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Abstract

Conditions necessary for the existence of local higher order generalized symmetries and
conservation laws are derived for a class of dynamical lattice equations with explicit
dependence on the spatial discrete variable and on time. We explain how to use the
obtained conditions for checking a given equation. We apply those conditions to the
study of a special class of differential difference equations interesting from the physical
point of view.

1 Introduction

In this paper we consider lattice equations of the form:

ün = fn(t, u̇n, un, un+1, un−1) (1.1)

∂fn
∂un+1

�= 0,
∂fn

∂un−1
�= 0 ∀ n. (1.2)

Here un = un(t), dot denotes the derivative w.r.t. the continuous time variable t, and {fn}
are an infinite set of a priori different functions of five variables: fn = fn(t, wn, xn, yn, zn),
such that all the functions depend on yn and zn. Classical representative of the class is
the Toda like equation:

ün + αu̇n + 2α2n = eun+1−un − eun−un−1 , (1.3)

which will be discussed in the applications.
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Conditions (1.2) are necessary as in Theorems 1 and 2 below we will need to divide
by the functions ∂fn

∂un+1
and ∂fn

∂un−1
. This request means that our results do not apply to

equations like

ün = u2
n + (1 + (−1)n) un+1 + (1− (−1)n) un−1, (1.4)

which are the compact representation of systems of coupled equations. In fact, by the
change of variable,

vn = u2n+1, wn = u2n, (1.5)

eq.(1.4) reads

v̈n = v2
n + 2wn, ẅn = w2

n + 2vn, (1.6)

and can be written as a nonlinear ODE of fourth order for vn.
The main aim of this paper is to derive five conditions, necessary to prove the existence

of local generalized symmetries and conservation laws of high enough order. The existence
of infinite hierarchies of local generalized symmetries and conservation laws is a very
common property of 1+1 dimensional equations integrable by inverse scattering method.

We present in Section 2 the necessary conditions for the integrability of equations of
the class (1.1, 1.2). These conditions are very convenient for testing the integrability of a
given equation, and in Section 3 we will explain how to apply them to some differential
difference equation. In Section 4 we present some conclusive remarks.

In our work we follow the standard scheme of the Generalized Symmetry Approach
(GSA) (for a review, see the articles [1–6]; the application of the method to discrete-
differential equations was developed in [7–9]). By the GSA method we require that an
equation (1.1) possesses local generalized symmetries and conservation laws of sufficently
high order. This is always the case for integrable equations, even on the lattice [10–13].
The case when an equation together with its generalized symmetries and conservation laws
do not depend explicitly on t and n has been considered in [8], where an exhaustive list
of lattice equations of the form

ün = f(u̇n, un, un+1, un−1) (1.7)

has been presented (see also [6], [14]). In [9] we can find the discussion of the explicit
dependence on the discrete variable n for Volterra type equations

u̇n = fn(un, un+1, un−1), (1.8)

satisfying conditions (1.2).
Explicit dependence on time in the framework of the GSA (both in the discrete and in

the continuous cases), as far as we know, has never been considered in the literature.
We apply the obtained integrability conditions to few particular cases. The results ex-

plain why some interesting classes of equations cannot have hierarchies of local generalized
symmetries and conservation laws. For example, the class of equations

ün = An(t, un, un+1) +Bn(t, un, un−1), (1.9)
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with An, Bn satisfying conditions (1.2), cannot satisfy the obtained integrability condi-
tions. By the change of variables (1.5), eq.(1.9) can be rewritten as

v̈n = an(t, vn, wn+1) + bn(t, vn, wn),
ẅn = cn(t, wn, vn) + dn(t, wn, vn−1),

(1.10)

with obvious conditions for an, bn, cn and dn derived from eq.(1.2). The transformation
(1.5) preserves the local structure of the generalized symmetries and conservation laws
(see the details below and in [9]) and thus the integrability conditions obtained here can
be applied to eq.(1.10). Then also the class of equations (1.10), which contains some
physically interesting equations [17], contains no integrable lattice systems. Comparing
the results obtained here with those of paper [9], where some examples with an essential
dependence on the discrete spatial variable n have been found in the case (1.8), we see
that the case (1.1, 1.2) seems to be more restrictive.

2 Integrability conditions

Here we derive the necessary conditions for the integrability of equations of the class
(1.1,1.2). At first those which follow from the existence of local generalized symmetries
and then the additional ones following from the existence of conservation laws. At the
end of the Section we discuss how to use those conditions for checking if a given equation
is integrable and for classifying integrable cases.

2.1 Definitions

We are interested in considering local lattice equations with local symmetry structure.
This means that the equation, its symmetries and conservation laws are expressed in
every point n in terms of functions of many variables with no integrals or sums. Moreover
we consider symmetries and conservation laws described only by restricted functions, i.e.
functions gn such that:

gn = gn(t, un+i1 , un+i1−1, . . . un+i2 , u̇n+j1 , u̇n+j1−1, . . . u̇n+j2), (2.1)

where ik = ik(gn), jk = jk(gn) are some fixed finite integers for any given gn (i1 ≥ i2,
j1 ≥ j2), and

∂gn
∂un+i1

�= 0,
∂gn

∂un+i2

�= 0,
∂gn

∂u̇n+j1

�= 0,
∂gn

∂u̇n+j2

�= 0

for at least some n. For example,

gn = (1 + (−1)n)un+1 + (1− (−1)n)(u̇n + u̇n−1)

is a restricted function with i1 = i2 = 1, j1 = 0, j2 = −1.
A local generalized symmetry of eq.(1.1) is an equation

un,τ = gn, (2.2)
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with gn a restricted function (2.1), compatible with eq.(1.1). Moreover we assume that,
both in eq.(1.1) and eq.(2.2), un = un(t, τ). The compatibility condition between eq.(1.1)
and eq.(2.2) implies

∂3un
∂τ∂t2

=
∂3un
∂t2∂τ

(2.3)

and means that eq.(1.1) and eq.(2.2) have a set of common solutions. Eq.(2.3) can be
rewritten as:

Dτfn −Dttgn = 0, (2.4)

where Dt and Dτ are the total derivative operators with respect to t and τ respectively and
the differentiation of the functions fn and gn is carried out taking into account eqs.(2.2,
1.1). For example

Dtgn =
∂gn
∂t

+
∑
k

∂gn
∂un+k

u̇n+k +
∑
k

∂gn
∂u̇n+k

fn+k. (2.5)

The variables un+k, u̇n+k are considered to be independent (here and everywhere below)
and then eq.(2.4) is a constraint for the functions fn and gn.

In accordance with the ideology of the GSA, we rewrite eq.(1.1) as a systems of two
first order (w.r.t. time t) equations, introducing the new variable vn = u̇n. Instead of
eqs.(1.1, 2.2) we thus have the following compatible system of two vector equations

U̇n = Fn, Un,τ = Gn, (2.6)

where

Un =
(

un
vn

)
, Fn =

(
vn
fn

)
, Gn =

(
gn
hn

)
,

with hn = Dtgn. Condition (2.4) implies

DtDτUn −DτDtUn = DtGn −DτFn = 0, (2.7)

and this is the compatibility condition for the system (2.6).
From eqs.(1.1, 2.2) we get that

Fn = Fn(t, Un, Un+1, Un−1),

Gn = Gn(t, Un+N , Un+N−1, . . . Un+M ), (2.8)

where

∂Gn

∂Un+N
�= 0,

∂Gn

∂Un+M
�= 0 for some n, (2.9)
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with N = N(Gn) and M = M(Gn) functions of ik(gn) and jk(gn). For instance N =
max (i1(gn), j1(gn) + 1). The partial derivative of a vector with respect to a vector,
considered in eq.(2.9), is given by the matrix

∂Gn

∂Uk
=

(
∂gn/∂uk ∂gn/∂vk
∂hn/∂uk ∂hn/∂vk

)
. (2.10)

The integers N and M are called left and right orders of the symmetry. In the case of the
Toda model

ün = eun+1−un − eun−un−1 . (2.11)

M = −N and for any N ≥ 1 we can find two different local generalized symmetries. If
N = 1, one has an obvious symmetry with Gn = Fn, and a symmetry defined by

un,τ = gn = eun+1−un + eun−un−1 + v2
n,

vn,τ = un,tτ = hn = eun+1−un(vn+1 + vn)− eun−un−1(vn + vn−1).
(2.12)

In this case no explicit n and t dependence is present, gn = g(un, un+1, un−1, vn) and hn =
h(un, un+1, un−1, vn, vn+1, vn−1). An explicit n and t dependent symmetry for eq.(2.11)
has been presented in [13] and is given by

gn = t
(
u̇2
n + eun+1−un + eun−un−1 − 2

)
+ (2n− 1)u̇n + 2wn(t) , (2.13)

where wn(t) is defined by the following system of equations

wn+1(t)− wn(t) = u̇n+1 , ẇn(t) = eun+1−un − 1 . (2.14)

However, due to the presence of wn(t), the symmetry (2.13) is nonlocal. A local n and t
dependent symmetry is presented in [13] for the Volterra equation

ȧn(t) = an(t)[an−1(t)− an+1(t)] (2.15)

and reads:

gn = an{t[an−1(an−2 + an−1 + an − 4)− an+1(an+2 + an+1 + an − 4)] (2.16)
+an − (n− 1)an−1 + (n+ 2)an+1 − 4}.

A local conservation law of eq.(1.1) is a relation of the form

ṗn = qn+1 − qn, (2.17)

where pn and qn are restricted functions. The notion of conservation law is closely con-
nected to that of constant of motion. In fact, if pn has no explicit dependence on n, and
one imposes the periodicity condition un+s = un, then the function Cn =

∑s
k=1 pn+k does

not depend explicitely on time.
In the vector case, pn and qn are scalar functions of t and of the vectors Un+i. If

pn = pn(t, Un+k1 , Un+k1−1, . . . Un+k2), (2.18)
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we can introduce its formal variational derivative

Hn =
δpn
δUn

=
−k2∑

i=−k1

∂pn+i

∂Un
,

∂pn+i

∂Un
=

(
∂pn+i/∂un
∂pn+i/∂vn

)
. (2.19)

In the case of nontrivial conservation law, the vector function Hn �= 0 and has the form:

Hn = Hn(t, Un+m, Un+m−1, . . . Un−m), (2.20)

where the matrices ∂Hn
∂Un+m

, ∂Hn
∂Un−m

are different from zero for at least some n and m ≤
k1 − k2

1.
The number m is the order of the conservation law (2.17). The Toda model (2.11)

possesses two different conservation laws for any m ≥ 1. In the simplest case m = 1,
conservation laws are defined by the following conserved densities:

pn = eun+1−un +
1
2
v2
n, p̂n = eun+1−un(vn+1 + vn) +

1
3
v3
n. (2.21)

2.2 Derivation of integrability conditions from formal symmetries

We are going to derive here three integrability conditions assuming the existence of local
generalized symmetries. The theory of GSA for differential-difference equations is given
in detail in [9]. Consequently, we will mainly pay attention to the peculiarity connected
with the fact that we are considering a system of DDE’s.

First of all, we introduce such formal symmetries that the integrability conditions do
not depend on the order of the symmetry.

The Frechet derivative for the vector function (2.8) is defined by the matrix

G∗
n =

N∑
i=M

∂Gn

∂Un+i
T i, (2.22)

where T is the shift operator Tfn = fn+1. F ∗
n , instead, is given by the following matrix

operator

F ∗
n = F (1)

n T + F (0)
n + F (−1)

n T−1, (2.23)

with

F (1)
n =

(
0 0
αn 0

)
, F (0)

n =
(

0 1
βn γn

)
, F (−1)

n =
(

0 0
δn 0

)
, (2.24)

with

αn =
∂fn

∂un+1
, βn =

∂fn
∂un

, γn =
∂fn
∂vn

, δn =
∂fn

∂un−1
. (2.25)

1In the case of (2.18), one may have Hn = 0, and m may be any number from 0 to k1 − k2 if Hn �= 0
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A formal symmetry is defined by the operator

A(Ln) = Ln,t − [F ∗
n , Ln] =

m+1∑
i=−∞

A(i)
n T i, (2.26)

in terms of the formal series

Ln = Lm
n =

m∑
i=−∞

l(i)n T i l(m)
n �= 0 for some n. (2.27)

l
(i)
n are 2 × 2 matrix coefficients and Ln,t =

∑m
i=−∞ l̇

(i)
n T i and [F ∗

n , Ln] = F ∗
nLn − LnF

∗
n .

Such series can be multiplied, using the standard rule (l(i)n T i)(l(j)n T j) = l
(i)
n l

(j)
n+iT

i+j . A
series (2.27) is called a formal symmetry if it satisfies the equation A(Ln) = 0. Thus a
formal symmetry satisfies the Lax equation:

Ln,t = [F ∗
n , Ln]. (2.28)

It can be proved (using a rather long calculation, see [1]) that the existence of an infinite
hierarchy of generalized symmetries implies the existence of a formal symmetry. But, more
simply we can look for approximate solutions of eq.(2.28). We will call a series (2.27) the
Approximate Formal Symmetry (AFS) of order m and length k if the first k coefficients
of A(Ln) vanish, i.e.

A(i)
n = 0, m+ 1 ≥ i ≥ m+ 2− k.

Applying the Frechet derivative to the compatibility condition (2.7), we are led to

DtG
∗
n − [F ∗

n , G
∗
n] = DτF

∗
n . (2.29)

As by eq.(2.23) F ∗
n contains only the shifts T i with i = −1, 0, 1, eq.(2.29) shows that if

there is a generalized symmetry (2.8) with N ≥ 1, then the series

Ln = G∗
n + 0 TM−1 + 0 TM−2 + . . . (2.30)

is an AFS of the order and length m = k = N .

Let us denote l
(i)
n =

(
a

(i)
n b

(i)
n

c
(i)
n d

(i)
n

)
. The following Lemma shows that (as in the case

of the Toda model) we can write down generalized symmetries of two types.

Lemma 1. If the length of an AFS (2.27) of order m is k ≥ 2, then

b(m)
n = 0, (2.31)

d(m)
n = a(m)

n , (2.32)

and ∀ n either a
(m)
n �= 0 or a

(m)
n = 0, c

(m)
n b

(m−1)
n �= 0.
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Proof. From eq.(2.26) it follows that the condition A
(m+1)
n = 0 implies F

(1)
n l

(m)
n+1 =

l
(m)
n F

(1)
n+m and gives two relations. The first of them is

αna
(m)
n+1 = d(m)

n αn+m , (2.33)

where αn, defined in eq.(2.25), due to condition (1.2), cannot be zero for any n. The
second is αnb

(m)
n+1 = 0 and implies eq.(2.31). The condition A

(m)
n = 0 gives the matrix

equation

l
(m)
n,t − F (1)

n l
(m−1)
n+1 − F (0)

n l(m)
n + l(m)

n F
(0)
n+m + l(m−1)

n F
(1)
n+m−1 = 0. (2.34)

The elements of the right upper corner of the matrix equation (2.34) provide us with
eq.(2.32), and eq.(2.33) takes the form:

αna
(m)
n+1 = a(m)

n αn+m . (2.35)

As αn cannot be zero, one has only two possibilities: a(m)
n �= 0 for any n and in this case

a
(m)
n , solution of eq.(2.35), is written in terms of αn+j , and the AFS will be denoted as

an AFS of the 1st type or a(m)
n = 0. In the second case, we use the diagonal elements of

eq.(2.34) and get

c(m)
n = αnb

(m−1)
n+1 = b(m−1)

n αn+m−1 . (2.36)

One can see that again there are only two possibilities b(m−1)
n �= 0 or b(m−1)

n = 0 for all n.
The first case corresponds to what we will denote as an AFS of the 2nd type. The last
case is impossible because in this case we would have also c

(m)
n = 0 for any n, but this is

in contradiction with the condition (2.27) for l(m)
n .

So, as in the case of the Toda lattice model (see for example eq.(2.12)), all known
integrable lattice equations of the form (1.1) are such that their generalized symmetries
generate for any order m ≥ 1 two AFS, one of each type. In order to make theory simpler,
we will assume that our equations (1.1, 1.2) have this symmetry structure. It should
be remarked that the same integrability conditions we are going to obtain under this
hypothesis, could be derived using only one generalized symmetry of high enough order.
However, in this case the calculation would be more complicate (cf. [9]).

Integrability conditions are obtained, calculating coefficients of 1st type AFS starting
from the Lax equation (2.28). A 2nd type AFS leads to the same conditions, as will be
shown in Proposition 1. Generalized symmetries provide us with AFS such that m = k,
and we can formulate the following Proposition for an AFS of this kind.

Proposition 1. If Ln is a 2nd type AFS such that m = k ≥ 2, then (Ln)2 is an AFS of
the 1st type of order 2m− 1 and length m− 1.

Proof. Let us consider the first two coefficients of the series

(Ln)2 = l(m)
n l

(m)
n+mT 2m + (l(m)

n l
(m−1)
n+m + l(m−1)

n l
(m)
n+m−1)T

2m−1 + . . . . (2.37)
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Using eq.(2.36), one can see that the first coefficient in eq.(2.37) vanishes, and the second
one has the form of the leading coefficient of a 1st type AFS. The formula

A(LnL̂n) = A(Ln)L̂n + LnA(L̂n) (2.38)

shows that (Ln)2 will be an AFS of the order 2m − 1. As m = k ≥ 2, the series A(Ln)
is of the first order, i.e. A(Ln) =

∑1
i=−∞A

(i)
n T i. Then the right hand side of eq.(2.38)

with L̂n = Ln has the order m + 1, but the order of the left hand side equals 2m. The
difference of those orders gives us the length m− 1.

With no loss of generality, we can derive integrability conditions using only 1st type
AFS of the first order with arbitrary long length.

The inverse series (Ln)−1 is found using the standard definition

Ln(Ln)−1 = (Ln)−1Ln = E, (Ln)−1 =
m̃∑

i=−∞
l̃(i)n T i,

where E is the unit matrix operator. In the case of 1st type AFS (2.27), m̃ = −m and

l̃(−m)
n = (l(m)

n−m)−1, l̃(−m−1)
n = −(l(m)

n−m)−1l
(m−1)
n−m (l(m)

n−m−1)
−1, . . . .

Inverse series will be of 1st type AFS again with the order m̃ = −m and the same length
k̃ = k. This can be easily checked starting from A(L−1

n ) = −L−1
n A(Ln)L−1

n . Using the
invertibility and formula (2.38), one easily proves the following Proposition, formulated
for an AFS with m = k.

Proposition 2. If Ln and L̂n are 1st type AFS with orders and lengths such that m =
k ≥ 1 and m̂ = k̂ = k + 1, respectively, then the series L̃n = (Ln)−1L̂n is a 1st type AFS
with order m̃ = 1 and length k̃ = k.

Starting from generalized symmetries, we have obtained AFS of the first order. Its
length depends on the order of the symmetries and can be arbitrarily long. Such AFS
symplify the calculations necessary to derive integrability conditions. Moreover, in this
case the resulting conditions will not depend on the order of the generalized symmetries.

Theorem 1. The existence of 1st type AFS of order m = 1 and length k ≥ 3 implies the
following conditions:

ṗ(i)
n = (T − 1) q(i)

n , i = 1, 2, 3, (C1)

p(1)
n = log

∂fn
∂un+1

, p(2)
n = µ

(
2q(1)

n +
∂fn
∂u̇n

)
,

p(3)
n = 2µq(2)

n + 2nµ̇p(2)
n +

1
4
(p(2)

n )2 + µ2

(
1
4

(
∂fn
∂u̇n

)2

− 1
2

(
∂fn
∂u̇n

)
t

+
∂fn
∂un

)
,

where q
(i)
n are some restricted functions, and µ = µ(t) �= 0.
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Proof. The existence of a 1st type AFS, Ln of order 1 and lenght k ≥ 3, enables one to use
the first three conditions of A(Ln) = 0, i.e. we can require that A

(2)
n = A

(1)
n = A

(0)
n = 0.

We already know that the leading term of Ln (as Ln is of the 1st type) is given by

l(1)n =

(
a

(1)
n 0
c
(1)
n a

(1)
n

)
, a(1)

n �= 0 ∀ n .

We also may use eq.(2.35) with m = 1 and the results presented in Appendix A to show
that

a
(1)
n+1

αn+1
=

a
(1)
n

αn
= µ2(t) �= 0. (2.39)

Redefining Ln → µ2Ln, eq.(2.26) reads

Â(Ln) = Ln,t + θ(t)Ln − [F ∗
n , Ln] =

2∑
i=−∞

Â(i)
n T i, θ = 2µ′/µ. (2.40)

The three first coefficients Â(i)
n are equal to zero, and instead of eq.(2.39) we have a(1)

n = αn.
The condition Â

(1)
n = 0 gives:

α̇n − c(1)n + αn(θ + b(0)n ) = 0, (2.41)

α̇n + c(1)n + αn(θ − b
(0)
n+1 + γn+1 − γn) = 0, (2.42)

ċ(1)n + c(1)n (θ − γn) + αn(βn+1 − βn + d(0)
n − a

(0)
n+1) = 0, (2.43)

with the functions αn, βn, γn defined in eq.(2.25). The sum of eqs.(2.41, 2.42) divided by
αn read

2(logαn)t = (T − 1)(b(0)n − γn − 2nθ).

So condition (C1) with i = 1 is satisfied, and

b(0)n = 2q(1)
n + γn + 2nθ. (2.44)

c
(1)
n follows from eq.(2.41):

c
(1)
n

αn
= (T + 1)q(1)

n + γn + (2n+ 1)θ. (2.45)

The elements of the right upper corner of the equation Â
(0)
n = 0 provide us with the

relation:

ḃ(0)n + b(0)n (θ + γn) + a(0)
n − d(0)

n = 0. (2.46)
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Let us rewrite eq.(2.43) divided by αn as(
c
(1)
n

αn

)
t

+
c
(1)
n

αn
(θ − γn + (logαn)t) + d(0)

n − a
(0)
n+1 + (T − 1)βn = 0. (2.47)

From eqs.(2.44, 2.45) and condition (C1) with i = 1, we find that the sum of eqs.(2.46,
2.47) reads

2ϕ̇n + θϕn = (T − 1)(a(0)
n − q

(1)
n,t − (q(1)

n )2 − 2nθq(1)
n − βn − cn(t)), (2.48)

with

ϕn = 2q(1)
n + γn , (T − 1)cn = (4n+ 1)(θ′ + θ2).

Multiplying eq.(2.48) by µ, we see that also the condition (C1) with i = 2 is satisfied.
From eqs.(2.46, 2.48), one gets a

(0)
n and d

(0)
n in terms of q(2)

n . In such a way we will get
formulae analogous to eqs.(2.44, 2.45), but more complicated.

Let us consider the sum of the diagonal elements of the equation Â
(0)
n = 0. It can be

expressed in the form:

(a(0)
n + d(0)

n )t + θ(a(0)
n + d(0)

n ) = (T − 1)(b(−1)
n αn−1) ∼ 0 ,

the equivalence relation being defined in Appendix A. Multiplying by µ2, we see that
(µ2(a(0)

n + d
(0)
n ))t ∼ 0. This conserved density µ2(a(0)

n + d
(0)
n ) is equivalent to 2p(3)

n .

2.3 Formal conserved densities

Now we derive some additional integrability conditions by requiring the existence of local
conservation laws. The theory is very similar to the one of Section 2.2, and we briefly
discuss the main points of it, comparing the results with those of that Section.

In Section 2.1 we gave the definition of local conservation laws (2.17) and of their order.
Applying the operator δ/δUn introduced in eq.(2.19) to eq.(2.17), we obtain

δṗn/δUn = 0, (2.49)

and eq.(2.49) can be written in the form:

(Dt + F ∗†
n )Hn = 0 . (2.50)

Here Dt is the operator of total time differentiation (2.5), Hn is the formal variational
derivative (2.19) of the conserved density pn, and F ∗†

n is the transposed of the Frechet
derivative F ∗

n , defined by

F ∗†
n =

1∑
i=−1

(
∂Fn+i

∂Un

)†
T i = (F (−1)

n+1 )†T + (F (0)
n )† + (F (1)

n−1)
†T−1,
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where F
(j)
n+i have been defined in eq.(2.23), and † denotes matrix transposition. One gets

F ∗†
n = F̃ (1)

n T + F̃ (0)
n + F̃ (−1)

n T−1,

where the coefficients F̃ i
n are given by

F̃ (1)
n =

(
0 δn+1

0 0

)
, F̃ (0)

n =
(

0 βn
1 γn

)
, F̃ (−1)

n =
(

0 αn−1

0 0

)
with αn, βn, γn, δn given by eq.(2.25).

Let us note that the compatibility condition (2.7) can be rewritten as an equation for
the right hand side Gn of the generalized symmetry:

(Dt − F ∗
n)Gn = 0 , (2.51)

and this equation is very similar to eq.(2.50).
In Section 2.2, instead of solving eq.(2.7) for the symmetries, we considered the formal

symmetry Ln, defined by the equation A(Ln) = 0, where A(Ln) is defined by eq.(2.26)).
Here, instead of solving eq.(2.50) for the variational derivative of a conserved density, we
consider the formal conserved density. A formal conserved density will be a solution Sn

of the equation B(Sn) = 0, where

B(Sn) = Sn,t + SnF
∗
n + F ∗†

n Sn =
m+1∑
i=−∞

B(i)
n T i, (2.52)

with

Sn =
m∑

i=−∞
S(i)
n T i, S(m)

n �= 0 for some n, (2.53)

and B
(i)
n , S

(i)
n 2 × 2 matrices. We will consider approximate solutions of the equation

B(Sn) = 0 which will be called Approximate Conserved Densities (ACD). The series Sn,
given by eq.(2.53), is an ACD of order m and length k if the first k coefficients B(i)

n of the
series B(Sn) vanish.

After applying the operation ∗ to eq.(2.50), one obtains

B(H∗
n) =

2∑
i=−2

H̃(i)
n T i, (2.54)

where H̃
(i)
n are some matrix coefficients which form is not essential. The series

Sn = H∗
n + 0 T−m−1 + 0 T−m−2 + . . . (2.55)

is of the order m (see formula (2.20) and the definition of the Frechet derivative (2.22,
2.8)). For this reason, eq.(2.54) shows that, if pn is a conserved density of order m ≥ 2,
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then the series (2.55) is an ACD of order m and length k = m − 1. So, starting from
a local conservation law (2.17), using the formal variational derivative (2.19) we get an
ACD (2.55) (cf. with eq.(2.30)).

Introducing the following notation for the coefficients of an ACD (2.53):

S(i)
n =

(
α

(i)
n β

(i)
n

γ
(i)
n δ

(i)
n

)
,

one can prove, as in Lemma 1, that if the length of an ACD is k ≥ 2, then

δ(m)
n = 0, γ(m)

n = −β(m)
n , (2.56)

and two cases only are possible:

1st type ACD: β
(m)
n �= 0 ∀ n ,

2nd type ACD: β
(m)
n = 0, α

(m)
n δ

(m−1)
n �= 0 ∀ n .

For all known integrable equations of the form (1.1) and for any order m ≥ 1, the existence
of local conservation laws generate two ACD of lengthm−1, one of each types (see example
eq.(2.21)). In order to obtain here additional integrability conditions, we assume the same
should be true for the conservation laws.

As it has been already said, the integrability conditions (C1) can be derived, using only
one generalized symmetry of high enough order. To get all five conditions, we could use
a generalized symmetry and a conservation law of high enough order (with no connection
between the simmetry and the conservation law and no restriction for the type and order)
or a pair of local conservation laws. However, in such a case, the calculations would be
more complicate. So we use the following scheme.

Given an ACD Sn and an AFS Ln, one obtains another ACD by considering their
product SnLn, as

B(SnLn) = B(Sn)Ln + SnA(Ln) . (2.57)

If the ACD Sn is of the 2nd type of order m1 and length k1, and the AFS Ln is also of
2nd type of order m2 and length k2 > k1, then the new ACD SnLn will be of the 1st type,
of order m = m1 +m2 − 1 and length k = k1 − 1. This shows that any ACD of 2nd type
can be reduced to one of the 1st type.

Let us consider a 1st type ACD Sn of order m ≥ 2 and length m − 1 and an AFS Ln

of the 1st type of order 1 and length greater than m− 1 (see Proposition 2). It is easy to
verify that SnL

1−m
n is a new ACD of the 1st type of order 1 and length m−1 (see eqs.(2.38,

2.57)). We will use such an ACD for deriving additional integrability conditions. As the
ACD is of 1st order, those conditions will not depend on orders of local conservation laws.

Theorem 2. If there exists an ACD of the 1st type of order m = 1 and length k ≥ 2, then
we must have

r(i)
n = (T − 1)s(i)

n , i = 1, 2, (C2)
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r(1)
n = log

(
∂fn

∂un+1
/

∂fn
∂un−1

)
, r(2)

n = ṡ(1)
n +

∂fn
∂u̇n

,

where s
(i)
n are some restricted functions.

Proof. As Sn is an ACD of the 1st type with m = 1, after defining β
(1)
n = −γ

(1)
n = ϕn �= 0,

we have

S(1)
n =

(
α

(1)
n ϕn

−ϕn 0

)
.

The equation:

B(2)
n = S(1)

n F
(1)
n+1 + F̃ (1)

n S
(1)
n+1 = 0

obtained from eq.(2.52) with m = 1, gives the relation

ϕn−1αn = δnϕn , (2.58)

with αn, δn defined by eq.(2.25). Than one can see that

r(1)
n = log(

αn

δn
) = (T − 1)(logϕn−1) ∼ 0,

i.e the first condition of (C2) is satisfied. We can define s
(1)
n = logϕn−1, where s

(1)
n is the

restricted function defined by (C2) with i = 1.
Let us consider the second equation, B(1)

n = 0. The difference of the right upper and
left lower corner elements divided by ϕn gives

Ωn = 2(logϕn)t + γn+1 + γn +
δn+1

ϕn
δ
(0)
n+1 −

αn

ϕn
δ(0)
n = 0. (2.59)

Using eqs.(2.58, 2.59), Ωn can be written as

Ωn = 2s(1)
n+1,t + (T + 1)γn + (T − 1)

δnδ
(0)
n

ϕn−1
∼ 2(s(1)

n,t + γn) = 2r(2)
n .

This shows that r(2)
n ∼ 0, i.e. the second condition of (C2) is satisfied as well.

2.4 Discussion of the integrability conditions (C1, C2)

Let us discuss here some consequences of the integrability conditions (C1, C2) which will
be useful for classifying equations and checking their integrability. In particular, we will
present the explicit form of the integrability conditions, and at the end we will consider
the particularly important case of equation (1.1) with fn not depending on u̇n.

It is convenient to check the integrability conditions (C1, C2), taking into account
eq.(A.3) of Appendix A, i.e. the fact that, if higher symmetries and conservation laws do
exist, the following equalities must be valid

δ

δun
ṗ(i)
n =

δ

δu̇n
ṗ(i)
n = 0 (i = 1, 2, 3), (2.60)
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δ

δun
r(i)
n =

δ

δu̇n
r(i)
n = 0 (i = 1, 2). (2.61)

From (C1, C2), p
(1)
n and r

(1)
n are defined explicitly in terms of fn of eq.(1.1). So the

conditions (2.60, 2.61) with i = 1 are explicit. One only needs to apply partial derivatives
and arithmetical operations, and than checks if a function is equal to zero. Such checking
can be easily done by a computer.

To check eqs.(2.60, 2.61) with i = 2, we need first to find the functions q
(1)
n , s(1)

n . It
turns out that also these conditions can be written in explicit form. All partial derivatives
of q(1)

n , s(1)
n w.r.t. un+k, u̇n+k are found by differentiating the relations (C1, C2) with

i = 1. Taking into account the form of p(2)
n given in (C1), we see that only the following

two terms: 2µ̇q(1)
n and 2µ∂q(1)

n /∂t in ṗ
(2)
n cannot be rewritten in an explicit form (cf.

eq.(2.5)). However, after applying variational derivatives w.r.t. un or u̇n, we get an
explicit expression for eq.(2.60) with i = 2. Exactly the same will happen for r

(2)
n given

by eq.(C2).
As an example, let us consider eq.(2.61) with i = 2. The function r

(1)
n is a restricted

function of the type of eq.(2.1) with i1 = 1, i2 = −1, j1 = j2 = 0. This means, see
Appendix A, that r(1)

n and s
(1)
n cannot depend on u̇n+k, and thus

s(1)
n = s(1)

n (t, un, un−1) . (2.62)

Consequently

r(2)
n =

∂s
(1)
n

∂t
+

∂s
(1)
n

∂un
u̇n +

∂s
(1)
n

∂un−1
u̇n−1 +

∂fn
∂u̇n

,

and differentiating eq.(C2) with i = 1, one obtains

∂s
(1)
n

∂un
=

∂r
(1)
n−1

∂un
,

∂s
(1)
n

∂un−1
= − ∂r

(1)
n

∂un−1
.

So we have

δr
(2)
n

δu̇n
=

∂

∂un
(r(1)

n−1 − r
(1)
n+1) +

∂2fn
∂u̇2

n

= 0 . (2.63)

In this way we have obtained an explicit integrability condition. As r(1)
n has no dependence

on u̇n+k, differentiating eq.(2.63) w.r.t. u̇n, we obtain

∂3fn/∂u̇
3
n = 0 ∀ n . (2.64)

This is a very simple and general necessary condition for the integrability which implies
that any integrable lattice equation of the form (1.1), (1.2) may have only quadratic
dependence on u̇n.

Let us study the particularly important case of equations (1.1, 1.2) with ∂fn/∂u̇n = 0.
In this case the integrability conditions can be greatly simplified. From the form of r(2)

n
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and from eq.(2.62) it follows that conditions (C2) with i = 2 is equivalent to s
(1)
n ∼ 0

(see eq.(A.8) of Appendix A). Also, the conserved density p
(1)
n of conditions (C1) do not

depend of u̇n+k, and thus it is trivial, i.e. is a total difference: p(1)
n = (T − 1)ωn. We have

q
(1)
n = ω̇n, as ωn is defined up to an arbitrary function of t. By redefining: p

(2)
n �→ 2p(2)

n

and q
(2)
n �→ 2q(2)

n , we can express p(2)
n and p

(3)
n of conditions (C1) in terms of ωn, as stated

in the following Theorem.

Theorem 3. When

∂fn/∂u̇n = 0 (2.65)

for any n, the integrability conditions for the lattice equations (1.1, 1.2) can be simplified
and, instead of conditions (C2) with i = 2 and conditions (C1) with i = 1, we have

s(1)
n ∼ 0 , p(1)

n = (T − 1) ωn (C3)

where ωn is a restricted function. The conserved densities p
(2)
n and p

(3)
n of conditions (C1)

are replaced by

p(2)
n = µ(t) ω̇n , p(3)

n = 4µ (q(2)
n + nµ̇ω̇n) + µ2

(
ω̇2
n +

∂fn
∂un

)
. (2.66)

Let us notice that we must interpret the functions q
(i)
n , s(i)

n , ωn and µ(t) in the same
way as in all the previous integrability conditions: we have only to require the existence
of those functions, such that they satisfy the conditions (C1, C2, C3). When studying a
given equation, i.e. for a given function fn, we at first define the functions q

(i)
n , s(i)

n , ωn up
to an arbitrary t - dependent integration function, i.e. up to elements of Ker(T −1). Then
we have to require that some concrete t-dependent functions exist (instead of arbitrary
ones) such that the conditions are satisfied.

Let us notice that the integrability conditions (C1, C2) are the same as those of the
previous papers [8] and [6], where the equations and their local generalized symmetries
and conservation laws had no explicit dependence on n and t. The dependence on time
introduce a new function µ(t) which, when no t dependence is allowed, reduces to a
constant.

Equation (1.3) is an example of equation with µ̇ �= 0. In fact,

fn = (T − 1)eun−un−1 − αu̇n − 2α2n ∼ −αu̇n , (2.67)

p
(1)
n of condition (C1) has the form p

(1)
n = (T − 1)un and q

(1)
n = u̇n + β(t), where β is an

arbitrary integration function. p(2)
n ∼ 2µu̇n and we can find its time derivative:

ṗ(2)
n ∼ 2µ̇u̇n + 2µfn ∼ 2(µ̇− αµ)u̇n

(see eqs.(A.4, 2.67)). Condition (C1) with i = 2 implies µ̇ = αµ which shows that µ̇ �= 0
if α �= 0. Equation (1.3) satisfies all conditions (C1, C2). This is not surprising, as the
transformation

ũn = un + 2n(αt− logα) , t̃ = e−αt (2.68)
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reduces eq.(1.3) to the Toda lattice equation (2.11) [18]. Eq.(2.68) is a point transforma-
tions depending on n and t which do not change the integrability of eqs.(1.3, 2.11). The
two equations related by the transformations(2.68) are equivalent.

The following three lattice equations are other examples of equations which satisfy the
integrability conditions (C1, C2):

ün = P (u̇n)(ϕ(un+1 − un)− ϕ(un − un−1)) ,

ϕ′(z) = Q(ϕ(z)) , P ′′(z) = Q′′(z) = const ; (2.69)

ün = (R(un)− u̇2
n)

(
1

un+1 − un
− 1

un − un−1

)
+

R′(un)
2

,
∂5R(z)
∂z5

= 0 ; (2.70)

ün = exp(un+1 − 2un + un−1) . (2.71)

All the coefficients in the polynomials P , Q, R are arbitrary constants (which may be
complex too), i.e. really eqs.(2.69, 2.70) are classes of equations with many constant
parameters. The Toda lattice equation (2.11) belong to the class (2.69).

Equations (2.69)-(2.71) give a complete list of equations, up to point transformations

ũn = σn(t, un) , t̃ = θ(t), (2.72)

satisfying the conditions (C1, C2) in the n- and t-independent case [8]. For any fixed
constant coefficients, the lattice equations (2.69)-(2.71) are integrable in the sense that
have infinite hierarchies of generalized symmetries and conservation laws [6].

As a further example, let us consider two known equations with an explicit dependence
on the discrete variable n which are of the form (1.1, 1.2) and are related to the Toda
lattice. The first of them was considered in the paper [15] and has the form:

ün = ane
�n+2un+1−�nun + bne

�n+1un−�n−1un−1 +Anu̇
2
n +Bnu̇n + Cn , (2.73)

where

:n = ξn+ ζ �= 0 , ξ �= 0 (2.74)

for all n, and the other coefficients are specific functions depending only on n. The second
one has been found in [9]:

ün
:n+1:n

= exp
un+1 − un

:n+1
− exp

un − un−1

:n
(2.75)

with :n given by eq.(2.74). Both of them belong to the class

ün = αn(t)eβn(t)un+1+γn(t)un + φn(t, u̇n, un, un−1) , (2.76)

with αnβn �= 0. Applying the conditions (C1) with i = 1 to eq.(2.76), one easily can check
that

p
(1)
n,t ∼ (βn−1 + γn)u̇n + (β′

n−1 + γ′n)un ∼ 0



92 R Yamilov and D Levi

and immediately obtains the following condition: βn = −γn+1 for all n. Both equations
(2.73) and (2.75) do not satisfy this condition and, consequently, cannot have the local
symmetry structure. It is not surprising, as for example eq.(2.73) has in the corresponding
spectral problem the spectral parameter with a dependence on the time (as a master
symmetry) [15]. The equation (2.75) is closely related to the potential Toda lattice (2.71)
by a transformation of the form:

ũn = :nun+1 − :n+1un + ηn ,

where ηn is a specific function defined by :n (if un is a solution of eq.(2.71), then ũn satisfies
eq.(2.75)). After this transformation, standard generalized symmetries and conservation
laws of eq.(2.71) become nonlocal (are not expressed in terms of restricted functions (2.1)).

3 Applications

We apply here the integrability conditions to some classes of equations characterized by
the fact of either have many point symmetries or are of physical interest. They belong
to the particular case of eq.(1.1, 1.2) when ∂fn/∂u̇n = 0 for any n. We are not able
to classify such equations completely, but we can solve the problem in each of the two
following subclasses:

∂2fn/∂un+1∂un−1 �= 0 ∀ n , (3.1)

∂2fn/∂un+1∂un−1 = 0 ∀ n . (3.2)

A number of lattice equations contained in the papers [16] and [17] belong to those sub-
classes.

There is in [16] a classification of equations of the form (1.1), (2.65) according to their
Lie point symmetry algebras. One can assume that the existence of many symmetries is
an indication of integrability. Consequently we can ask ourselves if some of the equations
of [16] are integrable in the sense we discuss here. The highest dimensions of the symmetry
algebras are 7 and 6, and the corresponding equations (1.1, 2.65) are defined by three types
of functions fn:

fn = anξ
γ
n , fn = eanξn+bn , fn = an log ξn + bn , (3.3)

where

ξn = αn(un+1 − un)− αn+1(un − un−1) , (3.4)

γ �= 0, 1 and the coefficients an, αn do not vanish. Let us notice that also the potential
Toda lattice (2.71) belong to this class. All such equations belong to the class (3.1). 5
dimensional symmetry algebras correspond to functions fn which are of the form

fn = φn(t, ξn) + σn(t)(un+1 − un) ,
∂2φn

∂ξ2
n

�= 0 (3.5)

fn = anu
bn
n+1u

cn
n udn

n−1 , anbndn �= 0 , (3.6)

fn = (un+1 − un)−3ψn

(
un+1 − un
un − un−1

)
, (3.7)
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with ξn given by eq.(3.4)). Eq.(1.1), with fn given by eqs.(3.5, 3.6) are always of the class
(3.1), but eq.(3.7) belongs to this class only if zψ′′

n(z) �= 2ψ′
n(z) for any n. If ψn(z) =

anz
3 + bn, anbn �= 0, eq.(3.7) is of the class (3.2). In the following we will investigate the

integrability for almost all the equations defined by the functions (3.3 - 3.7).
In the paper [17] the authors investigate the following system:

m1v̈k = α1(wk+1 − vk)− α2(vk − wk) + ε[β1(wk+1 − vk)2 − β2(vk − wk)2] ,
m2ẅk = α2(vk − wk)− α1(wk − vk−1) + ε[β2(vk − wk)2 − β1(wk − vk−1)2]

(3.8)

where (αi, βi,mi, ε), i = 1, 2, are nonzero constant coefficients. Eq.(3.8) describes the
evolution of a perturbation on a diatomic chain. Eq.(3.8) belong to the class of equations
(1.10) and can be written as

Mnün = ϕn+1(un+1 − un)− ϕn(un − un−1) , ϕn(z) = ξnz
2 + ζnz , (3.9)

where Mn, ξn and ζn are two-periodic functions of n, a subclass of eq.(1.9). Eq.(3.9) is
of the class (3.2), and studying this class, we can look for an integrable approximation to
system (3.8).

In the last part of this Section, we will present two Theorems which will provide results
for lattice equations of the form (1.1, 1.2, 2.65) satisfying condition (3.1) or (3.2). First
of all, let us present a preliminary calculation in the general case (2.65).

To rewrite the condition (C2) with i = 1 in a simpler way we introduce the functions

zn(t, un, un−1), yn =
∂2zn

∂un∂un−1
= exp s(1)

n ,

ψn =
δzn
δun

=
∂

∂un
(zn+1 + zn), (3.10)

with s
(1)
n given by eq.(2.62). As ∂ψn/∂un+1 = yn+1 and ∂ψn/∂un−1 = yn , the exponent

of condition (C2) with i = 1 reads:

∂ψn

∂un−1

∂fn
∂un+1

=
∂ψn

∂un+1

∂fn
∂un−1

.

Consequently fn and ψn are functionally dependent i.e.

fn = ϕn(t, un, ψn) , ∂ϕn/∂ψn �= 0 . (3.11)

So, instead of the first condition of (C2), we have the representation (3.11). As we are
considering the case when fn satisfies the condition (2.65), the first of the conditions (C3),
contained in Theorem 3, implies s

(1)
n = (T − 1)ŝn, where ŝn = ŝn(t, un−1). Then yn can

be represented in the form

yn =
ρn
ρn−1

, ρn = ρn(t, un) . (3.12)

Two other integrability conditions will be used partially. From eqs.(C1, C3, 3.12) one
has

p(1)
n = log

∂fn
∂un+1

= log
∂ϕn

∂ψn
+ log yn+1 ∼ log

∂ϕn

∂ψn
∼ 0. (3.13)
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As ϕn depends on the same variables as ψn, taking into account eq.(A.9) we get

∂2

∂un+1∂un−1
log

∂ϕn

∂ψn
=

∂

∂un+1

(
yn

∂

∂ψn
log

∂ϕn

∂ψn

)
= yn+1yn

∂2

∂ψ2
n

log
∂ϕn

∂ψn
= 0 (3.14)

for all n. From eq.(3.14) we get

∂ϕn

∂ψn
= e∆n , ∆n = an(t, un)ψn + bn(t, un) . (3.15)

From eq.(3.11), by differentiation

∂2fn
∂un+1∂un−1

= anyn+1yne
∆n . (3.16)

So, the conditions (3.1, 3.2) can be formulated in terms of an

∂2fn
∂un+1∂un−1

= 0 ⇔ an = 0. (3.17)

The following condition

ṗ(2)
n = (µω̇n)t ∼ 0 , ωn = ωn(t, un, un−1) ,

takes place (see eqs.(C3, 2.66)). Consequently the second of eq.(2.60) with i = 2 is
equivalent to the following three conditions:

∂2ωn

∂un∂un−1
= 0 ,

∂Ωn

∂un
= 0 ,

∂µ1/2Ωn

∂t
= 0 , (3.18)

where

Ωn =
δωn

δun
=

∂

∂un
(ωn+1 + ωn) .

The first two conditions of eq.(3.18) require that Ωn = ξn(t), the last one implies ξn(t) =
νnµ(t)−1/2, where νn depends only on n. Then the function ωn satisfies the condition

ωn ∼ ξn(t)un . (3.19)

We can now prove the following theorems:

Theorem 4. An integrable lattice equation of the form (1.1), (1.2), (2.65) satisfying the
condition (3.1) is equivalent (up to a point transformation (2.72)) to the potential Toda
lattice (2.71).

Proof. In the case (3.1), it follows from eq.(3.17) that an �= 0 for any n. Let us use the
condition (C1) with i = 2, where p

(2)
n is given by eq.(2.66). Taking into account eqs.(3.19,

A.4), one has

p
(2)
n,t ∼ µξnfn + (µξ′n)

′un ∼ 0 .
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The equality µξn∂
2fn/∂un+1∂un−1 = 0, obtained taking into account eq.(A.9), gives ξn =

0, which implies ωn ∼ 0.
We can use the second of conditions (C3) to find the partial derivatives of ωn. It follows

from eqs.(3.12, 3.13, 3.15) that p
(1)
n = anψn + bn + log ρn+1 − log ρn = ωn+1 − ωn , and

thus we obtain

∂ωn

∂un−1
= −anyn ,

∂ωn+1

∂un+1
= anyn+1 +

∂ log ρn+1

∂un+1
.

The first of conditions (3.18) implies ∂(anρn)
∂un

= ∂(an/ρn)
∂un

= 0 , and consequently an = an(t),
ρn = ρn(t). As ωn ∼ 0 (see eq.(A.3)), one can find

Ωn =
δωn

δun
= an−1yn − an+1yn+1 = 0.

Thus, as we have to do with the kernel of T − 1,

anan−1yn = an+1anyn+1 = κ(t)

and it is possible to find an explicit expression for yn

yn =
κ(t)

an(t)an−1(t)
.

From eqs.(3.10, 3.15), we get

∆n =
κ

an+1
un+1 +

κ

an−1
un−1 + cn(t, un)

and eq.(3.13), i.e. ∆n ∼ 0, provides us an equation for cn:

δ∆n

δun
= 2

κ

an
+

∂cn
∂un

= 0 .

Taking into account the results so far obtained, we can rewrite eq.(1.1) as

ün =
1
an

e∆n + dn(t, un) , (3.20)

where

δ∆n

δun
= 2

κ

an
+

∂cn
∂un

= 0 .

A point transformation of the form ũn = un + ζn(t) and a ridefinition of an, dn allow one
to rewrite eq.(3.20) as

ün = exp(δn+1un+1 − 2δnun + δn−1un−1) + dn(t, un) , (3.21)

with δn(t) �= 0 for any n.
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Let us apply to eq.(3.21) the second of conditions (2.60) with i = 3. The coefficient
of u̇n gives 2µδ′n + µ′δn = 0, and thus one can write δn(t) as δn(t) = αnµ(t)−1/2 with αn

depending only on n.
The transformations

ũn = η(t)un , t̃ = θ(t) , θ′ = η2 �= 0 (3.22)
ûn = εnun + λn(t) , εn �= 0 (3.23)

do not introduce u̇n in the equation. Using them we can reduce the equation to the form
(3.21) with δn = 1.

Now µ′ = 0 and the condition (2.60) with i = 3 give an equation for dn:

2(dn+1 − 2dn + dn−1) =
∂2dn
∂u2

n

+ 4
∂dn
∂un

. (3.24)

Differentiating eq.(3.24) w.r.t. un+1, one has ∂dn/∂un = 0, and thus

dn = β1(t)n+ β2(t). (3.25)

Eq.(3.21) with dn given by eq.(3.25) and δn = 1 is reduced by a transformation of the
form (3.23) to the potential Toda lattice (2.71).

Theorem 5. Any integrable lattice equation of the form (1.1, 1.2, 2.65) satisfying the
condition (3.2) is reduced by a point transformation (2.72) to the Toda model (2.11) or an
equation linear in un+1, un and un−1.

Proof. In this case an = 0, and the conditions (3.13, 3.15) imply bn ∼ 0. Then bn = bn(t),
and using eqs.(3.10, 3.11, 3.12), we can express the right hand side fn and p

(1)
n of condition

(C1) and ωn of condition (C3) as

fn = ebn(t)ψn + cn(t, un) , (3.26)

p(1)
n = bn + (T − 1) log ρn , ωn = log ρn + b̂n(t) .

We now use eq.(3.18) with Ωn = ∂ log ρn

∂un
and obtain

log ρn = ξn(t)un + ζn(t) , ξn(t) = νnµ(t)−1/2 . (3.27)

Using the condition ṗ
(2)
n ∼ 0 with p

(2)
n given by eq.(2.66) we can check that the following

equivalence relation takes place:

µ−1/2ṗ(2)
n ∼ µ−1/2

(
µ
∂ log ρn

∂t

)
t

+ νncn + νne
bn
∂zn+1

∂un
+ νn+1e

bn+1
∂zn+1

∂un+1
∼ 0.

In accordance with eq.(A.9), we apply the operator µ1/2

yn+1

∂2

∂un+1∂un
and obtain the condition

(see also eq.(3.12)):

ν2
ne

bn(t) = ν2
n+1e

bn+1(t) = b̃(t) . (3.28)
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We can now split the proof into two different cases: b̃ = 0 and b̃ �= 0.
Let us consider at first the case b̃ �= 0. Using formulae (3.10, 3.12, 3.26, 3.27, 3.28), we

find the functions ρn, yn, ψn, bn, fn and obtain as a result an equation of the form:

νnün = eξn+1un+1−ξnun+αn+1(t) − eξnun−ξn−1un−1+αn(t) + βn(t, un) . (3.29)

The function ξn has the specific form (3.27) and νn depend only on n. Using eqs.(3.22,
3.23) we are able to transform eq.(3.29) into the simpler one:

ün = eun+1−un − eun−un−1 + γn(t, un) . (3.30)

Taking into account that ωn = un + d(t), we have

ṗ(2)
n ∼ µ̇u̇n + µγn ∼ 0 ,

and this condition implies: µ̇ = ∂γn/∂un = 0. From eq.(2.66) the last integrability
condition reads:

ṗ(3)
n ∼ 2µ2(γn + d̈)u̇n ∼ 0 .

Then γn = −d̈(t), and the point transformation ûn = un + d(t) turns the eq.(3.30) into
the Toda model (2.11).

In the case b̃ = 0, one can see from eqs.(3.12, 3.27, 3.28) that yn = yn(t). Using
eqs.(3.10, 3.26), eq.(1.1) takes the form:

ün = αn(t)un+1 + βn(t)un−1 + γn(t, un) , (3.31)

with αnβn �= 0. For an equation of this kind, the functions p
(1)
n , ωn, p

(2)
n and q

(2)
n may

depend only on n and t. This implies that p(3)
n ∼ µ2∂γn/∂un. From eq.(A.8) we get that

p
(3)
n,t ∼ 0 can be replaced by the condition µ2∂γn/∂un ∼ 0 which gives ∂2γn/∂u

2
n = 0.

Then the right hand side of eq.(3.31) is also linear in un.

4 Conclusions

In this work we have presented 5 necessary conditions for the existence of local higher
order generalized symmetries and conservation laws for equations explicitly depending on
n and t of the form (1.1, 1.2). This conditions imply that any integrable equation of
the form (1.1, 1.2) must satisfy eq.(2.64) and consequently may have, at most, quadratic
dependence from u̇n.

We have used the obtained conditions to study a few classes of interesting equations.
Unfortunately, as Theorems (4, 5) showed, the classes (3.1) and (3.2) (in the case (2.65))
contain only, up to point transformations of the form (2.72), the well known integrable
equations (2.11) and (2.71). Moreover, we can prove that there is nothing new also when
the function fn = fn(t, w, x, y, z) defining eq.(1.1, 1.2, 2.65) is two-periodic w.r.t. n and
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satisfies condition (3.1) for one n and condition (3.2) for the other. In another words,
among systems of the form

v̈k = Φ(t, vk, wk+1, wk) , Φwk+1
Φwk

�= 0 ,
ẅk = Ψ(t, wk, vk, vk−1) , Ψvk

Ψvk−1
�= 0

(see eq.(1.10)) which also contain eq.(3.8), there is no new integrable approximation of
eq.(3.8).

The request of existence of local high order generalized symmetries seems to be too
stringent. The next possibility is to allow for some nonlocality (as e.g. example of eq.(2.75)
shows). Work on this is in progress.
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Appendix

A Properties of Restricted Functions

Let us discuss some properties of restricted functions. Most of properties can be proved
very easily, and thus in that case we will only present the results.

Let us define an equivalence relation for restricted functions (2.1). Two restricted
functions gn and g̃n are equivalent (gn ∼ g̃n) if their difference can be represented in
the form gn − g̃n = (T − 1)ϕn, with ϕn a restricted function. In particular, gn ∼ 0 if
gn = (T − 1)σn. For any function cn = cn(t) (i.e. depending on n and t only), one has
cn ∼ 0, as the equation σn+1 − σn = cn can always be solved for σn = σn(t).

Let us discuss the case when a restricted function gn can be represented as a total
difference:

gn = (T − 1)hn , (A.1)

where hn is another restricted function. If gn = 0, then hn = h(t). If gn = gn(t) (i.e.
depends only on n and t), then hn always can be found and is a function of the same kind:
hn = hn(t). In more general case of (2.1) we have two cases:

1. i1 = i2, then the function hn cannot depend on variables un+k at all.

2. i1 > i2, then hn may depend only on {un+i1−1, . . . , un+i2}.
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Moreover, for a function of the form (A.1), from formal variational derivative one has

δgn
δun

=
−i2∑

k=−i1

∂gn+k

∂un
= 0. (A.2)

On the other hand, if δgn/δun = 0, gn is equivalent (up to a total difference) to a function
ĝn (gn ∼ ĝn) which has no dependence on {un+k}i2k=i1

.

The same can be said about the dependence of gn from variables {u̇n+k}j2k=j1
. Summa-

rizing, we can say that

gn ∼ 0 iff
δgn
δun

=
δgn
δu̇n

= 0 . (A.3)

As we can easily see, when

gn ∼ 0 ⇒ Dtgn ∼ 0 ,
∂gn
∂t

∼ 0 , η(t)gn ∼ 0 , (A.4)

where Dt is the operator of total differentiation and η(t) is an arbitrary function of t.
Moreover, for any restricted function gn we have from eq.(2.5)

Dtgn ∼ ∂gn
∂t

+
δgn
δun

u̇n +
δgn
δu̇n

fn , (A.5)

as for example ∂gn

∂un+k
u̇n+k ∼ ∂gn−k

∂un
u̇n , and hence from eq.(A.2)

i1∑
k=i2

∂gn
∂un+k

u̇n+k ∼
i1∑

k=i2

∂gn−k

∂un
u̇n =

−i2∑
l=−i1

∂gn+l

∂un
u̇n =

δgn
δun

u̇n. (A.6)

Let us consider a function gn independent on u̇n+k and such that Dtgn ∼ 0, then
eq.(A.5) gives

∂gn
∂t

+
δgn
δun

u̇n ∼ 0 . (A.7)

The left hand side of eq.(A.7) must be independent on u̇n, hence δgn/δun = 0, and eq.(A.3)
implies gn ∼ 0. Taking into account eq.(A.4), we get that if ∂gn/∂u̇n+k = 0 for all k, then

Dtgn ∼ 0 ⇔ gn ∼ 0 . (A.8)

One simple, but very useful property of restricted function gn is:

gn ∼ 0 , i1 > i2 ⇒ ∂2gn
∂un+i1∂un+i2

= 0 ∀ n . (A.9)
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