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Abstract

A two-phase free boundary problem associated with nonlinear heat conduction is con-
sidered. The problem is mapped into two one-phase moving boundary problems for
the linear heat equation, connected through a constraint on the relative motion of
their moving boundaries. Existence and uniqueness of the solution is proved for small
times and a particular exact solution is discussed.

Free Boundary Problems (FBP) motivated several studies in the past due to their relevance
in applications [1 − 4]. From the mathematical point of view FBP are initial/ boundary
value problems with a moving boundary [5]. The motion of the boundary is unknown
(free boundary) and has to be determined together with the solution of the given partial
differential equation. As a consequence the solution of FBP is in most cases equivalent
to the solution of a nonlinear system. In recent studies [6 − 13] some free boundary
problems for nonlinear evolution equations relevant in applications have been considered.
In particular in [12] the solution of a one-phase Stefan Problem in nonlinear conduction
is proved to exist and to be unique for short intervals of time. Furthemore a particular
travelling wave solution was obtained. On the other hand two-phase Stefan Problems are
more complicated than their one-phase counterparts and the theory is more elaborate.
It is the aim of this paper to analyse a two–phase Stefan Problem for the nonlinear

heat equation considered in [12].
Such an equation arises as a model of heat conduction in solid crystalline hydrogen

[14]. It admits an exact linearization into the heat equation and therefore belongs to the
class of C-integrable equations [16].
In the following we show that the two-phase Stefan Problem for the nonlinear heat

equation admits a linearization into two distinct one-phase moving boundary problems for
the linear heat equation. The two linearized problems are connected through a constraint
on the relative motion of their moving boundaries. Such a constraint is induced by the
free boundary motion of the nonlinear problem.
We start our analysis with the following system of nonlinear heat equations

ϑ1t

ϑ2
1

= δ1ϑ1xx, ϑ1 = ϑ (x, t) , (1)
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over the domain x ∈ (−∞, s(t)), t > 0, and

ϑ2t

ϑ2
2

= δ2ϑ2xx, ϑ2 = ϑ2 (x, t) , (2)

over the domain x ∈ (s(t),+∞), t > 0, where

s(0) = b > 0. (3)

Equations (1) and (2) have initial data given by

θ1(x, 0) = ϕ1(x), x ∈ (−∞, b) , (4)

θ2(x, 0) = ϕ2(x), x ∈ (b,+∞) , (5)

related through a continuity condition at the free boundary

ϕ1(b) = ϕ2(b) = α < 0.

Moreover (1) and (2) are characterized by the following set of boundary conditions

ϑ1(−∞, t) = β1 > 0, ϑ2(+∞, t) = β2 < 0, (6)

where t � 0 and

ϑ1(s(t), t) = ϑ2(s(t), t) = α. (7)

Equation (7) together with a condition on the heat flux [see (8) below] is sufficient to
determine the motion of the free boundary s(t). In the above relations δj (j = 1, 2) are
positive constants related to the thermal conductivity of the two phases; β1, β2 and α
are constants (|α| < |β2|) and the unknown function s(t) describes the motion of the free
boundary and has to be determined together with ϑj(x, t) (j = 1, 2). Besides (7) the
system is characterized by an additional condition at the free boundary, s(t), stemming
from thermal energy considerations. The energy balance across the free boundary can be
written as

−k1ϑ1x(s(t), t) + k2ϑ2x(s(t), t) =
ds

dt
, (8)

where kj = δj/λ (j = 1, 2), with λ denoting the latent heat of fusion.
In order to linearize (1) and (2) we introduce the transformations

ψj(z, t) = ϑj(x, t), j = 1, 2, z = z(x, t), (9)

with

zx =
1
ϑ1

, zt = −δ1ϑ1x, x ∈ (−∞, s(t)), (10)

zx =
1
ϑ2

, zt = −δ2ϑ2x, x ∈ (s(t),+∞), (11)
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the compatibility of which, zxt = ztz, is easily proved by (1) and (2). Under the above
transformations we obtain from (1) and (2) the following system of linear heat equations

ψ1t = δ1ψ1zz, −∞ < z < z̄1(t), (12)

ψ2t = δ2ψ2zz, z̄2(t) < z < +∞, (13)

where

z̄1(t) = lim
x↗s(t)

z(x, t), z̄2(t) = lim
x↘s(t)

z(x, t). (14)

It is worth noting that the two limits in relation (14) are different. In fact, when (9)
and (10) are used together with the flux boundary condition (8), we get

dz1

dt
− dz2

dt
= λ

ds

dt
, (15)

which can be integrated giving

z̄1(t)− z̄2(t) = λ[s(t)− b]. (16)

The above relations imply that equations (12) and (13) are defined over semi-infinite
domains with distinct moving boundaries, given by (14). Relation (16) shows that the
two moving boundaries, z̄1(t) and z̄2(t), are forced into a relative motion induced by the
motion of the free boundary of the nonlinear problem. The relative velocity of the two
boundaries is given by (15) and is proportional to the velocity ds/dt of the free boundary
motion. The linear equations (12) and (13) are characterized by the set of initial data

ψj(z0, 0) = ϕj(x), j = 1, 2, z0 ≡ z(x, 0), (17)

and by the boundary conditions

ψ1 (−∞, t) = β1, ψ2 (+∞, t) = β2. (18)

Together with the boundary conditions at the moving boundaries

ψ1 (z̄1(t), t) = ψ2 (z̄2(t), t) = α (19)

and

−k1ψ1z (z̄1(t), t) + k2ψ2z (z̄2(t), t) = α
ds

dt
, (20)

where (4), (5), (7) and (8) have been used.
The two-phase nonlinear Stefan Problem (1) and (2) has then been mapped into two

distinct moving boundary problems for the linear heat equations (12) and (13) with initial
data (17) and boundary conditions (18)–(20). The two problems are not independent from
each other. They are connected via (15) and (16) which put a constraint on the relative
motion of the boundaries. There is moreover an additional constraint on the heat flux
across the moving boundaries given by (20). Such constraints are both induced by the
motion of the free boundary in the two-phase Stefan Problem.
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We say that {ψj (z, t) , z̄j(t), (j = 1, 2)} form a solution of the above moving boundary
problems for all t < σ, 0 < σ < ∞, when : (a) ψj (z, t) (j = 1, 2) are solutions of (12),
(13) satisfying (17)–(20), they exist and are continuous together with their derivatives;
(b) z̄j(t) (j = 1, 2) are continuously differentiable functions on [0, σ).
In order to prove the existence and uniqueness of the solution for t < σ, we assume

that the initial data ϕj (j = 1, 2) given in (4) and (5) are continuous together with their
derivatives. Moreover they are bounded:

|ϕ1(x)| < β1, |ϕ2(x)| < |β2| , (21)

with β1and β2 given by (6).
Next we turn our attention to the solution of (12) and (13). To this end we first recall

the fundamental kernel of the heat equation

Kj(z − ξ, t − t′) =
1

2
√

πδj

1√
t − t′

exp
(
− (z − ξ)2

4δj(t − t′)

)
, j = 1, 2, (22)

and the Green’s identity for the heat equation, namely

∂

∂ξ

(
Kj

∂ψj

∂ξ
− ψj

∂Kj

∂ξ

)
=

∂

∂t
(Kjψj) , j = 1, 2. (23)

Integrating (23) on the domain −∞ < ξ < z̄j(t′) when j = 1 [ z̄2(t′) < ξ < ∞ when
j = 2 ], 0 < ε < t′ < t − ε, and letting ε → 0, since ψj(z̄j(t), t) = α and Kj(z − ξ, 0) =
δ(z − ξ), we obtain

ψ1(z, t) =
∫ b1

−∞
K1(z − ξ, t)ϕ1(ξ)dξ − 1

α

∫ t

0
K1(z − z1(t′), t − t′)ψ1z(z1(t′), t′)dt′

−α

∫ t

0
K1ξ(z1(t′), t − t′)dt′, (24)

ψ2(z, t) =
∫ ∞

b2

K2(z − ξ, t)ϕ2(ξ)dξ +
1
α

∫ t

0
K2(z − z2(t′), t − t′)ψ2z(z1(t′), t′)dt′

+α

∫ t

0
K2ξ(z2(t′), t − t′)dt′, (25)

where, due to (4.b) and (4.c), we have

zj(t) = hj(t)− δj

α

∫ t

0
ψjz(zj(t′), t′)dt′, j = 1, 2, (26)

h1(t) =
∫ s(t)

x10

dx′

ϕ1(x′)
, h2(t) =

∫ x2

s(t)

dx′

ϕ2(x′)
(27)

and b j ≡ hj(0), j = 1, 2.
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In the right hand side of (24) [(25)] ψ1z(z1(t), t) [(ψ2z(z2(t), t)] is unknown. It is con-
venient to take the x-derivative of both sides in (24) [(25)] and take its limit as z↗ z1(t)
[z↘ z2(t)]. We then put wj(t) = ψjz(zj(t), t), j = 1, 2, and finally obtain [13]

w1(t) =
(
1 +

1
2α

)−1

[−ϕ1(b1)K1(z1(t)− b1, t) +
∫ b1

−∞
K1(z1(t)− ξ, t)ϕ′

1(ξ)

− 1
α

∫ t

0
K1z(z1(t)− z1(t′), t − t′)w1(t′)dt′ − α

∫ t

0
K1t′(z1(t′), t − t′)dt′],

(28)

w2(t) =
(
1 +

1
2α

)−1

[−ϕ2(b2)K2(z2(t)− b2, t) +
∫ ∞

b2
K2(z2(t)− ξ, t)ϕ′

2(ξ)

− 1
α

∫ t

0
K2z(z2(t)− z2(t′), t − t′)w2(t′)dt′ − α

∫ t

0
K2t′(z2(t′), t − t′)dt′],

(29)

with

zj(t) = hj(t)− δj

α

∫ t

0
wj(t′)dt′, j = 1, 2. (30)

Thus the solution of the free boundary problems (15), (16), (17)–(20) has been reduced
to the solution of the system of nonlinear integral equations (28)–(30).
Once the existence and uniqueness of the functions wj(t) (j = 1, 2) is proved for 0 �

t < σ, the existence and uniqueness of ϕj(x, t) (j = 1, 2) then follows via (24) and (25).
The solution of the two-phase Stefan Problem (1)–(8) for the nonlinear heat equation then
exists and is unique (for 0 � t < σ) due to (9)–(11), with s(t) given by (16). Equations
(28), (29) and (30) are of the same type as equations (4) and (5) of [12]. Existence and
uniqueness of the solutions wj(t) (j = 1, 2) for small times can therefore be established
through the same analysis reported in Section 3 of [12], which is not repeated here.
We now turn our attention to a particular solution of the two-phase Stefan Problem

(1)–(8). Namely we consider a moving front solution of equation (12)

ψ1(z, t) = β1 {1− exp [−v1(z − v1t)]} , v1 < 0, (31)

which is travelling to the left with constant speed v1 and is compatible with the boundary
condition (18). The corresponding solution of (13), compatible with (18), is

ψ2(z, t) = β2 {1− exp [−v2(z − v2t)]} , v2 > 0, (32)

and is travelling to the right with constant speed v2. We use (31) [(32)] on the interval
−∞ < z < z1(t) [ z2(t) < z < ∞ ] and require

ψ1(z, t) = 0, z > z1(t) [ψ2(z, t) = 0, z < z2(t)].

We now impose on ψ1(z, t) and ψ2(z, t) the boundary condition (19). We get

z1(t) = b1 + v1t, z2(t) = b2 + v2t, (33)
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where the constants bj , j = 1, 2, are assumed to be positive. Moreover

dz1

dt
= v1 = − 1

b1

log
(
1 +

|α|
β1

)
, (34)

dz2

dt
= v2 = − 1

b2

log
(
1−

∣∣∣∣ α

β2

∣∣∣∣
)

. (35)

The boundary z1(t) [z2(t)] and the front solution (31) [(32)] are both moving to the left
[right] with the same constant speed. Next, we use (15) and obtain

ds

dt
= λ−1(v1 − v2) < 0, (36)

which implies that the free boundary of the Stefan Problem (1)–(8) is moving to the left
with constant speed. We impose on ψ1(z, t) and ψ2(z, t) the boundary condition (20),
obtaining the following constraints on the parameters β1, β2 and α characterizing the
solution (31) and (32)

β1

|α| =
1
δ1

− 1,
∣∣∣∣β2

α

∣∣∣∣ = 1
δ2

− 1, (37)

where (36) has also been used.
Finally the solution of the two-phase Stefan Problem for the nonlinear heat equation

is given by

ϑj(x, t) = z−1
x , j = 1, 2, (38)

where, due to (10) and (11), z(x, t) satisfies

x =
∫ z

0
ψj(z

′
, t)dz′ j = 1, 2, (39)

with ψ1(z, t) [ψ2(z, t)] given by (31) [(32)] and the speed v1 (v2) specified by (34) [(35)].
It is worth noting that the above solution is a particular solution of the Stefan Problem

(1)–(8). In fact it corresponds to the special case when the nonlinear integral equations
(28) and (29) reduce to linear integral equations of Volterra type in t, as implied by
substituting (33) back into (28) and (29).
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