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Abstract

In this paper we investigate relations between different transformations of the so-
lutions of the sixth Painlevé equation. We obtain nonlinear superposition formulas
linking solutions by means of the Bäcklund transformation. Algebraic solutions are
also studied with the help of the Bäcklund transformation.

1 Introduction

In this paper we are concerned with relations between different transformations of the
sixth Painlevé equation given by
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Equation (1.1) has three fixed singular points z = 0, 1,∞ and it is the most general
among other Painlevé equations as they can be obtained from (1.1) by a confluence pro-
cedure [14]. In general, equation (1.1) cannot be integrated in terms of classical tran-
scendental functions [11]. However, under suitable conditions imposed on the parameters,
it may be integrated in terms of elliptic functions or it admits one-parameter families
of solutions which can be expressed by means of hypergeometric functions [12]. Solu-
tions of equation (1.1) are invariant with respect to symmetry transformations which
form a group generated by transformations Sj : y(t, α, β, γ, δ) → yj(tj , αj , βj , γj , δj),
j ∈ {1, 2, 3}, where y1(t,−β,−α, γ, δ) = y−1(1/t); y2(t,−β,−γ, α, δ) = 1−y−1(1/(1−t));
y3(t,−β,−α,−δ+1/2,−γ+1/2) = ty−1(t). An application of the transformations Sj , j ∈
{1, . . . , 24} from the group of symmetry transformations implies a change of any two pa-
rameters in accordance with the scheme α → −β → γ → 1/2− δ → α [12]. Equation (1.1)
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also admits Bäcklund transformations [5] originally found in [21] and Schlesinger transfor-
mations which link solutions of (1.1) with different parameter values. These transforma-
tions involve derivatives of the initial solution. Depending on the choice of the branches
of the parameters, the Bäcklund transformation generally generates sixteen different solu-
tions. Nonlinear superposition formulas linking them are studied in Section 2. Although
the Schlesinger transformations were extensively studied in papers [4, 20], in Section 3
we present new formulas of a connection between Schlesinger and Bäcklund transforma-
tions taking into account the parameter branching. There exist other transformations for
the solutions of the sixth Painlevé equation, namely, quadratic transformations found in
[16, ?, 22] which may be considered as analogues of the quadratic transformations of hy-
pergeometric functions. A specific feature of these transformations is that the independent
variables of the solutions of (1.1) are connected by some quadratic formula. In Section 4
a new relation between different quadratic transformations is obtained. Finally, we apply
the Bäcklund transformation to generate new algebraic solutions of equation (1.1).

2 The Bäcklund transformation

The Bäcklund transformation is given by the following theorem [21] (see also [5, 12]).

Theorem 1. Let y(t) = y(t, α, β, γ, δ) be a solution of (1.1), such that R(t, y) := t(t −
1)y′ + (η2 + η3 + η4 − 1)y2 − (tη2 + tη3 + η2 + η4 − 1)y+ tη2 �≡ 0. Then the transformation

T : y(t) → ỹ(t) = y − (η1 + η2 + η3 + η4 − 1)y(y − 1)(y − t)/R(t, y), (2.1)

where η2
1 = 2α, η2

2 = −2β, η2
3 = 2γ, η2

4 = 1 − 2δ, determines solution ỹ(t) of equation
(1.1) with parameter values 2α̃ = η̃2

1, 2β̃ = −η̃2
2, 2γ̃ = η̃2

3, 1 − 2δ̃ = η̃2
4, and η̃j =

ηj − (η1 + η2 + η3 + η4)/2 + 1/2, j ∈ {1, . . . , 4}.

It follows immediately from Theorem 1 that a given solution y(t, α, β, γ, δ), which is
called a solution of the zero level, generates in general case sixteen different solutions
yi(t, αi, βi, γi, δi), i ∈ {1, . . . , 16}, of the first level due to the parameter branching. In
repeated applications of the transformation T in (2.1) the choice of the signs of ηj is
independent at each step. Let us denote the choice of the signs of ηj at the n−th step
by ε

(n)
j , (ε(n)

j )2 = 1, and transformation T by Tε1, ε2, ε3, ε4 . The corresponding solutions
obtained at the n−th step of the application of T−transformation are called the solutions
of the n−th level. It can easily be verified that T1,1,1,1 ◦ Tε1, ε2, ε3, ε4 = I, where I is an
identical transformation.

Next we obtain some nonlinear superposition formulas linking solutions of (1.1) ob-
tained by repeated application of the Bäcklund transformation (2.1). Below we consider
a general case assuming ηi �= 0, i ∈ {1, . . . , 4}. When ηi = 0, i ∈ {1, . . . , 4}, all solu-
tions of the first level coincide. If η1 �= 0, ηi = 0, i ∈ {2, 3, 4}, then we can apply
the Bäcklund transformation of Theorem 1 provided y(t) �= t/(−eC1(t − 1) + t) with
α = 1/2, C1 being constant. In this case we get two different solutions which are related
by y2 = (y1 + y1η1 − 2η1y)/(1− η1), where y1 = T1,ε2,ε3,ε4 , y2 = T−1,ε2,ε3,ε4 . Observe that
the nonlinear superposition formulas obtained below may be considered as an alternative
version of discrete Painlevé equations, see [8, 10].
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Theorem 2. A seed solution and any two solutions of the first level are algebraically
dependent.

Proof. Let yk = Tε1,ε2,ε3,ε4y and yl = Tε̃1,ε̃2,ε̃3,ε̃4
y be different solutions of the first

level. Eliminating y′(t) between them, we get an algebraic relation linking solutions
y, yk, yl of the zero and first levels. For instance, if y1 = T1,1,1,1y, y2 = T1,1,1,−1y, y3 =
T1,−1,1,1y, y4 = T−1,1,1,1y, y5 = T−1,1,−1,−1y, then the following relations are true:

y2 =
(−y n1 + t n2) y1 + 2 t y η4

t n1 − y n2 − 2 y1 η4
, y3 =

y n1 y1

2 y1 η2 + y (−1 + η1 − η2 + η3 + η4)
,

y4 = (2 y η1 + y1 (−1− η1 + η2 + η3 + η4))/n1,

y5 =

(−t n3 + y2 n5 + y (n4 + t n6)
)
y4 + 2 y (t (η3 + η4)− y (η3 + t η4))

−y2 n3 + t n5 + y (t n4 + n6)− 2 y4 (t η3 + η4 − y (η3 + η4))
,

where n1 = −1+η1+η2+η3+η4, n2 = −1+η1+η2!+η3−η4, n3 = 1+η1−η2+η3+η4, n4 =
1 + η1 − η2 + η3 − η4, n5 = −1− η1 + η2 + η3 + η4, n6 = 1 + η1 − η2 − η3 + η4. �

Theorem 3. Any three solutions of the first level are algebraically dependent.

Proof. Eliminating the function y(t) from formulas which are obtained in Theorem 2 we
get relations linking three arbitrary solutions of the first level. For example,

y4 =
2 t y2 η1 + y1

2 n7 − y1 (2 t (η1 − η4) + y2 (1 + η1 − η2 − η3 + η4))
y2 n2 + 2 t η4 − y1 n1

,

y6 =
y2 (t y2 n1 − y1 (t n2 + 2 y2 η4))

y1 (−2 y2 (η2 + η!4) + t n8) + y2 (2 y2 η2 + t (−1 + η1 − η2 + η3 + η4))
,

where y6 = T1,−1,1,−1y, n7 = 1 + η1 − η2 − η3 − η4, n8 = 1− η1 + η2 − η3 + η4. �

Calculating directly we can get nonlinear superposition relations linking solutions of
three successive levels obtained after the repeated application of transformation (2.1). A
seed solution y = y(t, α, β, γ, δ), the solution of the first level y1 = T1,1,1,1y and solution
of the second level y1, 2 = T1,1,1,−1y1 are connected by the following algebraic relation:

y1, 2 = (2tη4y + y1(tn2 − n1y))/(tn1 − 2η4y1 − n2y).

Moreover, some solutions of the second level coincide up to the symmetries of equation
(1.1). For example, the following relations are true:

T1,1,1,−1 ◦ T1,1,1,1 = T1,1,−1,1 ◦ T1,1,−1,−1 = T1,−1,1,1 ◦ T1,−1,1,−1 = T−1,1,1,1 ◦ T−1,1,1,−1,

T1,−1,1,1 ◦ T1,1,1,1 = T1,1,1,−1 ◦ T1,−1,1,−1 = T1,1,−1,1 ◦ T1,−1,−1,1 = T−1,1,1,1 ◦ T−1,−1,1,1,

T1,−1,1,−1 ◦ T1,1,1,1 = S6 ◦ T1,1,−1,−1 ◦ T1,1,1,1 ◦ S6,

where S6 : y(t, α, β, γ, δ) → y6(t, α,−γ,−β, δ) = 1−y(1−t) is a symmetry transformation.
Note, that we may apply a sequence of Bäcklund transformations to a solution

y(t, α, β, γ, δ). Let us assume that this solution does not belong to the family of solutions
generated from solutions of the Riccati equation

t(t− 1)y′ + (η2 + η3 + η4 − 1)y2 − (tη2 + tη3 + η2 + η4 − 1)y + tη2 = 0 (2.2)



60 V I Gromak and G Filipuk

with η4 = η1 + 1− η2 − η3. It is clear from (2.1) that this assumption enables us to apply
successive Bäcklund transformations to the solution y(t, α, β, γ, δ). The general values of
the parameters obtained after repeated application of transformation (2.1) are given in
the following theorem [12].

Theorem 4. Assume that numbers ni ∈ Z, i ∈ {1, . . . , 4}, are such that ∑4
j=1 nj ∈ 2Z,

and η∗i denote arbitrary permutations of ηi. Then, for arbitrary signs ki, k2
i = 1, i ∈

{1, . . . , 4}, there exist compositions of transformations of T (2.1) and symmetries Sj , j ∈
{1, . . . , 24}, which change y(t, α, β, γ, δ) into ỹ(t, α̃, β̃, γ̃, δ̃) with the parameters given by

α̃ = (η∗1 +n1)2/2, −β̃ = (η∗2 +n2)2/2, γ̃ = (η∗3 +n3)2/2, 1/2− δ̃ = (η∗4 +n4)2/2; (2.3)

α̃ = (k1η
∗
1 − k2η

∗
2 − k3η

∗
3 − k4η

∗
4 + 2n1 + 1)2/8,

−β̃ = (−k1η
∗
1 + k2η

∗
2 − k3η

∗
3 − k4η

∗
4 + 2n2 + 1)2/8,

γ̃ = (−k1η
∗
1 − k2η

∗
2 + k3η

∗
3 − k4η

∗
4 + 2n3 + 1)2/8, (2.4)

1/2− δ̃ = (−k1η
∗
1 − k2η

∗
2 − k3η

∗
3 + k4η

∗
4 + 2n4 + 1)2/8.

It may be verified directly that transformations obtained in papers [1, 7, 9, 13] are
the compositions of transformation (2.1) in Theorem 1 and trivial symmetries Sj . For
instance, the transformation found by Fokas and Yortsos in [9] is given by

F1 : y(t, α, β, γ, δ) → y1(t, α1, β1, γ1, δ1) = y +
2kf((t+ 1)y − 2t)

−2t(t− 1)f ′ + (t− 1)J − (t+ 1)kf
,

where the choice of the branches of µ1 and µ2 is denoted by ε1 and ε2 respectively and

t(t− 1)y′ = −µ1y
2 +

1
2
λ(t+ 1)y − µ2t+ (

1
2
+

µ

4
+ f)(t− 1)y,

J = f2 +
fµ

2
+ ν, k = µ2 − µ1 − 1 �= 0, λ = µ1 + µ2,

µ = 4(
1
2
− γ − δ), ν = 2δ − 1 + (

µ

4
+

k

2
)2, µ2

1 = 2α, µ2
2 = −2β,

2α1 = (µ2 − 1)2, 2β1 = −(µ1 − 1)2, 2 γ1 = 1− 2δ, 2 δ1 = 1− 2γ.

Another transformation found in [13] by Gromak and Tsegel’nik is given by

F2 : y(t, α, β, γ, δ) → y1(t, α1, β1, γ1, δ1) = y +
(2(t+ 1)− 4y)f ′

2f ′ + J/t+ (kf(t+ 1))/(t(t− 1))
,

2α1 = (µ1 + 1)2, 2β1 = −(µ2 − 1)2, γ1 = γ, δ1 = δ.

The transformation found by Adler [1] is given by the following formula:

F3 : y(t, α, β, γ, δ) → y1(t, α1, β1, γ1, δ1) =
t

y

β/2 + (u− s)2

u2 − α/2
,

where

y′ =
2s

t− 1
+ 2p

y

t
− s

t+ 1
t(t− 1)

− 2(y − t)(t− 1)
t(t− 1)

u,
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2s = µ3 + µ4 − 1, 4p = 1 + µ3 − µ4, 4q = 1 + µ4 − µ3, µ
2
3 = 2γ, µ2

4 = 1− 2δ,

α1 = α, β1 = β, 2 γ1 = (µ3 − 1)2, 2 δ1 = 1− (µ4 − 1)2.

The explicit relation between these transformations and the Bäcklund transformation is
given by the following statement.

Theorem 5. Up to the choice of the signs of ηj, the transformations Tε1, ε2, ε3, ε4 and
Fi, i ∈ {1, 2, 3}, are related by F1 = T1,1,−1,−1 ◦ Tε1,ε2,1,1, F2 = S3 ◦ T1,1,−1,−1 ◦ Tε1,ε2,1,1,
F3 = T−1,−1,1,1 ◦ T1,1,ε3,ε4 .

,

3 The Schlesinger transformations

It is well-known [15] that equation (1.1) can be obtained as the compatibility condition of
the following linear system

∂

∂x
Y (x, t) =

(
A0(t)
x

+
A1(t)
x− 1

+
At(t)
x− t

)
Y (x, t),

∂

∂t
Y (x, t) = −At(t)

x− t
Y (x, t), (3.1)

where A0 + A1 + At + A∞ = 0, ±θ0/2, ±θ1/2, ±θt/2 and ±θ∞/2 are eigenvalues of
A0, A1, At, A∞ given by

Aν =
1
2

(
zν uν(θν − zν)

(θν + zν)/uν −zν

)
, ν = 0; 1; t, A∞ =

(
θ∞/2 0
0 −θ∞/2

)
.

The function y(t) which is determined by means of k = tu0(z0−θ0)−(1−t)u1(z1−θ1), ky =
tu0(z0 − θ0) satisfies equation (1.1) with α = (1 − θ∞)2/2, β = −θ2

0/2, γ = θ2
1/2, δ =

(1− θ2
t )/2. Let

Y1(x) = R(x)Y (x) (3.2)

be the Schlesinger transformation of system (3.1) which leaves the monodromy data in-
variant. Linear system (3.1) is transformed into the following system

(Y1)x = A1(x)Y1, A1(x) = (R(x)A(x) +Rx(x))R−1(x). (3.3)

Let

θ1
0 = θ0 + 1, θ1

1 = θ1, θ1
t = θt, θ1

∞ = θ∞ + 1.

Then using the same procedure as in [20], we get that in this case the Schlesinger matrix
is given by

R =
(
0 0
0 1

)
x1/2 +

(
1 −u0

− tu1(θ0+z0)+(t−1)u0(θ1+z1)
2(1+θ∞)u0u1

tu1(θ0+z0)+(t−1)u0(θ1+z1)
2(1+θ∞)u1

)
x−1/2.

The Schlesinger transformation (3.2) generates a transformation for y(t) which we de-
note by SL.
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Theorem 6. The Bäcklund transformation (2.1) and the Schlesinger transformation gen-
erated by matrix R in (3.2) are related by SL = S3 ◦ T1,1,−1−1 ◦ T−1,−1,1,1.

Proof. Let y1 = y1(t), u1
i = u1

i (t), z
1
i = z1

i (t), i = 0; 1; t correspond to new parameters
θ1
0 = θ0 + 1, θ1

1 = θ1, θ1
t = θt, θ1∞ = θ∞ + 1 in system (3.1). Using (3.3) we get y1 =

(z1
0−θ1

0)/(tu
1
0(z

1
0−θ1

0)−(1−t)u1
1(z

1
1−θ1

1)), where, e.g., u
1
1 = (u0−u1)/(−1+fu0−fu1), f =

−(tu1(θ0+z0)+(t−1)u0(θ1+z1))/(2(1+θ∞)u0u1). Calculating directly we obtain formulas
linking u1

i , z1
i and ui, zi. Using relations between functions y, ui, zi, i = 0, 1, t, in [17],

we get the statement. �

4 Quadratic transformations

All quadratic and cubic transformation which are valid for the hypergeometric functions
[3] are also valid for one-parameter families of solutions of the sixth Painlevé equation
generated by the Riccati equation (2.2) and integrated in terms of the hypergeometric
functions. Let us consider, for example, a hypergeometric equation

z(1− z)u′′ + (c− (a+ b+ 1)z)u′ − abu = 0

for which the following transformation is valid:

u(z, 3a+
1
2
, a+

2
3
,
3
2
) → v(t, a+

1
2
, a+

5
6
,
3
2
) =

(1 + z/3)3a+3/2

1− z/9
, t =

z(z − a)2

(z + 3)3
.

Using the relation [12] between the hypergeometric equation and the Riccati equation

t(t− 1)y′− (η2t+((η3 − η2)t− (1+ η2 + η4))y+ η1y
2) = 0, η4 = η1 − 1− η2 + η3 (4.1)

solutions of which satisfy (1.1) we get the following transformation:

y(t, η1,
2η1 − 3

6
,
3 + η1

3
, η1 +

1
2
) → y1(t1,

η1 − 1
3

,
η1 − 2

3
,
5 + 2η1

6
,
1 + 2η1

6
) =

3(t(12− 8η1 + 3t(3η1 − 4)) + (32− 60t+ 27t2)η1y)
(8− 9t)2(η1 − 1)

, t1 =
27(t− 1)t2

(9t− 8)2
,

where y(t, η1, η2, η3, η4) is a solution of (4.1).
The quadratic transformation for solutions of the sixth Painlevé equation was first

obtained in [16]. Although this transformation is rather complicated, we write it explicitly
here. This transformation was obtained by means of the quadratic transformation of the
spectral parameter and Schlesinger transformations of the linear system [15] related to
equation (1.1)

∂λΨ =
(
A0

λ
+

A1

λ− 1
+

At

λ− t

)
Ψ, ∂tΨ = − At

λ− t
Ψ, (4.2)

where

As =
(

zs + θs −uszs

u−1
s (zs + θs) −zs

)
, s = 0, 1, t, A∞ = −(A0+A1+At) =

(
nbs!p; k1 0

0 k2

)
,
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k1 − k2 = θ∞, k1 + k2 = −(θ0 + θ1 + θt).

From system (4.2) we get that solution of (1.1) y = y(t) with parameters α = (θ∞ −
1)2/2, β = θ2

0/2, γ = θ2
1/2, δ = (1− θ2

t )/2 and the coefficients of matrices As are related
as follows:

z0 = y(y(y − 1)(y − t)z̃2 + (θ1(y − t) + tθt(y − 1)− 2k2(y − 1)(y − t))z̃+

+ k2
2(y − t− 1)− k2(θ1 + tθt))/(tθ∞),

z1 = −(y − 1)(y(y − 1)(y − t)z̃2 + ((θ1 + θ∞)(y − t) + tθt(y − 1)−
− 2k2(y − 1)(y − t))z̃ + k2

2(y − t)− k2(θ1 + tθt)− k1k2)/(θ∞(t− 1)),

zt = (y − t)(y(y − 1)(y − t)z̃2 + (θ1(y − t) + t(θt + θ∞)(y − 1)− (4.3)

− 2k2(y − 1)(y − t))z̃ + k2
2(y − 1)− k2(θ1 + tθt)− tk1k2)/(t(t− 1θ∞)),

u0 = k(t)y/(tz0), u1 = −k(t)(y − 1)/(z1(t− 1)), ut = k(t)(y − t)/(t(t− 1)zt),

where1

z̃ = z − θ0/y − θ1/(y − 1)− θt/(y − t),
dy/dt = y(y − 1)(y − t)(2z − θ0/y − θ1/(y − 1)− (θt − 1)/(y − t))/(t(t− 1)),

dz/dt = ((−3y2 + 2(1 + t)y − t)z2 + ((2y − 1− t)θ0+
+ (2y − t)θ1 + (2y − 1)(θt − 1))z − k1(k2 + 1))/(t(t− 1)),

d(log k(t))/dt = (θ∞ − 1)(y − t)/(t(t− 1)).

Theorem 7. Let y(t) be a solution of equation (1.1) with parameter values α = 9/8,
β = −1/8. Then the transformation

K : y(t) → ỹ(T ) =
(
1− T − 1

T

Q(1)S(1)
Q(−1)S(−1)

)−1

, T =
(τ + 1)2

4τ
, τ =

√
t, (4.4)

where

Q(s) = (τ/s+ 1)u0z0(zt + θt)/(us2(z0 + 1/2))− utzt/us2 − τ(zt + θt)/s,
S(s) = (τ/s+ 1)u0z0(zs2 + θs2)(zt + θt)/(us2(z0 + 1/2))− τ(zt + θt)zs2/s−

utzt(zs2 + θs2)/us2 ,

determines a solution ỹ(T ) of equation (1.1)! with parameter values α̃ = (1−√
1− 2δ)2/2,

β̃ = −γ, γ̃ = γ, δ̃ = δ.

Transformation (4.4) was obtained in [16] under assumption θ0 = 1/2, θ∞ = −1/2,
θt �= 0. Another quadratic transformation for the solutions of the sixth Painlevé equation
was obtained in [22].

Theorem 8. Let y(t) be a solution of equation (1.1) with parameters β = −α, δ = 1/2−γ.
Then the transformation

R : y(t) → ỹ(t1) =
(
y(t) + τ

y(t)− τ

)2

, t1 =
(
1 + τ

1− τ

)2

, τ =
√
t (4.5)

1Note that in formula (4.3) from [16] there is a slip.
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determines a solution ỹ(t1) of equation (1.1) with parameters α̃ = β̃ = 0, γ̃ = 4α, δ̃ =
1/2− 4γ.

Let us show that transformation (4.4) is in fact a superposition of transformations (4.5),
symmetry transformation [12]

S : y(t, α, β, γ, δ) → y1(t, γ, β, α, δ) = y(t/(t− 1))(y(t/(t− 1))− 1)−1 (4.6)

and the Bäcklund transformation (2.1) of equation (1.1).

Theorem 9. The following relation is valid K = T1,1,1,1 ◦ S ◦R ◦ T1,−1,−1,−1 ◦ T−1,1,1,1.

Proof. Let y(t) = y(t, 9/8,−1/8, γ, δ) be a solution of equation (1.1). Assume that η1 =
−3/2, η2 = 1/2, η3 = θ1, η4 = θt. Then after a repeated application of the Bäcklund trans-
formation (2.1) we get a new solution of equation (1.1) u(t) = u(t, (1− θ1 − θt)2/8,−(1−
θ1 − θt)2/8, (θt − θ1)2/8, 1/2 − (θt − θ1)2/8) = T1,−1,−1,−1 ◦ T−1,1,1,1y(t). Next we apply
transformations (4.5) and (4.6) to the solution u(t). Relation S◦R : u(t, a,−a, c, 1/2−c) →
ũ(T, 4a, 0, 0, 1/2− 4c) = (τ + u(t))2/(4τu(t)), T = (1 + τ)2/(4τ), τ =

√
t is valid. Hence,

applying transformation (2.1) T1,1,1,1 to solution ũ(T, (1−θ1−θt)2/2, 0, 0, 1/2−(θt−θ1)2/2),
we get solution ỹ(T, (1− θt)2/2,−θ2

1/2, θ
2
1/2, (1− θ2

t )/2) which proves the statement. �

Observe that we can also choose other branches of the parameters and get more relations
between the quadratic transformations.

Also observe that in papers by Painlevé and later in [18] (and the references therein)
equation (1.1) is written in the canonical form by means of the Weierstrass function
(2πi)2d2z/dτ2 =

∑3
j=1 αiρz(z + Ti/2, τ), where (α0, α1, α2, α3) = (α,−β, γ, 1/2 − δ),

ei(τ) = ρ(Ti/2, τ), (T0, T1, T2, T3) = (0, 1, τ, 1+ τ). The Weierstrass function admits [18] a
Landen transform given by ρz(z, τ/2) = ρz(z, τ)+ρz(z+ τ/2, τ). Since t = (e3 − e1)/(e2 −
e1), y = (ρ(z)−e1)/(e2−e1), then putting e2 = (2−t)/3, e1 = (−1−t)/3, e3 = (2t−1)/3
we get t1 = (1+

√
t)2/(4

√
t), y1 = (y+

√
t)2/(4y

√
t) which means that the Landen trans-

form coincides up to a symmetry with the transformation of Theorem 8.

5 Algebraic solution

In this section we apply the Bäcklund transformations to obtain exact algebraic solutions
of equation (1.1). Currently there is no precise classification of the algebraic solutions. A
particular case of equation (1.1) with β = γ = 0, δ = 1/2 was studied in papers [6, 7, 19]
where all algebraic solutions were classified. However, as it will be shown below, some
of these solutions are also valid for the general Painlevé VI equation. Algebraic solutions
are also studied in [2]. However, most of these solutions belong to the hierarchies of the
known solutions which form one of the following types.

1. Solutions obtained from y(t, α,−α, γ, 1/2 − γ) =
√
t by symmetries and Bäcklund

transformations. For instance, using symmetry S2 we get solution y(t, α, β,−β, 1/2−
α) = t+

√
t2 − t. No! te that solution y =

√
t is not generated by the one-parameter

family of solutions (2.2) in general case. Equation (1.1) has also solutions y(t, α,
−a2α, 1/8, 3/8) = a

√
t, y(t, α,−1/8, 1/8, 1/2− a2α) = t+ a

√
t2 − t.
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2. Solutions which belong to one-parameter families (2.2), such as y(t, 0, 0, a2/2, a(2−
a)/2) = Cta, where a and C are constants [12].

3. Solutions in the parametric form [6, 7]. The Bäcklund transformation of Theorem 1
is easily rewritten in the parametric form. Let y = y(s), t = t(s) be a solution of
equation (1.1). Then y1 = y1(s) = F (t, y, y′), t = t(s) is also a solution of (1.1).
Hence, using Theorem 4 we can get the values of the parameters when equation (1.1)
admits algebraic equations in the parametric form.

4. Solutions in the implicit form nb! sp; F (t, y(t)) = 0, where F is a polynomial in
two variables. An example of the algebraic curve is given in [7]. However, when
a parameterization of a curve is not known, it is also possible to use the Bäcklund
transformation to obtain new solutions of equation (1.1) in the same form which is
illustrated below.

Let us present some methods to obtain algebraic solutions of equation (1.1) in the
implicit form using the Bäcklund transformation (2.1). Let

y =
(1 + s4)(1 + s+ s3 + s4)

1 + s− 2s2 + s3 − 2s4 + s5 − 2s6 + s7 + s8
,

t = t(s) =
(1 + s)4(1− s+ s2)2(1− 2s− 2s3 + s4)
(s− 1)4(1 + s+ s2)2(1 + 2s+ 2s3 + s4)

be one of the parametrizations of the curve F (t, y) := 2y3 +6yt− 3y2(1+ t)− t(1+ t) = 0
of equation (1.1) with parameter values β = −1/18, γ = α/4, δ = 1/2 − α/4. Assume
y1(t) = T1,1,1,1y(t). Rewriting the Bäcklund transformation in the parametric form we get
new solution of (1.1) given by

y1 =
(1− 2s− 2s3 + s4)(1 + s+ s3 + s4)

(s− 1)2(1 + s+ s2)(1 + s4)
,

t =
(1 + s)4(1− s+ s2)2(1− 2s− 2s3 + s4)
(s− 1)4(1 + s+ s2)2(1 + 2s+ 2s3 + s4)

,

α1 = 1/18, β1 = −(3η1 − 2)2

18
, γ1 =

(3η1 − 2)2

72
, δ1 =

32 + 12η1 − 9η2
1

72
, η2

1 = 2α,

where t = t(s) is the same. Substituting the inverse transformation y(t) = T1,1,1,1y1(t)
into the equation of the algebraic curve we get new implicit solution F1(t, y1, y

′
1) = 0.

Let F2 = dF1/dx = F2(t, y1, y
′
1, y

′′
1) = F3(t, y1, y

′
1) = 0. Calculating a resultant of the

algebraic equations F1 = 0, F3 = 0 with respect to y′1, we get that new solution y1(t)
satisfies algebraic equation −2t2 +3t(1+ t)y1 − 6ty2

1 +(1+ t)y3
1 = 0. However, in this case

solutions y and y1 are related by symmetry transformation S3, i.e., y1 = t/y. By analogy
we consider another example. Let y1(t) = T1,1,−1,1y(t) and η1 = 0. A new solution
satisfies algebraic equation 2t2 − 3t(1 + t)y1 + 6ty2

1 − (1 + t)y3
1 = 0 with parameters

α1 = 1/18, γ1 = −β1/4, δ1 = β1/4 + 1/2.
To illustrate another method to obtain hierarchies of algebraic solutions we take solution

F (t, y) := t3−2 t2 (1 + t) y+6 t2 y2−2 t (1 + t) y3+
(
1− t+ t2

)
y4 = 0 with α = 1/8, γ =

−β, δ = 1/2 + β. Assume for simplicity η2 = 0. Take the Bäcklund transformation in the
form y1 = T1,1,1,−1y = R1(t, y, y′). Differentiating the equation of the algebraic curve
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with respect to t and substituting y′ = R2(t, y, y1) from the Bäcklund transformation, we
get algebraic equation R3(t, y, y1) = 0. Eliminating function y between initial equation
F (t, y) = 0 and R3(t, y, y1) = 0, we get a new solution in the form of the algebraic
curve. In our example solution y1 is determined by the algebraic equation t (t− 1) t2 +
6 (t− 1) t y1

2 − 4
(
t2 − 1

)
y1

3 + 3 (t− 1) y1
4 = 0 with β1 = −α1/9, γ1 = α1/9, δ1 =

1/2− α1/9.
Next we apply Theorem 4 to algebraic solutions. In order to obtain general parameter

values of a hierarchy of algebraic solutions take, for instance, the solution of (1.1) given
by

y3(2t− 1) + 3yt− 3y2t− t2 = 0 (5.1)

with α = 1/18, γ = −β, δ = (1 + 8β)/2. Up to the symmetry transformations solution
(5.1) generates solutions of equation (1.1) where parameters take one of the following
forms:

α̃ = (1 + 3n1)2/18, −β̃ = (η2 + n2)2/2, γ̃ = (η2 + n3)2/2, 1/2− δ̃ = (2η2 + n4)2/2;

α̃ = (2 + 3n1 − 6εη2)2/18, −β̃ = (1 + 3n2 − 3εη2)2/18,

γ̃ = (1 + 3n3 − 3εη2)2/18, 1/2− δ̃ = (1 + 3n4)2/18;

α̃ = (2 + 3n1)2/18, −β̃ = (1 + 3n2 + 3εη2)2/18,

γ̃ = (1 + 3n3 + 3εη2)2/18, 1/2− δ̃ = (1 + 3n4 − 6εη2)2/18;

α̃ = (2 + 3n1 − 3εη2)2/18, −β̃ = (1 + 3n2)2/18,

γ̃ = (1 + 3n3 − 6εη2)2/18, 1/2− δ̃ = (1 + 3n4 + 3εη2)2/18;

α̃ = (1 + 3n1 − 6εη2)2/18, −β̃ = (2 + 3n2 − 3εη2)2/18,

γ̃ = (2 + 3n3 − 3εη2)2/18, 1/2− δ̃ = (2 + 3n4)2/18;

α̃ = (1 + 3n1)2/18, −β̃ = (2 + 3n2 + 3εη2)2/18,

γ̃ = (2 + 3n3 + 3εη2)2/18, 1/2− δ̃ = (2 + 3n4 − 6εη2)2/18;

α̃ = (1 + 3n1 − 3εη2)2/18, −β̃ = (2 + 3n2)2/18,

γ̃ = (2 + 3n3 − 6εη2)2/18, 1/2− δ̃ = (2 + 3n4 + 3εη2)2/18,

where η2
2 = −2β, ε2 = 1, ni ∈ Z, i ∈ {1, . . . , 4}, are such that

∑4
j=1 nj ∈ 2Z.
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