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Abstract

At the quantum level of a bidimensional conformal model, the conformal symme-
try is broken by the diffeomorphism anomaly and the conformal covariance is not
maintained. Here we interpret geometrically this conformal covariance as an exact µ-
holomorphy condition on a two-dimensional Riemann surface Σ on which the model
is constructed. On the other hand, to restore this conformal covariance, a holomor-
phic projective connection is needed. Here we get its transformation law with respect
to a quasiconformal transformation on any complex Riemann surface and we recover
the transformation law of a holomorphic projective connection under a holomorphic
change of coordinates.

1 µ-Holomorphy conditions

Two-dimensional conformal field theories on Riemann surfaces without boundaries are
relevant models in string theory [1]. The dependence of these bidimensional conformal
models on the background geometry turns out to be useful for the construction of effective
actions for two-dimensional gravity [2]. On the other hand this geometrical dependence
is well exhibited using the Beltrami parametrization of the bidimmensional world sheet
metric of the bosonic string [3]. Moreover Beltrami differentials parametrize conformal
classes of the metric on a Riemann surface Σ on which the two-dimensional conformal
model is constructed and satisfy the ellipticity condition: SupΣ |µ| ≺ 1, µ ∈ C∞ (Σ). If we
consider a complex structure (z, z) the conformal classes of the metric g are characterized
by ds2 = gαβdxαdxβ = ρ2 |dz + µdz|2 where ρ (z, z) is the conformal factor. Indeed It is
the most natural parametrization which exhibits the holomorphic factorization of Green’s
functions. Moreover, in the framework of this geometrical formulation, the degree of
freedom of the Weyl symmetry is eliminated from the very begining. The remaining
diffeomorphism symmetry is kept as the basic local invariance of the string action [3].
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However, at the quantum level, this diffeomorphism symmetry is broken and an anomaly
emerges in this way the strength of which is measured by the central charge of the model.
On the other hand each complex structure of the Riemann surface on which the model is
constructed is associated with a projective structure that is parametrized by a projective
connection. This latter is required to preserve the conformal covariance of the above
mentioned diffeomorphism anomaly that appears in the quantum Ward identity (see [4]
and references therein):

W2
δΓWZP [µ]

δµ
=

k

12π
LR

3 (µ) , (1.1)

where W2 ≡ ∂ −µ∂ − 2∂µ is the well-known Ward operator, k is the central charge of the
model under consideration and ΓWZP is the Wess-Zumino-Polyakov effective action of the
two-dimensional conformal model which is given by

ΓWZP [µ] =
−k
24π

∫
C

[
dmµ∂2 ln ∂Z

]
(z) (1.2)

such that dm (z, z) ≡ dz ∧ dz/2i is the two-dimensional measure on the complex plane
and the scalar field Z (called the Wess-Zumino field) satisfies the µ-holomorphy condition
(1.4) (see below). LR

3 ≡ ∂3 + 2R∂ + ∂R, the conformally covariant form of the operator
∂3, is the third Bol’s operator associated to the projective connection R.
First let me consider a bidimensional Riemann surface Σ without boundary equipped

with an atlas of compatible analytic systems of coordinates, i.e. we have complex coordi-
nates zα defined on each patch and the transition functions hαβ between two patches are
holomorphic:

zα = hαβ (zβ) . (1.3)

In the case of the non holomorphic transition functions the two complex structures (zα)
and (zβ) belong to different atlases. Then a Riemann surface Σ is a C∞-differentiable two-
dimensional manifold endowed with a reference complex structure (z, z) ( in the sense that
(z, z) is associated to the Beltrami differential µ (z, z) = 0). On this surface we consider
a Beltrami differential µ (z, z) �= 0 that induces another complex structure (

Z,Z
)
on the

surface Σ. These latter coordinates are C∞-diffeomorphisms of the reference variables
(z, z) and satisfy the following Beltrami equations:

W0Z = 0, (1.4)

W0Z = 0

where µ ∈ C∞ (Σ), |µ| ≺ 1 and W0 ≡ ∂ − µ∂. This equation is defined up to a conformal
transformation. Indeed, as one can verfy, for any function F on the new complex structure,
F (Z), we have:

W0F = 0. (1.5)

Furthermore equation (1.5) is equivalent to the holomorphic condition for the function F
in the new complex structure

(
Z,Z

)
:

∂ZF = 0, (1.6)
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where ∂Z ≡ ∂/∂Z. Then the diffeomorphism

z → Z (z, z) , ∂Z = µ∂Z (1.7)

is called a quasiconformal transformation the dilatation of which is the Beltrami differential
µ (see [5] for details)This transformation, as one can see, becomes conformal for µ = 0.
Now we consider a vector bundle on the surface Σ the base manifold of which is the

set of all conformal structures and the fibre of which at a given conformal structure µ is
a complex vector space of µ-holomorphic j-differentials fj which depend holomorphically
on the Beltrami differential µ (see below), i.e.

δfj [µ]
δµ

. (1.8)

These µ-holomorphic j-differentials fj (z, z), defined on any reference complex structure
(z, z) of the complex surface Σ, satisfy the following µ-holomorphy condition [2]:

Wjfj = 0, (1.9)

where Wj ≡ ∂ − µ∂ − j∂µ is a generalized Ward operator. More generally a collection η
of functions ηα defined on each domain Dα by

ηα : Dα → Σ, ηα = η ◦ zα (1.10)

is called a (p, q)-differential on Σ if it is invariant under a holomorphic changes of coordi-
nates: (Dα, zα)→ (Dβ, zβ) an it is written locally as

η = ηαβ (z, z) dzpdzq. (1.11)

The Beltrami differential µ, a aprticular case of (1.11), is a (−1, 1)−differential: µ ≡
µz

zdz⊗ ∂ (see [3] and [5]. On the other hand, as one can verify, the particular case for j=0
of (1.9) is the Beltrami equation (1.4), where Z is viewed as a 0-differential in the reference
complex structure (z, z) . Moreover a solution of the general µ-holomorpy condition (1.9)
is given by [6]:

fj = λjF, (1.12)

where F satisfies equation (1.5) and λ ≡ ∂Z is called the conformal factor.

2 Conformal Ward identities

As a physical application the classical Ward identity of an effective two-dimensional con-
formal model, in the Beltrami parametrization scheme, is the µ-holomorphy condition of
the classical energy-momentum tensor Θzz (z, z) ≡ δSC/δµ (SC is the classical effective
action of the model) [3]:

W2Θzz = 0. (2.1)
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As we can verify this latter equation is the j=2 particular case of the general µ-holomorpy
condition (1.9). At the quantum level a diffeomorphism anomaly occurs and the above
Ward identity is translated to the anomalous one:

W2Tzz = ∂3µ, (2.2)

where Tzz ≡ δZc
v/δµ is the quantum effective energy-momentum tensor of the model under

consideration, ∂3µ is the diffeomorphism anomaly and Zc
v is the connected generating

Green’s functions of the vaccum. Geometrically speaking the quantum Ward identity
can be interpreted as a deformed µ-holomorphy condition by the term ∂3µ. Indeed Tzz

is not a tensor (precisely not a 2-differential a (2,0)-differential following the definition of
j-differentials introduced before) under a holomorphic change of coordinates; z → ω (z, z) :

Tzz → Tωω = (∂ω)
−2 (Tzz − ζz (ω)) , (2.3)

where ζz (ω) ≡ ∂2 ln ∂ω − 1
2 (∂ lnω)

2 is the Schwarzian derivative of the diffeomorphism
z → ω (z, z) (see [3] and [5]). It is clear that a such a deformation comes from the
diffeomorphism anomaly. On the other hand, taking into acount the Polyakov conjecture
for a two-dimensional conformal model on the complex plane [3], the action (1.2) can be
rewritten as the sum of the Neumann series Zc

v [µ] :

ΓWZP [µ] =
−k
24π

Zc
v [µ] (2.4)

Then it is easy to get:

δZc
v [µ]
δµ

= ζz (Z) , (2.5)

where ζz (Z) is the Schwarzian derivative of the quasiconformal transformation (1.7) which
satisfies the following deformed µ-holomorphy condition:

W2ζz (Z) = ∂3µ. (2.6)

This latter can be rewritten in conformally covariant form as

∂ζz (Z) = L
ζz(Z)
3 (µ) . (2.7)

Moreover the combination of equations (2.2) and (2.6) shows that fzz ≡ Tzz − ζz (Z) is a
2-differential which satisfies the following exact µ-holomorphy condition:

W2fzz = 0. (2.8)

Then, by using the solution (1.12) of the general exact µ-holomorphy equation, one cane
verify that the function

TZZ ≡ λ−2fzz (2.9)

is holomorphic in the projective structure
(
Z,Z

)
, that is

∂ZTZZ = 0. (2.10)
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Hence the transition Tzz → TZZ transforms the deformed µ-holomorphy condition in the
reference complex structure (z, z) for Tzz into the exact µ-holomorphy condition in the
same complex structure for fzz and then into the holomorphic condition for TZZ in the
new complex structure

(
Z,Z

)
, that is the transform of the complex structure (z, z) by a

quasiconformal transformation. Moreover this transition can be seen as the transformation
law of the energy-momentum tensor with respect to the quasiconformal mapping.
Now the combination of equations (2.1), (2.2) and (2.6) enables us to get the general

solution of the quantum conformal Ward identity and to express the quantum energy-
momentum tensor in terms of the classical one as follows:

Tzz (z, z) = Θzz (z, z) + ζz (Z) . (2.11)

This latter relation shows that, at the quantum level, the diffeomorphism anomaly (the
quantum corrections of an effective two-dimensional model) is encoded in the Schwarzian
derivative of the quasiconformal transformation that transforms a reference complex struc-
ture into a projective one and hence can appear as it can disapear depending on the basis
we choose.

3 µ-Holomorphic projective connections

Besides complex structures on the Riemann surface Σ there are projective structures
which are parametrized by projective connections. for example a holomorphic projective
connection R0 on the surface Σ is an assignment, to any coordinate z of a reference complex
structure, of a smooth function R0 defined in the domains of z and z

′
by the following

transformaion law:

R
′
0z

′
z
′
(
z
′)
=

(
∂

′
z
)2 [

R0zz (z)− ζz

(
z
′)]

, (3.1)

where ζz
(
z
′
)
≡ ∂2 ln ∂z

′ − 1
2

(
∂ ln ∂z

′
)2
is the Schwarzian derivative of the function z

′

with respect to the variable z. Further there exists a Beltrami function µ on the surface
Σ such that the projective connection R is µ-holomorphic [2]:

W2R = ∂3µ. (3.2)

This means that, to any element R of the space of all projective connections satisfying
this equation, there is canonically associated a projective structure subordinated to the
conformal structure which is parametrized by a Beltrami function µIn particular one can
deduce from equation (3.2) (by putting µ = 0) that, in the reference complex structure,
the µ-holomorphic projective connection becomes holomorphic. In aonther words a quasi-
conformal mapping transforms, in a reference complex structure, a holomorphic projective
connection into a µ-holomorphic one and conversely:

R0 (z)
µ �=0−−→R (z, z,) , (3.3)

∂R0 = 0→ ∂R = LR
3 (µ) ,

where LR
3 is the third Bol’s operator introduced above. This latter equation can be

interpreted as a deformed µ-holomorphy condition for the function R. Indeed equation
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(3.2) shows that R is not a tensor (not a 2-differential in the sense of the above definition
introduced above). However, by using the µ-holomorphy equation for the Schwarzian
derivative ζz (Z) (2.6), we get a holomorphic projective connection RZZ in the complex
structure

(
Z,Z

)
, ∂ZRZZ = 0. This is given by

RZZ = λ−2 (Rzz − ζz (Z)) . (3.4)

Indeed one can verify that the function RZZ is the coefficient of a 2-differential (R =
RZZdZdZ) and satisfies the following exact µ-holomorphic condition:

W0RZZ = 0. (3.5)

Then a general solution of the µ-holomorphy equation (3.2) is given by

Rzz (z, z) = ζz (Z) + fzz (3.6)

such that fzz is a 2-differential:

W0fzz = 0. (3.7)

Moreover its explicit expression as a Neumann series in terms of the Beltrami differential
µ was given in [5].

4 Conclusion

Here we have given a geometrical interpretation of the conformal covariance of a two-
dimensional conformal model. Indeed we have expressed this conformal covariance as an
exact µ-holomorphic condition: the deformation of this latter implies the disappearance
of this covariance. Moreover we have shown that this latter can be maintained even at the
quantum level, but in a special complex basis that is the transform of the reference one
by a quasiconformal mapping. On the other hand we have shown that the transformation
law of a holomorphic projective connection under a holomorphic change of coordinates
is analogous to the transformation law of a µ-holomophic projective connection under a
quasiconformal transformation. This holomorphic projective connection is necessary, at
the quantum level, to get manifest the conformal covariance of a bidimensional conformal
model. Indeed the Polyakov action that is the effective action of the two-dimensional
conformal model was expressed in Ref. [7] in terms of this projective connection.
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