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Abstract

We examine the classical model of two competing species for integrability in terms
of analytic functions by means of the Painlevé analysis. We find that the governing
equations are integrable for certain values of the essential parameters of the system.
We find that, for all integrable cases with the nontrivial equilibrium point in the
physically acceptable region, the nontrivial equilibrium point is stable.

1 Introduction

The simplest model for two competing species [13, 78 ff] is given by the quadratic system

dN1

dτ
= r1N1

(
1− N1

K1
− b12N2

K1

)

(1.1)
dN2

dτ
= r2N2

(
1− N2

K2
− b21N1

K2

)

in which N1 and N2 represent the populations of the two competing species, K1 and K2

the carrying capacities of each species, r1 and r2 the rates of reproduction of each species
and b12 and b21 give the measure of the effects of competition between the two species.
The system (1.1) has been analysed by Hsu et al [5] and Pianka [15] from the viewpoint
of dynamical systems. The six parameters are excessive and may be reduced to only three
by means of the rescalings and definitions

x =
N1

K1
, y =

N2

K2
, t = r1τ,

r2
r1

= ρ, b12
K2

K1
= αρ, b21

K1

K2
=
β

ρ
(1.2)

so that the dynamical system to be considered is simply

ẋ = x (1− x− αρy)
ẏ = ρy(1− y)− βxy. (1.3)
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(Note that in the standard presentation the parameters α and β are differently defined.
The present definitions are adopted from the vantage point of hindsight.)

The equilibrium points of the system (1.3) are given by (0, 0), (0, 1), (1, 0) and, if
1 − αβ �= 0, x4 = (1 − αρ)/(1 − αβ), y4 = (1 − β/ρ)/(1 − αβ). For the system (1.3) to
describe the competition between two species it follows that αρ < 1, β/ρ < 1, αβ < 1 or
αρ > 1, β/ρ > 1, αβ > 1. If αβ = 1, the isoclines are parallel and the possibility of a
nontrivial equilibrium point vanishes.

We recall a well-known method for the determination of the nature of an equilibrium
point. Let A be the Jacobian matrix evaluated at an equilibrium point q. Let d = detA
and t = traceA. Since the eigenvalues of the matrix A are given by

λ1,2 =
t±√

t2 − 4d
2

,

it is easy to see that,
(i) if d < 0, then q is a saddle.

(ii) if d > 0 and t2 − 4d ≥ 0, then q is a node
{

stable if t < 0
unstable if t > 0

.

(iii) if d > 0 and t = 0, then q is a centre.

(iv) if d > 0 and t2 − 4d < 0 (t �= 0), then q is a focus
{

stable if t < 0
unstable if t > 0

.

In our case the determinant and the trace of A at the four equilibrium points are
(0, 0) : d = ρ, t = 1 + ρ
(0, 1) : d = −ρ (1− αρ) , t = −ρ+ (1− αρ)
(1, 0) : d = −ρ (1− β/ρ) , t = −1 + ρ (1− β/ρ)
(x4, y4) : d =

(1− β/ρ) (1− αρ)
1− αβ , t = −(1− αρ) + ρ (1− β/ρ)

1− αβ .

The isoclines ẋ = 0 and ẏ = 0 are given by the straight lines 1 − x − αρy = 0 and
ρ − ρy − βx = 0 respectively. There are four possibilities according to as these lines
intersect each other or not.

I αρ < 1 and β/ρ > 1 (0, 1) is unstable and (1, 0) is stable
II αρ > 1 and β/ρ < 1 (0, 1) is stable and (1, 0) is unstable
III αρ < 1 and β/ρ < 1 (0, 1) is unstable and (1, 0) is stable (x4, y4) is stable
IV αρ > 1 and β/ρ > 1 (0, 1) is stable and (1, 0) is stable (x4, y4) is unstable

In all cases the origin is unstable. It can be shown [4] that the ω-limit point of every
trajectory of the system is one of the equilibria, ie the populations of two competing
species always tend to one of a finite number of limiting populations.

The interpretation of these results in biological terms can be found in [5] and [15].
Only case III leads to an equilibrium state where both species survive. In particular
in case IV there exists a separatrix such that every trajectory starting above this curve
asymptotically approaches the equilibrium point (0, 1) , ie species y reaches its carrying
capacity while species x becomes extinct. Analogous results hold for trajectories starting
below the separatrix with the roles of x and y interchanged.

The final quarter of the nineteenth century was a period in which three different ap-
proaches to the study of differential equations were developed. One that was based upon
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the concept of invariance under infinitesimal transformations was due to Lie. A sec-
ond involved the analysis of the equations for movable singularities and is largely due
to the School of Painlevé in France, but was already presaged in the pioneering work of
Kowalevskaya [8]. The third was the study of the phase space of the system of equations
with particular emphasis on the nature of the equilibrium points and the asymptotic be-
haviour of the system due to Poincaré. For some curious reason these three approaches to
the study of systems of differential equations have tended to be separate. Thus one finds
a system analysed for its symmetries without any regard to its singularities or the nature
of any equilibrium points or some permutation of these three. In the case of systems of
nonlinear first order ordinary differential equations the dynamical systems approach initi-
ated by Poincaré has been dominant. There are good reasons for this. Generically systems
of nonlinear first order ordinary differential equations are nonintegrable. The strengths
of Lie and Painlevé are with integrable systems. The strength of the dynamical systems
approach pioneered by Poincaré is in its ability to extract information from nonintegrable
systems.

As it has happened, systems of first order nonlinear ordinary differential equations
characteristically arise in areas of study such as ecology, economics, medicine and chem-
istry. In the so-called exact sciences the underlying equations are generically of the second
order – even Hamiltonian systems are of even order – due to their Newtonian basis. Con-
sequently there has been a natural separation of the standard modes of investigation of
the differential equations in these two different classes of discipline. This is unfortunate.
Different approaches should not be regarded as competing but as complementary.

In this paper we analyse a simple problem, that of two competing species, described by
the cosmetically modified system (1.3) from the point of view of the singularity analysis of
Painlevé. We establish the conditions under which the solutions of this system are analytic
functions. For those conditions – some, since the total is infinite – we examine the system
to see if it can be reduced to an easily integrable system.

In the naive theory of integrable systems from the standpoint of Lie a differential
equation is integrable if it possesses a sufficient number of Lie point (contact) symmetries.
There has been a number of examples over the last century of differential equations which
are integrable and yet somewhat lacking in point (contact) symmetries. The six Painlevé
equations provide the most notable examples [7] [Chapter XIV], but there are more recent
examples [1, 14]. The advantage of the more recent examples is that the symmetry analysis
is complete whereas the six Painlevé equations have yet to be analysed successfully for their
symmetries. In these examples there has been an obvious lack of symmetry in terms of the
traditional understanding of symmetry. The obvious lack of symmetry has been due to a
failure to understand the meaning of the symmetry in its fullest context. It was perfectly
natural for Lie to think in terms of infinitesimal transformations which were functions of
the independent, dependent and – eventually – the derivatives of the dependent variables.
Lie had a very geometric sense of his transformations. This was a great strength, but also
contained the seeds of constraint. When one is involved in the business of the solution
of differential equations, the only constraint should be the constraint of mathematical
correctness. However, the determination of Lie symmetries of differential equations is not
easy when one moves beyond the determination of point (contact for the third and higher
order) symmetries. In this respect the Painlevé analysis is easier. One can determine the
integrability or not of a system easily. The price to pay is that the precise form of the
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solution is not generally available, unless one is content with infinite Laurent expansions.
The approach which we adopt in this paper is that of Painlevé. However, once we

have identified the values of the parameters for which the Painlevé analysis indicates
integrability, a further step in the analysis of the system would be to look at the possibility
of integrability in terms of Lie, ie a reduction of the system to an equation which is
obviously reducible to quadratures.

2 Singularity analysis: poles and resonances

To determine the leading order behaviour of the system (1.3) we set x = aτp and y = bτ q,
where a, b, p and q are constants to be determined and τ = t − t0, t0 being the location
of the presumed movable pole. The system (1.3) becomes

apτp−1 = aτp − a2τ2p − αρabτp+q

bqτ q−1 = ρbτ q − ρb2τ2q − βabτp+q (2.1)

from which it is evident that balance occurs with the derivatives and the quadratic terms
provided p = q = −1. Balance also occurs for p = −1, q ≥ 0, alternatively p ≥ 0, q = −1,
but this is not singular in the sense of the Painlevé Test and lies without the singularity
analysis to determine integrability1.

With p = q = −1 the dominant terms – the derivatives and the quadratic terms –
balance if, as we see from (2.1),

−a = −a2 − αρab
−b = −ρb2 − βab

⇔
(
a
ρb

)
=

1
1− αβ

(
1− α
−β + 1

)
(2.2)

provided 1− αβ �= 0. If 1− αβ = 0, ie β = 1/α, (2.2a) is consistent if α = 1, which gives
also β = 1. Then ρb = 1− a, where a is arbitrary.

In general, ie 1−αβ �= 0, the second arbitrary constant required for the general solution
of (1.3) enters at the so-called resonance. To determine when this occurs we set

x = aτ−1 + µτ r−1 y = bτ−1 + ντ r−1, (2.3)

where a and b are given by the (2.2), in the dominant terms of (2.1), ie (2.1) excluding
the linear terms of the right-hand side. The terms linear in µ and ν give the system

(
r − 1 + 2a+ αρb αρa

βb r − 1 + βa+ 2ρb

) (
µ
ν

)
= 0 (2.4)

for which a nontrivial solution exists if

r2 +
r

1− αβ (2− α− β) + 1
1− αβ (1− α)(1− β) = 0,

1The reader is referred to Ramani et al [16] or Tabor [17] for an account of the details of the application
of the test.
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ie

r = −1,− 1
1− αβ (1− α)(1− β), (2.5)

where the first root is generic.
In general the second root is not a positive integer. It is n(> 0) if α and β satisfy the

constraint

β =
n+ 1− α

(n− 1)α+ 1
. (2.6)

We note that the parameter ρ does not appear in this expression. This is a consequence
of the parameterisation introduced in (1.2) and we recall that that parameterisation was
introduced on hindsight2. In the case of the zero resonance both α and β are of like
sign. This must be positive to maintain the qualitative property that the model be one
for competing species. Were they both negative, the situation being modelled would be a
type of symbiosis.

One could also contemplate that the second, nongeneric, resonance be a negative integer
say that the Laurent expansion take the form of a Left Painlevé Series [10, 3], ie an
expansion commencing at the leading order power, −1, and with the exponents diminishing
to −∞. However, the presence of nondominant terms is incompatible with the existence
of a Left Painlevé Series and so n must necessarily be nonnegative.

3 Compatibility

When 1 − αβ = 0, the resonance is r = 0 and there is no need to consider the compat-
ibility of the nonresonant terms, x and ρy in (1.3a) and (1.3b) respectively, since they,
by definition, enter the expansion at a power higher than that at which the arbitrary
constant enters. Elsewise, ie for r a positive integer, compatibility must be verified. For
an unspecified r = n we substitute

x =
n∑

i=0

τ i−1, y =
n∑

i=0

τ i−1 (3.1)

into (1.3) to obtain the recurrence relations

(i− 1)ai = ai−1 −
i∑

j=0

ai−j (aj + αρbj) , i = 1, . . .

(i− 1)bi = ρbi−1 −
i∑

j=0

(βaj + ρbj) bi−j (3.2)

which provides pairs of linear simultaneous equations for the unique determination of the
pairs of coefficients (ai, bi) for i = 1, n− 1. At i = n the coefficient matrix of (an, bn) and

2One notes that this also gives part of the result, videlicet β = 1 already obtained for n = 0. That case
must be derived by the alternate analysis given above since there is also the requirement 1−αβ = 0 which
is precluded here.
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requirement for the consistency of the system imposes a second constraint on α, β and ρ
additional to that in (2.6). Thus at i = n (3.2) gives

(
n+ a0 αρa0

βb0 n+ ρb0

) (
an

bn

)
=



an−1 −

n−1∑
j=1

ai−j (aj + αρbj)

bn−1 −
n−1∑
j=1

(βaj + ρbj)bi−j




(3.3)

when the basic constraint (2.2) is taken into account. The condition for compatibility is
that

(n+ a0)


bn−1 −

n−1∑
j=1

(βaj + ρbj) bi−j


− βb0


an−1 −

n−1∑
j=1

ai−j (aj + αρbj)


 = 0 (3.4)

which is not a particularly transparent expression for general values of n. However, it does
provide a second constraint on the parameters α, β and ρ. Consequently for each value of
n there is a curve in the three-dimensional parameter space for which (1.3), hence (1.1),
passes the Painlevé Test and so is integrable in terms of analytic functions.

To determine the constraints on the values of the parameters for which (1.3) passes the
Painlevé Test we adopt the algorithmic procedure proposed by Hua [6]. Instead of taking
a particular value for the resonance we work our way through the recurrence conditions
(3.2) for increasing values of i. For each new value of i we allow for branching of the
algorithm by posing the question of whether the coefficient matrix be singular or not. If
it be singular, the constraints are calculated. If it be not singular, the coefficients (ai, bi)
are computed and we move to the next value of i. We summarise our results.

The system

ẋ = x− x2 − αρxy
ẏ = ρy − ρy2 − βxy

has a simple movable pole and may be written in terms of the Laurent expansion

x =
∞∑
i=0

aiτ
i−1, y =

∞∑
i=0

biτ
i−1,

in which the second arbitrary constant enters at, for example,

τ−1 if 1− αβ = 0 else
(
a0

ρb0

)
=

(
(1− α)/(1− αβ)
(1− β)/(1− αβ)

)

τ0 if α+ β = 2 else continue

τ1 if β =
3− α
α+ 1

else continue

τ2 if β =
4− α
2α+ 1

else continue

τ3 if β =
5− α
3α+ 1

else continue, etc . (3.5)
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One notes that the relationship between α and β which determines the Kowalevskaya
exponent is independent of the value of ρ. The value of ρ does, however, enter into the
relationship between the coefficients an and bn and the resonance, n. Consequently the
integrable cases of the system (1.3), hence (1.1), are found on that section of a curve in a
two-dimensional space of parameters for which both α and β are positive.

4 Nontrivial equilibrium point, stability and integrability

The cases of (1.3) which are integrable in the sense of Painlevé are given when the param-
eters α and β satisfy the constraint (2.6). For r = 0 the system is

ẋ = x− x2ρxy

ẏ = ρy − ρy2 − xy, (4.1)

where the constraint 1−αβ = 0 is further constrainted to be α = β = 1. When r = 1, we
have

ẋ = x− x2 − αρxy
ẏ = ρy − ρy2 − (2− α)xy, (4.2)

where the additional constraint for consistency is ρ2 = 1. Since ρ = −1 is not physical,
we need consider only ρ = 1. In the case of r = 2 we find that

ẋ = x− x2 − αρxy
ẏ = ρy − ρy2 − 3− α

α+ 1
xy, (4.3)

for which they are two possible, physically acceptable, constraints on the value of ρ,
videlicet ρ = 1, 1

2(1 + β).
In general the system to be solved is

ẋ = x− x2 − αρxy
ẏ = ρy − ρy2 − n+ 1− α

(n− 1)α+ 1
xy (4.4)

subject to the constraint imposed by the requirements of consistency. For increasing values
of r the possibilities become more complex and we do not list them.

The equilibrium points of (4.4) are (0, 0), (1, 0), (0, 1) and (x4, y4), where the first three
are trivial, (x4, y4) is nontrivial and

(x4, y4) =
(
(1− αρ)[(n− 1)α+ 1]

(1− α)2 ,
α− n− 1 + ρ+ (n− 1)αρ

ρ(1− α)2
)
. (4.5)

To determine the nature of the nontrivial equilibrium point we examine the signs of the
determinant and trace of the Jacobian matrix at that point. We have

d =
(1− αρ)[α[1 + (n− 1)ρ] + ρ− 1− n]

(1− α)2

t =
(1− α)](1− αρ)n+ αρ− ρ]

(1− α)2 . (4.6)
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We recall that a nontrivial equilibrium point exists only for n ≥ 1. For an equilibrium
point in the first quadrant and n ≥ 1 (4.5) requires that

1− αρ > 0 and α− n− 1 + ρ+ (n− 1)αρ > 0 (4.7)

so that d > 0 automatically.
We now consider the sign of the trace. Suppose that α > 1. Then from (4.7a) ρ < 1

and the second term of the denominator of (4.7b) is

(1− αρ)n+ αρ− ρ > αρ− ρ = ρ(α− 1) > 0

so that t < 0 and the nontrivial equilibrium point is stable.
Suppose now that α < 1. Then from (4.7b)

−[(1− αρ)n+ αρ− ρ] + α− 1 > 0
−[(1− αρ)n+ αρ− ρ] > 1− α

(1− αρ)n+ αρ− ρ < α− 1 < 0, (4.8)

ie t < 0 and the nontrivial equilibrium point is stable.
Thus we have the result that the existence of a stable nontrivial equilibrium point

coincides with the possession of the Painlevé Property.

5 Comment

In this paper we have investigated a simple model for competing species in terms of the
possession of the Painlevé Property, ie the existence of an analytic solution expressible as a
Laurent expansion about a movable singular point. We found that for a constraint on the
parameters in the model the system (1.3) possesses the Painlevé Property. Furthermore
we saw that in those cases for which the system (1.3) possess the Painlevé Property and a
nontrivial equilibrium point that nontrivial equilibrium point was stable for all values of
the parameters permitted by the constraint. A nontrivial equilibrium point can exist for
values of the parameters other than those imposed by the constraint of the possession of
the Painlevé Property. This nontrivial equilibrium point can be stable, but need not be.
Equally it could be a saddle point. It would appear that the possession of the Painlevé
Property, apart from the case 1− αβ = 0, restricts the nontrivial equilibrium point to be
stable. One finds it difficult to believe that this is a coincidence.

The Painlevé Analysis is based upon the existence of a polelike similarity in the complex
time plane. This singularity could be for complex time or for real-time. In the case of the
latter it must be in the past, ie t0 < 0, since every trajectory starting in a bounded region
of the first quadrant beyond that defined by the maximal ordinates of the isoclines and
the axes remains bounded and ultimately approaches one of the equilibria. In the case of
the conditions for the possession of the Painlevé Property all three equilibria are possible
limit points.

To conclude with a slightly amusing point we note that the case 1 − αβ = 0 for
which the existence of a nontrivial equilibrium point is not possible since the isoclines are
parallel does exhibit a feature often observed in the case of systems of first-order equations
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possessing the Painlevé Property. We solve (4.1a) for y and substitute this into (4.1b) to
obtain the scalar second-order equation

ẍ

x
− 2

ẋ2

x2
+ (2− ρ)ρẋx+ ρ− 1 + (1− ρ)x = 0. (5.1)

With the transformation w = 1/x, (5.1) becomes the linear nonhomogeneous second-order
equation

ẅ + (2− ρ)ẇ + (1− ρ)w = 1− ρ. (5.2)

Equation (5.2) is trivially solved to give

w = Ae−t +Be(ρ−1)t + 1 (5.3)

from which x and y follow easily.
Equation (5.2) is a second-order equation of maximal symmetry since it possesses eight

Lie point symmetries [11] [p 405] with the Lie algebra sl(3, R). The two-dimensional
system of first-order equations, (4.1), possesses the Painlevé Property and is linearisible
as demonstrated above. Similar instances can be found in references [9, 14, 2].

In the case of (4.2), for which we consider only the physically admissible case ρ = 1
of the two given by ρ2 = 1, we have a two-dimensional example of a class of three-
dimensional models for three competing species which was treated by May and Leonard
[12]. We remark that this is the only resonance for which the integrable cases take the
form considered by May and Leonard. The addition of (4.2a) and (4.2b) gives the equation

ζ̇ = ζ − ζ2, (5.4)

where ζ = x + y, which is simultaneously a Riccati equation, a Bernoulli equation, a
variables separable equation and the logistic equation. In the guise of either of the first
two (5.4) is manifestly linearisible. The solution of (5.4) is

ζ(t) =
1

1 +Ae−t
. (5.5)

With this solution (4.2a) may be written as the linear first-order equation

(
1
x

).

+ (1− αζ(t))
(
1
x

)
= 1− α (5.6)

which has the solution

x(t) =
et(

A+ et
)α − (

A+ et
) , (5.7)

where A and B by the two constants of integration. Again we see that the constraints
imposed by the requirement of integrability in the sense of Painlevé leads through a lin-
earisible equation to a straightforward quadrature.
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