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Abstract

The Lie algebra L(h) of symmetries of a discrete analogue of the non-linear Schrödinger
equation (NLS) is studied. A five-dimensional subspace of L(h), generated by both
point and generalized symmetries, transforms into the five-dimensional point symme-
try algebra L(0) of the NLS equation. We use the lowest symmetries to do symmetry
reduction of the equation, thus obtaining explicit solutions and discrete analogues of
elliptic functions.

1 Introduction

The purpose of this article is to study the Lie algebra L(h) of symmetries of the discrete
analogue [1] of the Non-Linear Schrödinger equation (dNLS)

iQ̇n =
1
h2

[
2Qn − (1−ε|Qn|2)(Qn+1 +Qn−1)

]
, (1.1)

where Qn(t) is a complex variable, h is an arbitrary constant and ε takes the values ±1.
Among the integrable nonlinear partial differential equations, the non-linear Schrödinger

equation (NLS) determines, in the regime of weak nonlinearity, the slow amplitude mod-
ulation for a large class of equations [8]. Among all the discretizations of NLS the dNLS
plays a distinguished role, being its interesting mathematical properties, such as integra-
bility, what makes studying this equation important.

This article is part of a program, the aim of which is to use integrability theory to
describe Lie symmetries of discrete equations and compare them with the results obtained
by direct methods. Previous studies have shown [16, 23, 26, 27, 28] that for difference
equations on a regular lattice the class of point symmetries is somewhat restricted. More
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interesting symmetries are obtained only if one considers group actions on a finite, or
infinite set of points on the lattice [13, 14, 25] rather than just at one point.

The dNLS equation belongs to the hierarchy of differential-difference equations [9]
associated to the discrete Zakharov-Shabat spectral problem

Φn+1 = (Z +Qn(t)I1 +Rn(t)I2)Φn (1.2)

where Φn = Φn(t, z) is a 2× 2 matrix wavefunction, Z =
(

z 0
0 1/z

)
, I1 = ( 0 1

0 0 ), I2 = ( 0 0
1 0 ),

z is the eigenvalue and Qn(t) and Rn(t) are two complex scalar functions. Eq. (1.1) is
one of the members of the hierarchy of equations associated to the Spectral Problem (1.2)
and in the limit h → 0, setting Qn(t) = hu(x, t) and x = nh, it is transformed into the
Non-Linear Schrödinger equation (NLS):

iut + uxx − 2ε|u|2u = 0. (1.3)

Equation (1.1) is a differential-difference equation that possesses the same integrable
structure as the NLS differential equation. It can be described as an integrable dis-
cretization of NLS or, better, a semi-discretization, because the time coordinate remains
continuous. Eq. (1.1) admits an infinite hierarchy of commuting flows that, in the con-
tinuous limit, is transformed into the infinite hierarchy of flows commuting with the NLS
equation. This is related to the fact that there are corresponding recursion operators gen-
erating both hierarchies. Symmetries and conservation laws of (1.1) have been considered
in, for example, [1, 2, 30]. Bäcklund transformations for eq. (1.1) have been considered
in [9].

In this article we construct, improving on previous work [15], the Lie algebra of sym-
metries of the dNLS equation (1.1), and we study its relation to the Lie algebra of point
transformations of NLS (1.3). The main objective of the article is the subject of symmetry
reduction, that we perform in the dNLS with respect to the most interesting (or simple)
symmetries.

In Section 2 we summarize some known results on the hierarchy of the dNLS equation
and its integrability, necessary to construct its evolutionary symmetries. Section 3 is
devoted to the direct calculation of the Lie point symmetries of the dNLS on an orthogonal
lattice, and we show how this direct method yields easily only the simplest intrinsic point
symmetries.

In Section 4 we summarize and extend results from [15], writing down explicitly the
simplest evolutionary symmetries of dNLS and finding out the structure of the infinite Lie
algebra of symmetries. We use the spectral transform to relate the evolutionary symmetries
to the linear equations for the evolution of the reflection coefficient. Symmetries acting
in the solution space of the evolution equation are transformed into symmetries acting in
the space of the spectrum. In the space of the spectrum the commutation relations of the
symmetries are easily computed. To conclude the section, we comment on the limiting
procedure taking the dNLS equation into the NLS equation. The symmetries are subjected
to the same limiting procedure, and this guides us to choose appropriate reductions of the
dNLS in the next section.

Section 5 is devoted to the symmetry reduction of the dNLS with respect to the Lie
point symmetries and the simplest generalized symmetries. Using this procedure, we are
able to obtain similarity solutions of the dNLS. Many results about explicit solutions of
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dNLS are already known, using for example inverse scattering transforms and conservation
laws [31, 10]. We can see how we recover explicit solutions discussed in [10] as solutions of
the dNLS reduced with respect to spatial translation. This is the special type of solutions
that physically is most reasonable to look for first. Nevertheless, other symmetries allow
to search for other type of solutions, which in our case turn out to be defined by ordinary
difference equations. This solutions can be considered discrete analogues of the symmetry
solutions corresponding to the continuous case. For example, in the case of reduction
with respect to time translation, we find what could be a discrete analogue of an elliptic
function.

2 The discrete NLS hierarchy and its integrability

Let us consider the hierarchy (see [20, 6, 9])
(

Ṙn

−Q̇n

)
+ ω(L,L−1, t)

(
Rn

Qn

)
+ ω̃(L,L−1, t)(2n+1)

(
Rn

Qn

)
= 0, (2.1)

where ω(L,L−1, t) and ω̃(L,L−1, t) are entire functions of the recursion operator L, defined
by

L

(
An

Bn

)
=

(
An−1 −Rn−1anSn −RnTn

Bn+1 −Qn+1anSn+1 −QnTn+1

)
,

and of its inverse

L−1

(
An

Bn

)
=

(
An+1 +Rn+1anSn+1 +RnZn+1

Bn−1 +Qn−1anSn +QnZn

)

with Sn, Tn and Zn solutions of the inhomogeneous first order equations:

Sn+1 = Sn − QnAn−RnBn

an
, an = 1−RnQn (2.2)

Tn+1 = Tn −QnAn−1+RnBn+1 (2.3)
Zn+1 = Zn −QnAn+1+RnBn−1. (2.4)

Whenever ω̃ is present, the hierarchy (2.1) corresponds to a non-isospectral deformation
of the discrete Zakharov and Shabat Spectral Problem (1.2), i. e. the spectral parameter
z evolves in time.

For any equation of the hierarchy (2.1) we can write down an explicit evolution equation
for the function Φn(t, z) [20, 6]. When the functions Qn(t), Rn(t) Sn, Tn and Zn are
asymptotically bounded, i. e. if

lim
|n|→∞

Qn(t) = lim
|n|→∞

Rn(t) = lim
|n|→∞

Sn = lim
|n|→∞

Tn = lim
|n|→∞

Zn = 0, (2.5)

we can then associate to eq. (1.2) a spectrum defined in the complex plane of variable z:

S :
{
(β+(t, z), α+(z)) (|z| > 1), (β−(t, z), α−(z)) (|z| < 1);

z+
j (|z+

j | > 1), C+
j (t), z−j (|z−j | < 1), C−

j (t) j = 1, 2, . . . , N
}
,

(2.6)
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through the asymptotic behaviour of the solution to the linear problem (1.2):

n → +∞ : Φn(t, z) →
(

zn β−(t, z)zn

β+(t, z)z−n z−n

)
,

n → −∞ : Φn(t, z) →
(

α+(z)zn 0
0 α−(z)z−n

)
. (2.7)

The points z−j (resp. z+
j ) are isolated inside (resp. outside) the unit disk and C−

j (resp. C+
j )

are some complex functions of t related to the residues of β−(z, t) (resp. β+(z, t)) at the
poles z−j (resp. z+

j ). When Qn(t), Rn(t), Sn, Tn and Zn satisfy the boundary condi-
tions (2.5), the spectral data S define the potentials Qn(t), Rn(t) in a unique way. There
is a one-to-one correspondence between the evolution of the potentials (Qn,Rn) of the
discrete Zakharov and Shabat spectral problem (1.2), given by eq. (2.1) and that of the
reflection coefficients β±(t, z), given by

dβ±(t, z)
dt

± ω(z2, z−2, t)β±(t, z) = 0. (2.8)

The transmission coefficients α±(z) are constants of the motion. In eq. (2.8) and below,
d/dy denotes the total derivative with respect to y and dz/dt = z ω̃(z2, 1/z2, t).

The hierarchy (2.1) can be reduced setting Rn = εQ∗
n, yielding(

εQ̇∗
n

−Q̇n

)
+ ω(L,L−1, t)

(
εQ∗

n

Qn

)
+ ω̃(L,L−1, t)(2n+1)

(
εQ∗

n

Qn

)
= 0 (2.9)

with

ω(z2, z−2, t) = ω1(z2, t)− ω∗
1(z

∗−2, t), (2.10)

ω̃(z2, z−2, t) = ω̃1(z2, t)− ω̃∗
1(z

∗−2, t),

where ω1, and ω̃1 are entire functions of their first argument, and the star ∗ denotes
complex conjugation. Under this reduction the spectrum S can be defined in terms of a
single function as the following relation between the spectral parameters holds [20, 9]:

β+(t, z) = −ε[β−(t,
1
z∗
)]∗, (2.11)

z+
j = (

1
z−j

)∗, (2.12)

C+
j (t) = ε(z+

j )
2(C−

j (t))
∗. (2.13)

From now on we will denote β = β−, and its evolution is given by

dβ

dt
= ω(z2, z−2, t)β,

dz

dt
= zω̃(z2, z−2, t). (2.14)

As examples of nonlinear equations, let us consider at first the case when ω1(z2, t) =
α0+α1z

2+α2z
4 (αj , j = 0, 1, 2 constants) and ω̃1(z2, t) = 0, i. e. an isospectral deformation

of the discrete Spectral Problem (1.2). In this case the nonlinear evolution equation reads

Q̇n = (α0 − α∗
0)Qn + (1− ε|Qn|2) (α1Qn+1 − α∗

1Qn−1) + (1− ε|Qn|2)·
· {α2[Qn+2(1− ε|Qn+1|2)− εQn+1(Q∗

nQn+1 +QnQ
∗
n−1)]

− α∗
2[Qn−2(1− ε|Qn−1|2)− εQn−1(Q∗

nQn−1 +QnQ
∗
n+1)]

}
.

(2.15)
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In correspondence with eq. (2.15) β evolves according to the equation:

dβ

dt
+

[
α0 − α∗

0 + α1z
2 − α∗

1

1
z2

+ α2z
4 − α∗

2

1
z4

]
β = 0

dz

dt
= 0. (2.16)

The dNLS (1.1) is obtained from (2.15) by choosing α0 = −α1 = i/h2 and α2 = 0 and the
time evolution of its spectrum is given by:

dβ

dt
=

i

h2

[
z2 +

1
z2

− 2
]
β;

dz

dt
= 0. (2.17)

As a complementary example, let us consider a non-isospectral (n-dependent) equation
obtained by considering ω1(z2, t) = 0 and ω̃1(z2, t) = α̃0 + α̃1z

2. In this case we get:

Q̇n = (α̃0 − α̃∗
0)(2n+1)Qn + α̃1

[
(2n+3)(1−ε|Qn|2)Qn+1 + 2εQnS

∗
n

]
+ α̃∗

1

[
(2n−1)(1−ε|Qn|2)Qn−1 + 2εQnSn

]
,

where

Sn+1 − Sn = −QnQ
∗
n+1 (2.18)

and correspondingly β satisfies the following equation:

dβ

dt
= 0;

dz

dt
= z[α̃0 − α̃∗

0 + α̃1z
2 − α̃∗

1

1
z2
]. (2.19)

3 Direct calculation of symmetries of the discrete NLS

In this Section, we calculate directly the point symmetries of dNLS (1.1), using the theory
described in [19]. Decomposing Qn in real and imaginary parts Qn = un + ivn, dNLS
becomes

dun

dt
=

1
h2

{
2vn − [

1− ε(u2
n + v2

n)
]
(vn+1 + vn−1)

}
dvn

dt
=

1
h2

{[
1− ε(u2

n + v2
n)

]
(un+1 + un−1)− 2un

}
.

(3.1)

In eq. (3.1) the dependent variables (un(t),vn(t)) are defined on the space of the indepen-
dent variables (xn, t) where xn defines the points of a lattice while t is a continuous “time”.
It is convenient to characterize each point in the space of the independent variables by
two indices, say m,n, where m parametrizes the “time” while n characterizes the position
in the lattice (xn,m, tn,m). In such a way eq. (3.1) reads:

dun,m

dt
=

1
h2

{
2vn,m − [

1− ε(u2
n,m + v2

n,m)
]
(vn+1,m + vn−1,m)

}
(3.2)

dvn,m

dt
=

1
h2

{[
1− ε(u2

n,m + v2
n,m)

]
(un+1,m + un−1,m)− 2un,m

}
.

The postulated generic generator of the point symmetry at the point (n,m) is given by

X̂n,m = ξn,m∂xn,m + τn,m∂tn,m + φ1
n,m∂un,m + φ2

n,m∂vn,m (3.3)
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where ξn,m, τn,m, φ1
n,m and φ2

n,m, are functions of (xn,m, tn,m, un,m, vn.m). The prolongation
of X̂n,m is given by

prX̂n,m =
∑
n,m

X̂n,m + φ
1,tn,m
n,m ∂u̇n,m + φ

2,tn,m
n,m ∂v̇n,m (3.4)

where φ1,t
n,m and φ2,t

n,m are given by

φ
1,tn,m
n,m = Dtn,mφ1

n,m − u̇n,mDtn,mτn,m − un,m,xn,mDtn,mξn,m

φ
2,tn,m
n,m = Dtn,mφ2

n,m − v̇n,mDtn,mτn,m − vn,m,xn,mDtn,mξn,m.

and the sum is extended to all points of the lattice present in the equation.
We choose a lattice given by the following equations:

xn+1,m − xn,m = h

xn,m+1 = xn,m

tn+1,m = tn,m.

(3.5)

Application of the prolonged generator (3.3) to equations (3.2,3.5) gives the defining equa-
tions for the symmetry, that must hold on solutions of (3.2,3.5). The system of equa-
tions obtained by applying (3.3) to the lattice (3.5) implies that ξn,m is constant and
τn,m = τn,m(tn,m). Applying eq. (3.3) to the dNLS we obtain that there are only three
independent intrinsic point symmetries:

X̂n,m = a∂xn,m + b∂tn,m + c(vn,m∂un,m − un,m∂vn,m) (3.6)

which, going back to the notation of eq. (1.1) read:

X̂1 = Qn∂Qn −Q∗
n∂Q∗

n
; X̂2 = ∂n; X̂3 = ∂t. (3.7)

Note that the form of the two last symmetries, those involving just independent variables,
depends strictly on the form of the lattice (3.5). Selecting other type of lattice would
change X2 and X3.

4 Symmetries of the discrete NLS

Symmetries of the dNLS can be constructed by considering flows

d

dλ
Qn = f(t, n,Qn, Qn+1, Qn−1, . . .) (4.1)

commuting with (1.1). Due to the one-to-one correspondence between the evolution of Qn

and that of the reflection coefficient β, commuting flows acting in the solution space of
the evolution equation have counterparts in the form of symmetries acting in the space of
the reflection coefficient. Thus we can define the symmetries by looking for commuting
flows among the possible evolutions (2.14) of the reflection coefficients β(t, z, λ)

d

dλ
β(t, z, λ) = ω(z2, z−2, t)β(t, z, λ),

d

dλ
z(t, λ) = zω̃(z2, z−2, t) (4.2)
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with those of the dNLS (2.17). From this commutation we get:

ω(z2, z−2, t) = −2it
h2

(
z2−z−2

)
ω̃(z2, z−2, t) + ω̄(z2, z−2),

dω̃

dt
= 0 (4.3)

where ω̄ is an arbitrary entire function of z2 and z−2 of the form (2.10) and ω̃ is constrained
so that ω is of the form (2.10).

We can distinguish various types of symmetries, corresponding to isospectral or non-
isospectral flows. In the isospectral case we have that ω̃ = 0 and then from eqs. (4.3),
(2.10) we get that ω is given in terms of an arbitrary entire function of z2 and z−2. In
this case we can define a base of symmetry generators in the spectral space as:

X0 = β∂β, XR
j = (z2j − z−2j)β∂β, XI

j = i(z2j + z−2j)β∂β. (4.4)

Considering complex linear combinations of XR
j and XI

j , we can redefine the base (4.4) as

Xj = z2jβ∂β, (4.5)

with j an arbitrary integer.
In the non-isospectral case, ω̃ �= 0 and ω̄ = 0, and in an analogous way to the isospectral

case we can choose the following base of symmetry generators:

Zj = z2j

[
2it
h2

(z2 − z−2)β − zβz

]
∂β. (4.6)

We present explicitly the simplest symmetries of the dNLS, which we will need later:

X0 = Qn∂Qn −Q∗
n∂Q∗

n
,

X1 = (1−ε|Qn|2)Qn+1∂Qn − (1−ε|Qn|2)Q∗
n−1∂Q∗

n

X−1 = (1−ε|Qn|2)Qn−1∂Qn − (1−ε|Qn|2)Q∗
n+1∂Q∗

n

X2 = (1−ε|Qn|2)
[
Qn+2(1−ε|Qn+1|2)− εQn+1(Q∗

nQn+1+Q∗
n−1Qn)

]
∂Qn

− (1−ε|Qn|2)
[
Q∗

n−2(1−ε|Qn−1|2)− εQ∗
n−1(Q

∗
nQn+1+Q∗

n−1Qn)
]
∂Q∗

n

X−2 = (1−ε|Qn|2)
[
Qn−2(1−ε|Qn−1|2)− εQn−1(Q∗

nQn−1+Q∗
n+1Qn)

]
∂Qn

− (1−ε|Qn|2)
[
Q∗

n+2(1−ε|Qn+1|2)− εQ∗
n+1(QnQ

∗
n+1+Qn−1Q

∗
n)

]
∂Q∗

n

Z0 =
[
−2it

h2
(1−ε|Qn|2)(Qn+1 −Qn−1)− (2n+1)Qn

]
∂Qn

+
[
−2it

h2
(1−ε|Qn|2)(Q∗

n+1 −Q∗
n−1) + (2n+1)Q∗

n

]
∂Q∗

n

Z1 =
{
2it
h2

(1−ε|Qn|2)
[
Qn+2 − ε(Q∗

n+1Qn+2 +Q∗
nQn+1 +Q∗

n−1Qn)Qn+1

]

− 2it
h2

Qn + (2n+3)(1−ε|Qn|2)Qn+1 + 2εQnS
∗
n

}
∂Qn (4.7)

+
{
−2it

h2
(1−ε|Qn|2)

[
Q∗

n−2 − ε(Qn−1Q
∗
n−2 +QnQ

∗
n−1 +Qn+1Q

∗
n)Q

∗
n−1

]

+
2it
h2

Q∗
n − (2n−1)(1−ε|Qn|2)Q∗

n−1 − 2εQ∗
nS

∗
n

}
∂Q∗

n
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Z−1 =
{
− 2it

h2
(1−ε|Qn|2)

[
Qn−2 − ε(Q∗

n−1Qn−2+Q∗
nQn−1+Q∗

n+1Qn)Qn−1

]

+
2it
h2

Qn + (2n−1)(1−ε|Qn|2)Qn−1 + 2εQnSn

}
∂Qn

+
{
2it
h2

(1−ε|Qn|2)
[
Q∗

n+2 − ε(Qn+1Q
∗
n−+ +QnQ

∗
n+1 +Qn−1Q

∗
n)Q

∗
n+1

]

− 2it
h2

Q∗
n − (2n+3)(1−ε|Qn|2)Q∗

n+1 − 2εQ∗
nSn

}
∂Q∗

n

where the function Sn appearing in symmetries Z1 and Z−1 was defined in (2.18). Taking
into account the temporal evolution of dNLS (1.1), Sn can be characterized as the function
satisfying the system

Sn+1 = Sn −QnQ
∗
n+1, Ṡn =

i

h2

[|Qn|2 − (1−ε|Qn|2)Q∗
n−1Qn+1

]
.

Note that X0 is a point symmetry, and only one additional independent point symmetry
can be obtained, 2X0−X1−X−1 = Q̇n∂Qn − Q̇∗

n∂Q∗
n
. The remaining independent symme-

tries are generalized symmetries, and Zi with |i| ≥ 1 are non-local symmetries. The lattice
point symmetry X̂2 = ∂n in (3.7) cannot be retrieved by a symmetry (4.1) depending only
on a finite number of fields Qi.

The structure of the algebra L of infinitesimal symmetries of dNLS can be inferred
from the commutation relations

[Xi, Xj ] = 0, [Xi, Zj ] = −2iXi+j

[Zi, Zj ] = −2(i−j)Zi+j .

The subalgebra L1 generated by Xi, i ∈ Z, is abelian. The symmetries Zi, i ∈ Z also
generate a subalgebra L0, which is perfect, i. e. [L0,L0] = L0. The structure of the whole
algebra is that of of semidirect sum

L = L0 ⊃+ L1.

4.1 Continuous limit

The continuous limit

Qn(t) = hu(x, t), x = nh (4.8)

transforms the dNLS equation (1.1) into the NLS equation (1.3)

iut + uxx − 2ε|u|2u = O(h2).

Here we study the relationship between the symmetries of (1.1) and those of its continuous
limit (1.3). Particularly, we are interested in finding precursors of the point symmetries
of NLS in the symmetry algebra of (1.1). We will consider the point symmetries of NLS:

y1 = u∂u − u∗∂u∗ ,

y2 = ux∂u + u∗x∂u∗ ,

y3 = ut∂u + u∗t∂u∗ ,

y4 = (ixu− 2tux)∂u − (ixu∗+2tu∗x)∂u∗ ,

y5 = (u+2tut+xux)∂u + (u∗+2tu∗t+xu∗x)∂u∗ .

(4.9)
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This is a five-dimensional algebra, while we have seen that the point symmetry subalgebra
of dNLS (1.1) is three-dimensional, generated by the vector fields X0 and 2X0 − X1 −
X−1 and the lattice symmetry X̂2 = ∂n (cf. (3.7)). The remaining two independent
point symmetries of NLS must be recovered from the continuous limit of some generalized
symmetry of (1.1). The lattice symmetry X̂2 can also be approximated in the continuous
limit by a generalized symmetry of (1.1).

Taking into account that under the transformation (4.8), the function S appearing
in (4.7) reduces to

S → −h

∫
|u|2dx+ h2

∫
(uxu

∗−uu∗x)dx+O(h3),

the appropriate combinations of the symmetries, such that in the continuous limit we
get (4.9), are

Y1 ≡ X0 = y1, Y2 ≡ X1−X0

h
= y2 +O(h)

Y3 ≡ i

h2
(X−1−2X0+X1) = y3 +O(h2)

Y4 ≡ −hi
Z0+X0

2
= y4 +O(h2), Y5 ≡ Z1 − Z−1

4
= y5 +O(h)

The point symmetries Y1, Y3 of the dNLS equation produce, in the continuous limit, the
point symmetries y1, y3 of NLS. NLS point symmetries y2, y4 and y5 have to be recovered
from non-point symmetries Y2, Y4 and Y5 of dNLS (i. e. X1, Z0, Z1, Z−1 besides X0).
Thus, a contraction of the Lie algebra of symmetries of dNLS is occurring [16].

The non-zero elements of the commutator tables for the symmetries of (1.1) and for
the NLS symmetries are, respectively

Y4 Y5

Y2 −iY1−hiY2 −Y2+hi
2 Y3−h2

2 Y6

Y3 2Y2+hiY3 −2Y3−h2

2 iY7

Y4 0 Y4+h
2 iY1+h2

2 Y8−h3

2 Y3

Y5 −[Y4, Y5] 0

,

y4 y5

y2 −iy1 −y2

y3 2y2 −2y3

y4 0 y4

y5 −y4 0

where Y6 ≡ (X2 + 3X0 − 3X1 − X−1)/h3, Y7 ≡ (X−2 + 6X0 − 4X1 − 4X−1 + X2)/h4

and Y8 ≡ i(Z1 +Z−1 +2Z0 − 2X−1 − 2X1 +4X0)/(2h) are combinations with well defined
continuous limit. We can see from the previous tables how the point-symmetry subalgebra
of (1.3), generated by y1, y2, y3, y4 and y5, is the image under a contraction of the set
generated by Y1, Y2, Y3, Y4 and Y5. This set contains the subalgebra of point algebras
of (1.1), but it is not an algebra itself.

5 Symmetry reductions

In this Section we present the results obtained by carrying out the symmetry reduction of
the dNLS with respect to the Lie point symmetries and the simplest generalized symme-
tries. For completeness we first present the corresponding results on the continuous NLS
equation.
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5.1 Continuous case

It is convenient now to rewrite the Lie point symmetries (4.9) of the NLS equation (1.3)
using the polar representation of the complex function u(x, t), i. e. u(x, t) = ρ(x, t)eiφ(x,t):

y1 = −i∂φ, y2 = ρx∂ρ + φx∂φ, y3 = ρt∂ρ + φt∂φ,

y4 = −2t∂x + x∂φ, y5 = x∂x + 2t∂t − ρ∂ρ.
(5.1)

The symmetry reductions are as follows.

• In the case of y2 the NLS equation (1.3) reduces to

ρt = 0; φt = −2ερ2, (5.2)

which can be easily solved and give u(x, t) = ρ0e
i(φ0+2ερ2

0t), ρ0 and φ0 being arbitrary
integration constants.

• In the case of y3 the NLS equation (1.3) reduces to

2ρxφx + ρφxx = 0; ρxx = ρφ2
x + 2ερ3 (5.3)

which can be reduced to the following elliptic equation for the variable v = ρ2

vx = 2
√

εv3 +K1v −K2
2 (5.4)

where K1 and K2 are integration constants and φ is such that φx = K2/v.

• In the case of y4 the invariant variables are:

ρ(x, t) = ρ0(t); φ(x, t) = φ0(t)− x2

4t
, (5.5)

and the NLS equation (1.3) is solved by u(x, t) = K1/
√
t ·exp(i(K2−2εK2

1 log(t)−x2/4t)),
being K1 and K2 integration constants.

• Finally in the case of y5 the invariant variables are:

ρ(x, t) =
ρ0(η)√

t
; φ(x, t) = φ0(η); η =

x√
t
. (5.6)

In terms of these variables the NLS equation (1.3) reduces to:

ρ0 + ηρ0,η + 4ρ0,ηφ0,η + 2ρ0φ0,ηη = 0 (5.7)

ρ0,ηη − 1
2
ηρ0φ0,η − ρ0φ

2
0,η − 2ερ3

0 = 0. (5.8)

Defining the new variable Y (η) so that φ0,η = −1
4(η + Y

Yη
) and ρ2

0 = Yη, eq. (5.7) is
identically satisfied and eq. (5.8) reduces to

Y 2
ηη + 4(ηYη − Y )2 − 16εY 3

η − 4εµ2Yη = 0, (5.9)
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where µ is an arbitrary integration constant. For ε = −1 it can be shown [4] that it
has the only solution Y = 0 while for ε = 1 eq. (5.9) can be reduced to the Painlevé IV
equation [17]

WWηη =
1
2
W 2

η − 6W 4 + 8ηW 3 − 2η2W 2 − 1
2
(µ− 1)2, (5.10)

by defining:

Y =
1
2
W (W − η)2 +

1
8W

(W 2
η − 2Wη − µ2 + 1).

5.2 Discrete case

The symmetries that we will use to find reductions of dNLS are Y2, Y3, Y4, while in the
case of Y5 the constraint is given by a nonlocal fifth order nonlinear difference system of
equations which is too involved to get a significant explicit reduction.

Reduction by Y2 The reduction is obtained by solving the following equation:

(1−ε|Qn|2)(Qn+1 −Qn−1) = 0. (5.11)

One solution is given by Qn+1 = Qn−1, i. e.

Qn = α(t) + (−1)nβ(t).

Writing this solution as Q2n = ã(t), Q2n+1 = b̃(t) and substituting it into (1.1), we get
that ã and b̃ must satisfy the following equations

i ˙̃a =
2
h2

[
ã− (1− ε|ã|2)b̃

]

i
˙̃
b =

2
h2

[
b̃− (1− ε|b̃|2)ã

]

Defining ã = exp(− 2i
h2 t)a(t) and b̃ = exp(− 2i

h2 t)b(t) we get

iȧ+
2
h2

(1− ε|a|2)b = 0, iḃ+
2
h2

(1− ε|b|2)a = 0. (5.12)

Eqs. (5.12) can be solved in terms of an elliptic integral

Ḃ = − 1
h2

(B4 + 8(εK0 − 2)B2 +K1)
1
2 , (5.13)

where K0 and K1 are two integration constants and, in polar coordinates a = ρa exp(iφa),
b = ρb exp(iφb), the function B is defined by B = ρbρa sin(φa−φb). In terms of the elliptic
function B

ρ2
a =

1
8
εB2 − h2

8
Ḃ +

K0

2
,

ρ2
b =

1
8
εB2 +

h2

8
Ḃ +

K0

2
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and the phases φa and φb are obtained by quadrature from the following equations:

φ̇a =
ρ̇a

ρa

(ρ2
aρ

2
b −B2)

1
2

B
,

φ̇b = − ρ̇b

ρb

(ρ2
aρ

2
b −B2)

1
2

B
.

Realizing that eq. (5.12) admits two conserved quantities

(1− ερ2
a)(1− ερ2

b) = K, (5.14)
ρaρb cos(φb − φa) = C (5.15)

we can give an alternative description of the solutions, readily interpretable in terms of a
non-linear two-body chain [18]. One can parametrize the algebraic curve given by (5.14) in
terms of elliptic functions of a parameter θ, ρa = s(θ), ρb = c(θ) and express the evolution
as a system θ̇ = f(θ, φ), φ̇ = g(θ, φ) (where φ = φb −φa). For example, for K = 2 we have

ρa =
1√
2
sn(

√
2θ, 1/2)

dn(
√
2θ, 1/2)

, ρb = cn(
√
2θ, 1/2)

(where sn and cn are Jacobi elliptic functions [3]) and the evolution is given by

θ̇ =
2
h2

sinφ,

φ̇ =
2
h2

ρ2
b − ρ2

a

ρaρb
cosφ =

4
√
2

h2

cn(2
√
2θ, 1/2)

sn(2
√
2θ, 1/2)

cosφ.

The second conserved quantity (5.15) provides us with the equation of the orbits

dn(2
√
2θ, 1/2)− 1

sn(2
√
2θ, 1/2)

cosφ =
sn(

√
2θ, 1/2) cn(

√
2θ, 1/2)

dn(
√
2θ, 1/2)

cosφ =
√
2C, (5.16)

which is represented in Figure 1.
If ε = +1 there are additional solutions. The reduced equation (5.11) is equivalent the

the following prescription

• A point n in the lattice with |Qn| = 1, has neighbours with arbitrary values Qn+1,
Qn−1.

• A point n in the lattice with |Qn| �= 1 has neighbours with equal valuesQn+1 = Qn−1.

A typical solution is of the form:

Q2n = eiθ(t), Q2n+1 = ρn(t)eiφn(t).

Substituting into (1.1) we get for θ(t), ρn(t) and φn(t) the equations

θ̇ = − 2
h2

, ρ̇n = − 2
h2

(1− ρ2
n) sin(θ − φn),

φ̇n = − 2
h2

+
2
h2

1− ρ2
n

ρn
cos(θ − φn)

(5.17)
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Figure 1. Level curves of (5.16), θ vs. φ for Y2-reduced dNLS, for K = 2 and different values
of C.

Let us notice that in these equations the dependence on n is parametric. It is possible to
find the general solution of (5.17), which is given by

θ(t) = − 2
h2

t+ θ0, (5.18)

ρn(t) = 1 +An + q2
n(t), (5.19)

sinφn(t) =
−qn cos θ ±

√
1 +An sin θ

1 +An + q2
n

(5.20)

where An is an arbitrary function of n, and there are three different expressions for qn(t)
depending on the value of An

q(1)
n (t) =

√
|An|e

4
√

|An|
h2 (t−tn) + 1

1− e
4
√

|An|
h2 (t−tn)

if −1 < An < 0

q(2)
n (t) = − h2

2(t− tn)
if An = 0

q(3)
n (t) =

√
|An| tan

[
2An

h2
(t− tn)

]
if 0 < An

with tn an arbitrary function of n.
The general reduced solution when ε = +1 can be described as a piecewise function Qn

on the lattice, as it is discussed in [10]. Every piece or “domain” is characterized by
a sequence of points with an equal value Qn = eiθ(t), interspaced with a sequence of
points with values Qn = ρn(t)eiφn(t) of modulus and phase given by (5.19), (5.20). At the
extremes of each domain we find points where Qn has modulus 1; different domains are
characterized by a priori different values of the phases. See fig. 2 for an example.
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n

Qn

Figure 2. Schematic plot of Qn at a given time t, showing three “domains”, solution of the
Y2-reduced dNLS. The white arrowheads correspond to the real values of the points of modulus 1
that define the domains. The black arrowheads correspond to the real values of the points inside
a domain of modulus and phase given by eqs. (5.19,5.20) .

Reduction by Y3 The reduction is obtained by solving the following equation

(1−ε|Qn|2)(Qn−1 +Qn+1)− 2Qn = 0. (5.21)

Taking into account the dNLS equation (1.1), (5.21) implies Q̇n = 0. Writing Qn in polar
coordinates as

Qn = ρn exp(iθn) (5.22)

we have that

(1− ερ2
n) [ρn+1 sin(θn+1−θn)− ρn−1 sin(θn−θn−1)] = 0 (5.23)

(1− ερ2
n) [ρn+1 cos(θn+1−θn)− ρn−1 cos(θn−θn−1)] = 2ρn (5.24)

We can see that 1 �= ερ2
n, so eq.o (5.23) reads

ρn+1 sin(θn+1−θn) = ρn−1 sin(θn−θn−1) (5.25)

which can be once integrated to get

sin(θn+1−θn) =
K

ρn+1ρn
(5.26)

where K is an arbitrary integration constant. Substituting (5.26) into (5.24) and taking
into account that

cos(θn+1−θn) =
1

ρn+1ρn

√
ρ2

n+1ρ
2
n −K2

we get the following difference equation for ρ2
n

√
ρ2

nρ
2
n+1 −K2 +

√
ρ2

nρ
2
n−1 −K2 =

2ρ2
n

1− ερ2
n

. (5.27)

Alternatively, substituting ρn+1 and ρn−1 from (5.26) in (5.24) we obtain:

K(1− ερ2
n) [ctan(θn+1−θn) + ctan(θn−θn−1)] = 2ρ2

n. (5.28)
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Then

ρ2
n =

K [ctan(θn+1−θn) + ctan(θn−θn−1)]
2 + εK [ctan(θn+1−θn) + ctan(θn−θn−1)]

(5.29)

and substituting (5.29) in (5.25) we find an equation for the phases

ctan(θn+2 − θn+1) + ctan(θn+1 − θn)
2 + εK[ctan(θn+2 − θn+1) + ctan(θn+1 − θn)]

sin2(θn+1 − θn) =

=
ctan(θn − θn−1) + ctan(θn−1 − θn−2)

2 + εK[ctan(θn − θn−1) + ctan(θn−1 − θn−2)]
sin2(θn − θn−1).

Reduction by Y4 The reduction is obtained by solving

− t

h
(1− ε|Qn|2)(Qn+1 −Qn−1) + inhQn = 0 (5.30)

and it can be calculated by a procedure totally analogous to the case of Y3. Using again
polar coordinates (5.22) we have that the equation for the moduli is

√
ρ2

nρ
2
n+1 −K(t)2 +

√
ρ2

nρ
2
n−1 −K(t)2 =

nh2

t

ρ2
n

1− ερ2
n

where K(t) is a first integral

ρn+1ρn cos(θn+1 − θn) = K(t).

From the temporal evolution (1.1) given by dNLS it follows that

K(t) =
K0

t

and the phases are obtained from the relation

θ̇n = − 2
h2

[
1− 1− ερ2

n

ρ2
n

K(t)
]
.

6 Conclusions

There are several general conclusions to be drawn from this study. The first one, already
noticed previously, is that if we wish to study symmetries of difference equations on a fixed
and untrasformable lattice and wish to obtain all symmetries that exist in the continuous
limit, then generalized symmetries must be considered together with point ones. The
linear tools of integrability theory can provide us with the Lie algebra of symmetries L(h)
of the considered discrete integrable equation.

The symmetry algebra L(h) includes a very small subalgebra of point transformations.
In the continuous limit, when we take the spacing parameter h to 0, the structure of the Lie
algebra changes, and a contraction of Lie algebras occurs, with the lattice spacing h as the
contraction parameter. We have already seen this process between the Toda system and
the pKdV equation in [16]. If the discrete equation is integrable, L(h) is infinite dimen-
sional, and after the contraction h → 0 the contracted Lie algebra L(0) is the symmetry
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algebra of the corresponding integrable differential equation, it is still infinite dimensional
and includes both generalized and point symmetries. However, a finite-dimensional sub-
set S ⊂ L(h) of the symmetry algebra of the discrete equation, that includes point and
generalized symmetries, contracts into the subalgebra Lp ⊂ L(0) of point symmetries
of the corresponding differential equation. In particular we have shown that for dNLS S
is a five-dimensional subspace generated by both point and generalized symmetries, that
transforms into the five-dimensional point symmetry algebra of the NLS equation. The
subset S, though, does not form a Lie algebra, because it is not closed under commutation.

One uses the lowest symmetries to do symmetry reduction of the equation. One thus
obtains explicit solutions and discrete analogue of elliptic functions. We have performed
several reductions of the discrete NLS equation, obtaining in some cases explicit solutions
and in other difference equations of elliptic type for the fields of the lattice. The cases that
in the continuous limit, i. e. for the NLS differential equation, produce solvable ordinary
differential equations, provide in the discrete non trivial difference equations. We have,
though, not been able to consider the case which in the continuous limit gives a Painlevé
equation, because in this case the reduced equation contains nonlocal terms.

A question that immediately arises is: how does one find and use symmetries of nonin-
tegrable difference equations, when no linear system is available. One possibility is to give
up the notion of a fixed lattice, i. e. study group transformations acting simultaneously
on the equations and on the lattice. For instance dilations of coordinates will change the
scale of the lattice. This approach has been taken by Dorodnitsyn and collaborators [11],
[12]. Another approach is the differential equation method proposed earlier [26]. Here
one views a differential–difference equation as an infinite set of differential equations and
looks for point symmetries of this infinite system. These will include some, through not
necessarily all, generalized symmetries of the differential–difference equation under study.
The problem here is that it is often very difficult to solve the corresponding infinite set
of determining equations. Finally, let us mention the intrinsic method [26], the one we
used in Section 3. It is the simplest to apply and use, and it provides us with the point
symmetries of the discrete equation.
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