+Z (X —Y)

LOf course, writing a rational map in projective coordinates is also the starting point for performing
the singularity confinement test. However, the discrete topology here makes it impossible to resolve the
singularity by introducing a measure € of proximity to the singularity and letting ¢ — 0.

. (2.7)
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We see from (2.5-2.6) that whenever a point (X, Y, 1) in the affine plane is a singularity
for the map by satisfying: (i) Y2+ 22 = Y2 +1 = 0(mod p); or (i1) N2+ D? = 0 (mod p),
then Z’ = 0 and this is true of further iterates. The conditions (i) and (i7) correspond,
respectively, to the vanishing of the denominators of 2’ and 3’ in the original non-projective
map L. Furthermore, we see from (2.7) that on the line at infinity (Z = 0), I is either
indeterminate at the two points (0,1,0) or (1,0,0), or has (formal) value oo at the p —1
points (X, 1,0), X # 0. The two points (0,1,0) or (1,0,0) are base points of the integral in
that they can be considered to lie on every level set of I. Both points map under (2.5) to
(0,0,0), which is not part of the projective space so the orbit terminates. The preservation
of I by L shows that singular points of the map satisfying (1), respectively (i), map to
(1,0,0), respectively (0,1,0) and hence to (0,0,0).

When p = 11, or more generally p = 3 (mod 4), the dynamics of L on the affine plane
and the line at infinity are disjoint. To supplement Table 1, we need to add the base points
(0,1,0) and (1,0,0) to each level set of I. Also, the level set I = 0o decomposes into an
additional p — 1 fixed points of L. To illustrate the decomposition of points of P(F;)
under the action of L when orbits can move from the affine plane to the line at infinity,
we set p = 13. Table 2 gives the corresponding breakdown. There are two types of orbit
now: cycles and terminating orbits. The latter typically involve points in the affine plane,
the first of which is a singular point of L~! (the projective version of L=') and the last
of which is a singular point of L. These singular points are mapped, respectively, by Lt
and L to one of (0,1,0) or (1,0,0). We observe from Table 2 that, with the exception of
I = 4, the number of points on each level set is bounded by H W(13), where

HW(13) =13 +2V13+1=21.21.... (2.8)

3 Some results from algebraic geometry and a necessary
condition for existence of an integral

An algebraic curve in the affine plane is defined to be the solution set of f(x,y) = 0, where
f is polynomial in two indeterminates, with coefficients in a given field K. An algebraic
curve C' in the projective plane (or a projective curve) is defined to be the solution set of
the equation

C: F(X,Y,Z)=0 (3.1)

where F' is a homogeneous polynomial of positive degree. A curve is invariably specified
with respect to a given field, which must necessarily contain the coefficient field K (lest
it has no points on it). A singular point of the curve (3.1) is defined to be a (projective)
solution of VF' = (0,0,0). A curve is called irreducible over the appropriate coefficient
field, if F' does not factor into the product of two non-constant polynomials. When we
consider (3.1) over P(F2), we have the following celebrated result [15, Theorem V.2.3]: 2

2We are indebted to James Hirschfeld for some clarifying discussions on the Hasse-Weil bound.
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Height Cycle lengths Terminating component lengths | # Points on level set
0 2,2,2,2,2,2 ala,ala,blb,blb 18
1 none alb,alb,b2a,b2a 8
2 none ala,blb,aba,bbb 14
3 7 ala,bla,blb 12
4 1,1 a2b,b3a,a7b,b8a 24
5 none alb,b2a,adb,bba 14
6 none a2a,b2b,a3b,b4a 13
7 none a2b,b3a,abb,b6a 18
8 3,3 a2a,a2a,b2b,b2b 16
9 none adb,adb,bda,bda 16
10 none bla,ada,b4b 11
11 3,3,3 bla,bla 13
12 none ada,ada,bdb bdb 18
00 1,1,1,1,1,1,1,1,1,1,1,1 a, b 14

Table 2. Orbit length data for the projective map (2.5) modulo 13, organized by level set height
of its integral (2.7). In terminating orbits,‘a’ denotes the base point (1,0,0) and ‘b’ the base point
(0,1,0). The notation ‘a2b’, for example, refers to an orbit of 2 affine points, where the second
point maps under the map to b, whereas the first point maps under the inverse map to a (so that
4 points of the projective plane are in this orbit segment).

Theorem 1. (Hasse-Weil) Let C' be an irreducible projective curve of genus g defined
over the finite field F,,. Then #C, the number of points on C' with coordinates in P(F%),
satisfies

#C < HWy(p) + #Cs, (3.2)
where

HWy(p) :==p+1+2g9/p (3.3)

and #C; is the number of singular points on the curve. That is, HWy(p) is a bound for
the number of non-singular points on C'.

In (3.2), g is the genus of the curve (3.1), a non-negative integer characterizing the
complexity of the curve, which remains invariant under birational coordinate transforma-
tions. If d is the degree of F, and if all singular points of the curve are double points,
meaning the vector of second partial derivatives of F' is non-vanishing at the points, then

9= 5d—1)(d—2) - #C.. (3.4)

The Hasse-Weil upper bound (there is an analogous lower bound) gives a much stronger
result than can be obtained by elementary methods (it is equivalent to the Riemann
Hypothesis for algebraic function fields [15]). For example, induction can be used to show
that the equation F'(X,Y,Z) = 0, where F is homogeneous of degree d > 1, has at most
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d(p + 1) solutions in P(F2) [10, Theorem 6.15]. The latter bound does not require any
knowledge of singularities or reducibility of F'.

Now consider a rational map L of the (real or complex) plane and suppose it has a
rational integral I. By using projective coordinates, we can associate to L a projective
map L acting on P(C?) (as illustrated in the previous section). Furthermore, if I(z,y) =
n(z,y)/d(z,y), with n(z,y) and d(x,y) relatively prime polynomials, then

N(X,Y,Z)
ZoD(X,Y,Z)’

where X := (XY, 7), a = degn(z,y) — degd(x,y) and

N(X,Y,Z) = z%en@v) n(X/Z,Y/Z)
D(X,Y,Z) = z%ed@) 4(X/7,Y/Z).

I(LX) = I(X), I= (3.5)

The homogeneous polynomials N (X, Y, Z) and D(X,Y, Z) have the same degree as n(z, y)
and d(x,y), respectively. The level set of I of height h is an algebraic curve given by (cf. 3.1)

Cn: F(X,Y,Z)=N(X,Y,Z)—hZ*D(X,Y,Z) =0, (3.6)

where the degree of the homogeneous polynomial F' is the same as that of n. The level set
h = oo can alternatively be viewed as the 0-level set of . If o # 0, it is reducible. Points
that simultaneously satisfy N(X,Y, Z) = 0 and Z* D(X,Y, Z) = 0 give I an indeterminate
value and are base points. Singularities of C}, are solutions of VI = (0,0,0), and solutions
of VI = (0,0,0) on Cy, yield its singularities.

We assume that our original map L has infinite order, otherwise it is dynamically not
interesting. In this case, we can conclude that each level curve C} has genus g = 1 or
g = 0. We follow an argument given in [17, page 35]. Firstly, Hurwitz theorem tells us
that the automorphism group of an algebraic curve with genus g > 2 is finite. Since all but
a finite number of curves in the family {C}} will have the same genus, the map being of
infinite order precludes this genus being 2 or higher. Consequently, generically, the genus
of a typical curve of {C}} is ¢ = 1. Curves on which additional singularities occur will
have genus g = 0.

Suppose now that our map L is representable modulo p, meaning the coefficients in
the expressions for X', Y/ and Z’ reduce well modulo p (we will say more on reduction in
Section 5). Suppose its integral I also reduces well modulo p, to a non-constant rational
function. Then (3.5) shows that the orbit of any chosen initial condition X € P(F3) will
lie on the algebraic curve (3.6) of height h = I(X). If this curve is irreducible, applying
Theorem 1 with g = 1 now gives a bound on the number of points in this orbit:

Theorem 2. Let L be a rational map which is representable over the finite field F.
Let Oy(X) denote the mazimal (forward and backward) orbit of its projective version L
containing a given X € P(Fg) (using LY, when it exists, to generate the pre-images of
X). If L has a rational integral that is representable over F,, and the level set containing
X is irreducible, then

#0,(X) < p+1+2/p+ #Cs. (3.7)

If Op(X) is a cycle, its points are all singular points or all non-singular points on the level
set. In the former case, #Op(X) < #Cs, and in the latter case #0,(X) < p+ 14 2,/p.
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The statement about cycles in Theorem 2 derives from some restrictions on how singular
points of the curve can occur in orbits. Differentiating (3.5) gives
~ oy O - ol

AL(X)" 2= (LX) = o=

X (X), (3.8)

where superscript 7' denotes matrix transpose. From this (cf. [8, Appendix A]) we deduce
that if LX is a solution of VI = (0,0,0), then so is X. The converse is also true provided
det dI:(X) # 0. If L and I reduce modulo p, these conclusions are also true over F, (the
determinantal condition should be now taken modulo p). Cycles containing one singular
point must contain only singular points.

Because we are principally interested with the Hasse-Weil bound (3.3) with g = 1, we
will denote HW1(p) by simply HW (p).

The results of Tables 1 and 2 of the previous section illustrate Theorems 1 and 2.
Modulo 11, it can be checked that every level set of I of (2.7) is irreducible and has no
singular points in the affine plane F2, but that the base points (1,0,0) and (0,1,0) are
singular points on every level set. In Table 1, the cycle of length 18 in the affine plane F2,
achieves the maximum possible size given HW (11) of (2.4). Modulo 13, the only level set
of I of (2.7) that is reducible is that with height 4 with

Cy: (8zz + xy + 5yz — 2%) (5xz + wy + Syz + 42%) = 0. (3.9)

This accounts for the total number of points being 24. Each of the factors in (3.9) has
genus 0 (is a conic) and no singular points. In this case, Hasse-Weil’s result gives that
each curve derived from the factors has ezxactly p + 1 = 14 points. There are 4 points
common to both curves: (2,9,1), (4,11,1) and the base points (1,0,0) and (0, 1,0).

It follows from Theorem 2 that if the orbit bounds are exceeded for an integrable map
which reduces, together with its integral, modulo p, then the level set containing the orbit
must be reducible. For example, the McMillan map:

=y, y' = —z— (1+2y)/(1+y°) (3.10)

has the integral 22y%+22+y2+2zy+x+y (see also [14]). When p = 97, the longest orbit has
length 179, being the only orbit exceeding HW (97) = 117.69 ... .. It is found that the level
set of height 24 containing this orbit factors: (75y+86+(y+75)x)(22y+11+(y+22)z) = 0.
Fach factor generates a conic with p + 1 = 98 points in projective space. The given orbit
with 179 points achieves its length by moving between the two component conics.

4 Comparison of orbit statistics for integrable and non-
integrable maps

In this section, we display evidence that Theorem 2 forms the basis of a strong negative
criterion for integrability. That is, if a map does not have a (rational) integral, then
it appears to have a significant proportion of orbits that exceed the bound based on
Hasse-Weil. We also identify other quantities based on orbit statistics that act as reliable
discriminators between integrability and non-integrability. For additional evidence on
other maps, see [14].



174 J A G Roberts, D Jogia and F Vivaldi

700 +

400

200

o 20 40 60 80 o 20 40 60 80

Figure 2. Left: Maximal orbit length versus § for (4.1) when (¢,&,A) = (1,1, —1). Right: Maximal
orbit length versus e for (4.1) when (4,&,A) = (0,1,—1) (bottom) and (§,&,\) = (3,1,—1) (top).
In each figure, p = 83 and the horizontal line represents the bound HW (83).

We consider the 4-parameter family of rational area-preserving maps:

Sy? + ey + € ex’ + A
,:— B —— /:— _—_— 41
e 21 L N P PR (4.1)

When § = 0, each map is an asymmetric QRT map [13] with integral
I(z,y) = 2?2 + 22 + 92 +exy + Ex + \y. (4.2)

Observe that the integrable map (2.1) discussed previously corresponds to taking 6 = 0,
e=¢(=1,A=-1.

We have made various numerical studies of the family (4.1) over finite fields. We first
calculate the projective versions of these maps, as per the special case (2.5). We then
calculate the orbit structure on the p? + p + 1 points of the projective space P(Fg). The
parameter space is finite, namely F%, and we sample various subsets of this space. Each
selection of a parameter vector (d,€,&,\) € F; corresponds to studying the reduction
over the finite field of an infinite equivalence class of maps, e.g., those maps with rational
parameters that reduce to the chosen vector. We return to this point below in Section 5.

As with (2.1), the dynamics of (4.1) depends on the nature of the prime p. When
p = 3 (mod 4), the map is invertible and all orbits are cycles. When p = 1 (mod 4), cycles
coexist with terminating orbits. Computationally, we find the orbits by constructing an
orbit graph on the space P(FZ), connecting two points with an oriented arc once one
point is the image of the other under the map. Decomposing the graph into its connected
subgraphs reveals the cycles and highlights (if any) those non-invertible points of the
dynamics where many terminating orbits meet at a common vertex. Of course, this
process of identifying orbits and counting the number of points they contain can be done
in the absence of any knowledge of the existence of an integral for the map.

The left plot in Figure 2 shows that in a one-parameter subfamily of (4.1), parametrized
by 4, the known integrable case § = 0 is distinguished by being the only parameter value
for which the maximal orbit length lies below the appropriate Hasse-Weil value. The
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Figure 3. Left: Number of cycles versus § for (4.1) when (¢,£,)\) = (1,1,—1). Right: Number
of cycles versus € for (4.1) when (§,£,A) = (0,1,—1) (top) and (4,&,\) = (3,1,—1) (bottom). In
each figure, p = 97.

right plot of Figure 2 combines the data for a one-parameter integrable subfamily of (4.1)
(with § = 0) with another one-parameter subfamily (with 6 = 3) which is apparently not
integrable. Our empirical experience is that using HW (p) on the maximal orbit length
as a method to isolate integrable parameter values is a useful selection method. It tends
to overselect possible integrable parameter values for small primes (~ 50), but becomes
increasingly discriminating for larger ones up to 100 (see Table 1 of [14] for an illustration).
Of course, an integrable parameter value might not be selected at all using this criterion
if the longest orbit derives from a reducible integral level curve (as occurs for (3.10) of the
previous section). However, even allowing for this, the proportion of phase space occupied
by orbits whose length is less than HW (p) in a non-integrable map is significantly less
than 1 (empirically, we find for p > 50, this proportion is already below 40 per cent).
Thus, mean orbit length in an integrable map should effectively be bounded by HW (p)
but this is not true for a non-integrable map.

A consistently reliable selector of integrable parameter values, which does not appear
to overselect, is illustrated in Figure 3. We consider only the orbits that are cycles in
the projective space P(F?)) and count their number. Integrable maps are distinguished by
a markedly larger number of cycles than non-integrable maps. An explanation for this,
and a statistical analysis of the envelope of the number of cycles data for integrable and
non-integrable maps, is currently being investigated. Note in the righthand plot of Figure
3, the two spikes in the data for the non-integrable family occurring at ¢ = 22 and € = 75.
The data is alerting to the fact that for these two epsilon values and A = —1, the map takes
a different (non-integrable) form. This happens at these e values because the numerator
in the rational part of ¢ in (4.1) equals one of the factors in the denominator, allowing a
cancellation (note: (/)2 +1 = (2’ — 75)(2’ — 22) (mod 97)).

Calculating the maximal orbit length or the number of cycles requires a complete orbit
decomposition of the projective space P(Fg). This becomes computationally laborious for
primes p exceeding 100. An alternative approach which samples the dynamics for large
primes is to take a randomly chosen initial condition and to calculate its orbit length
modulo p as p increases. Suppose the conditions of Theorem 2 are satisfied for a sequence
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of increasing primes p; — oo with corresponding initial conditions X;. From (3.7) it follows
that if we normalize orbit lengths by HW (p;) and go to larger primes
#0O Z(Xl)

lim o, (X;) = Topi\fi) g 1.
pignoo Opz( ) HW(pz) — ( 3)

since, by assumption, any integral is assumed to have a finite number of singular points.
A systematic choice of X; is the reduction modulo p; of the same X € Q2. This amounts
to studying the image over various finite fields of the same rational orbit.

It is evident that for an integrable map L, the normalized orbit lengths o), (X;) should
largely be confined to the interval (0,1). Heuristically, we find this to be the case on
examples tested, see the left plot of Figure 4 (in both plots of Figure 4, O,,(X) is the
maximal (forward and backward) orbit of the map containing X). Exceptions might
occur when the level set containing X; is reducible modulo p;. Indeed, for the map (3.10)
discussed previously, o,,(X) for the chosen X in Figure 4 exceeds 1 only at primes 37,
97 and 397, which are precisely the only primes in the range considered when the level
set of the integral is reducible. Statistically, as we move through the primes, exceptional
normalized lengths exceeding 1 in the integrable case because of reducibility of the level
set appear to be rare.

In contrast, when we plot the normalized orbit lengths for a randomly chosen initial
condition for a non-integrable map, we find values exceeding 1 are very common. We
illustrate this in the right plot of Figure 4 with the map

/ /

€
=y, yz—x—ky—i—;. (4.4)

This map satisfies singularity confinement, but is non-integrable for € 0. This can be
deduced from its non-zero algebraic entropy and confirmed by a phase portrait [7]. Other
indications of its non-integrability have been given in [16, 9].

It is worth noting that a finer analysis of normalized orbit lengths obtained from re-
ductions of rational maps (e.g., the cumulative distribution function for the normalized
lengths) reveals some characteristic features that are different for the integrable and non-
integrable case [14].

5 Reduction, sieving, and lack of near integrability

Each point in a finite field is congruent to infinitely many rational numbers, and indeed
to a set of rationals which is dense on the real line. Therefore in reducing coordinates and
parameters from the rational field to a finite field there is a dramatic loss of information.

The question arises as to how to recover a rational value (an integrable parameter
value, in our case) when all the information we have about it is modulo p. This is indeed
possible —in an asymptotic sense— using a sieve method based on continued fractions,
which we briefly describe [14]. Fix a rational r/s, and a set of primes p; coprime to s.
Then there exist unique integers k;, 0 < k; < p;, such that r/s = k; (mod p;). This set of
congruences is in bi-unique correspondence with a single congruence r/s = A (mod M),
where M = [[pi, and 0 < A < M. For all sufficiently large M, r/s = Am — Ma, for one
convergent a/m in the continued fractions expansion of A/M, while the other convergents
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Figure 4. Normalized orbit lengths o,, (X) plotted against primes p; (7 < p; < 5000) for: Left,
the integrable map (3.10) and X = (42,71,1); and: Right, the non-integrable map (4.4) with e =7
and X = (31/10,31/10,1).

give spurious solutions r’/s’. Defining the height h of a rational as h(r/s) = |rs|, we find
that all spurious solutions have diverging height, and fluctuate erratically. This makes the
identification of /s possible.

For instance, the rational r/s = —5/3 is congruent to k£ = 19, 23, 12, 27, 14 modulo
the primes p = 31, 37, 41, 43, 47, respectively. The three rationals of smallest height
satisfying these congruences are: —g,—m, —31680524, which clearly illustrates the
divergence of height.

One by-product of the reduction process is the disappearance of the concept of ‘near
integrability’, which rests crucially on the topology of the real line. For dynamics on man-
ifolds, the powerful KAM theory shows that near-integrable systems (in discrete or con-
tinuous time) retain some features of integrable ones. In the case of symplectic mappings,
the KAM theory ensures that a set of positive measure of invariant curves of an integrable
map are retained under a sufficiently small canonical perturbation, see [2, Chapter 6],
[13, Section 5] for overviews. This is a form of continuity which enhances even further
the significance of integrable systems. On the other hand, however, it also causes the
convergence (albeit not necessarily uniform) of an observable to its integrable value as we
approach the integrable regime, which makes integrability testing chronically difficult.

The study of phase portraits of a real mapping near an integrable regime is a telling
example of such difficulties, requiring looking in the right place at the right magnification
in order to locate stochasticity. Likewise, measuring entropy in parametrized families of
real maps containing integrable cases so as to locate the latter is numerically very exacting.

Here, the reduction of phase space and parameter space modulo p destroys any notion
of near-integrability because the topology is discrete. For a dramatic illustration, let ¢ = 0
represent the integrable parameter value in a family of maps. Then, for any integer a and
prime p, one can find a sequence of rational parameters €, — 0, which are congruent to
a modulo p for every k, e.g., ¢, = a/(1 4+ kp). By the same token, one could construct
a sequence €, — oo with the same congruence property. This means that, over the
real/complex field, an orbit of a point in a nearly-integrable map and the orbit of the
same point in a far-from-integrable map can reduce over the finite field to one and the
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Figure 5. Each figure in the left column shows part of the real phase portrait of (4.1) with
(6,£,\) = (1,1,—1) and § = 0 (top), § = 10~ (middle), § = 1 (bottom). In each portrait, the
orbits of initial conditions (1,0), (1,1) and (1,2) are plotted. In the right column, the normalized
lengths of the orbit of (1,1,1) in P(Fg) are plotted as a function of p for the corresponding map
parameter values.
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same orbit for the same reduced map. Our methodology gives prominence to genuine
integrability by causing near-integrable and far-from-integrable (as seen in a continuum
of real/complex parameters) to attain the same status upon reduction. (The resolution of
this apparent paradox is that merging measurements made over several finite fields shows
that the height of the spurious rational parameter values diverges.)

Figure 5 illustrates this point. The same three initial conditions yield the top phase
portrait for the integrable map and the middle phase portrait for the near-integrable per-
turbation of this map. Although the curves in corresponding portraits appear largely
indistinguishable, reduction over finite fields of orbits lying on them reveals a great differ-
ence. The normalized orbit length plots for each initial condition in the near-integrable
map, as illustrated for (1,1, 1), are similar to those found for the far-from-integrable map
depicted at the bottom of the figure. One plausible explanation for this is that the KAM
curves are not algebraic curves, as distinct from the level curves of the integral, so that
the Hasse-Weil theory and bound are mot applicable. Figure 5 further reinforces the
usefulness of plotting orbit lengths normalized by HW (p;) against p; as a decisive and
computationally-efficient discriminator of (algebraic) integrability.
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