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Abstract

An isochronous dynamical system is characterized by the existence of an open domain
of initial data such that all motions evolving from it are completely periodic with a fixed
period (independent of the initial data). Taking advantage of a recently introduced
trick, two new Hamiltonian classes of such systems are identified.

1 Introduction and main results

An isochronous dynamical system is characterized by the existence of an open domain
of initial data such that all motions evolving from it are completely periodic with a fixed
period (independent of the initial data). Of course this open domain of initial data has
nonvanishing measure, namely it possesses the full dimensionality of such initial data.
Recently a trick – actually, merely a convenient change of (independent and dependent)
variables – has been introduced [1], that has the potential to deform quite a large class of
dynamical systems and evolution PDEs so that the deformed evolutions are isochronous.
This approach has been investigated in various contexts [2] [13] [18] [14] [8] [3] [21] [19]
[4] [5] [6] [7] [15] [16] [12] [9] [10] [17] [11] [20] [26]. In this paper we use it once more to
identify two new classes of such Hamiltonian dynamical systems.

The first class is characterized by the Newtonian equations of motion

z̈n + ω2 zn = − [
ż2
n + ω2

(
cn + z2

n

)]1/2 ∂ F (z)
∂ zn

, n = 1, ..., N, (1.1)

where the function F (z) of the N -vector z ≡ (z1, ..., zN ) is only required to be analytic in
its N arguments and to be a sum of functions scaling as the negative even integer powers,

F (z) =
K∑

k=1

F (−2 k)(z), (1.2a)

F (−2 k)(α z) = α−2 k F (−2 k)(z). (1.2b)
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In these Newtonian equations (1.1), and throughout, superimposed dots denote differenti-
ations with respect to the real independent variable t (“time”), the N dependent variables
zn ≡ zn(t) are complex, the constant ω is real (without significant loss of generality, posi-
tive), and the N constants cn are arbitrary (possibly complex, possibly vanishing); and in
the scaling relations (1.2), and throughout, K is an arbitrary positive integer.

The second class of isochronous Hamiltonian systems is characterized by the Newtonian
equations of motion

z̈n + 2 i µ ω żn + (1− µ2)ω2 zn

= − [żn + i (1 + µ)ω zn]
1
2
(1−µ) [żn − i (1− µ)ω zn]

1
2
(1+µ) ∂ F (z)

∂ zn
,

n = 1, ..., N, (1.3a)

where µ is a rational number different from negative unity,

µ =
p

q
, µ �= −1 , (1.3b)

with p and q coprime integers (and, for definiteness, q positive, q > 0). [A generalization
of this system, characterized by the replacement of the single rational number µ by N
arbitrary, but rational, numbers µn, is reported below, see (1.8), and discussed in Section
4]. The function F (z) of the N -vector z ≡ (z1, ..., zN ) is again required to be analytic in
its N arguments and is now characterized by the following scaling property:

F (z) = F (0)(z) +
K∑

k=1

F (ak)(z), (1.4a)

F (ak)(α z) = αak F (ak)(z), k = 1, ...,K; F (0)(α z) = F (0)(z) +A(α), (1.4b)

where

ak = − 2 k
1 + µ

, k = 1, ...,K. (1.4c)

And, in order that isochronicity be guaranteed, one more condition is required:

µ > −3 , or µ < − (1 + 2 K) . (1.5)

Note that these two classes, (1.1) with (1.2) and (1.3) with (1.4), coincide in the special
case µ = 0, cn = 0, n = 1, ..., N.

In the following Section 2 we demonstrate the Hamiltonian character of both these
Newtonian equations of motion, (1.1) and (1.3) (and also of the generalized version (1.8),
see below), by showing that they are special cases of a general class of Newtonian equations
of motion obtainable in a standard manner from a Hamiltonian; and we moreover exhibit
some interesting examples of these Newtonian equations of motion. In the subsequent
Section 3 we prove that, provided the function F (z) satisfies the scaling properties detailed
above (see (1.2)), the first class of Newtonian equations of motion (1.1) (in fact, a more
general, albeit not necessarily Hamiltonian, class of evolution equations that include the
class (1.1)), features a (complex) open domain of initial data z(0), ż(0), having of course
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full dimensionality in the (complex) phase space of such initial data, such that all the
motions evolving out of it are completely antiperiodic with period T

2 =
π
ω , hence completely

periodic with period

T =
2π
ω

, (1.6)

z(t+
T

2
) = −z(t), z(t+ T ) = z(t). (1.7a)

The analogous result in the case of the Newtonian equations of motion (1.3) demon-
strates the existence of an open domain of initial data z(0), ż(0), having of course again
full dimensionality in the (complex) phase space of such initial data, such that all the mo-
tions evolving out of it are completely (−µ)-antiperiodic with period T

2 , hence completely
periodic with period q T

2 respectively qT if p+ q is odd respectively even (see (1.3b)),

z(t+
T

2
) = − exp(−π i µ)z(t), z(t+

q T

2
) = (−)p+q+1 z(t) . (1.7b)

This result is proven in Section 4, where we actually show that the Newtonian equations
of motion

z̈n + 2 i µn ω żn + (1− µ2
n)ω

2 zn

= − [żn + i (1 + µn)ω zn]
1
2
(1−µn) [żn − i (1− µn)ω zn]

1
2
(1+µn) ∂ F (z)

∂ zn
,

n = 1, ..., N, (1.8)

where theN constants µn are rational numbers, that clearly reduce to (1.3a) if µn = µ, and
which are also shown to be Hamiltonian in the following Section 2, are as well isochronous
provided the function F (z) satisfies the scaling property

F (z) =
K∑

k=1

F (a1k,...,aNk)(z) , (1.9a)

F (a1k,...,aNk)(α1 z1, ..., αN zN ) =

[
N∏

n=1

(αnk)
ank

] 1
N

F (a1k,...,aNk)(z) , k = 1, ...,K, (1.9b)

with

1
N

N∑
n=1

ank (1 + µn) = −2 k , n = 1, ..., N, k = 1, ...,K . (1.9c)

[These scaling properties reduce of course to (1.4) if µn = µ and ank = ak]. But, as shown
in Section 4, to guarantee isochronicity an additional condition is required: there should
exist N numbers An such that the following N K inequalities hold:

−An +
1
N

N∑
m=1

Am amk ≥ k +
1
2
(1− µn),

n = 1, ..., N, k = 1, ...,K. (1.10)
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These last conditions, however, are not too restrictive. For instance, by setting

An = −1
2
b (1 + µn) + c , n = 1, ..., N (1.11a)

with b and c two arbitrary constants, they become (via (1.9c))

b

[
k +

1
2
(1 + µn)

]
+ c (1− ak) ≥ k +

1
2
(1− µn) ,

n = 1, ..., N, k = 1, ...,K , (1.11b)

where we introduced the convenient definition

ak =
1
N

N∑
n=1

ank . (1.11c)

And it is clear that these conditions, (1.11b), can be satisfied (at least) in any one of the
following cases (and we indicate in each case in square brackets via which assignment of
the two arbitrary constants b, c):

case (i): µn > −3, n = 1, ..., N ,

[
b ≥ max

(
2 k + 1− µn

2 k + 1 + µn

)
, c = 0

]
, (1.12a)

case (ii): µn < − (1 + 2K) , n = 1, ..., N ,

[
b ≤ min

(
2 k + 1− µn

2 k + 1 + µn

)
, c = 0

]
,

(1.12b)

case (iii): ak < 1, k = 1, ...,K ,

[
b = 0, c ≥ max

(
k + 1

2 (1− µn)
1− ak

)]
, (1.12c)

case (iv): ak > 1, k = 1, ...,K ,

[
b = 0, c ≤ min

(
k + 1

2 (1− µn)
1− ak

)]
. (1.12d)

Note that the first two of these four cases correspond to the condition (1.5) when µn = µ.
Also note that the last two of these four cases imply that these conditions can always be
satisfied if K = 1, unless ak = 1, in which case the sufficient conditions for isochronicity
are provided by the two cases (i) and (ii) (namely, the rational numbers µn are either all
smaller, or all larger, than −3).
Final remarks are reported in the last Section 5.

2 A class of Hamiltonian systems

In this section we introduce a Hamiltonian H(p, z) that yields, in the standard manner,
Newtonian equations of motions that include all those – (1.1), (1.3) and (1.8) – reported
above, and we exhibit interesting examples of the Newtonian equations of motion (1.1)
and (1.3).
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This Hamiltonian reads

H(p, z) =
N∑

n=1

[ϕn(pn) gn(zn)] + F (z), (2.1)

hence it yields the Hamiltonian equations

żn = ϕ′
n(pn) gn(zn) , n = 1, ..., N, (2.2a)

ṗn = −ϕn(pn) g′n(zn)− ∂ F (z)
∂ zn

, n = 1, ..., N. (2.2b)

Here and throughout appended primes denote differentiations with respect to the argument
of the function they are appended to.
By t-differentiating the first, (2.2a), of these Hamiltonian equations and by then using

both of them one gets

z̈n =
{[

ϕ′
n(pn)

]2 − ϕ′′
n(pn)ϕn(pn)

}
g′n(zn) gn(zn)− ϕ′′

n(pn) gn(zn)
∂ F (z)
∂ zn

,

n = 1, ..., N. (2.3)

It is then clear that, via (2.2a), the assignment

ϕn(p) = cosh(p), gn(z) =
(
z2 + cn

)1/2 (2.4)

yields the Newtonian equation of motion (1.1), which is thereby shown to be implied by
the Hamiltonian (2.1) with (2.4).
To obtain the Newtonian equations of motion (1.8) (of which (1.3) are a subcase) we

set

gn(z) = z , n = 1, ..., N, (2.5)

as well as

ϕ′′
n(p)ϕn(p) =

[
ϕ′

n(p)
]2 + 2 i ω µn ϕ′

n(p) + (1− µ2
n)ω

2, n = 1, ..., N, (2.6a)

or equivalently

ϕ′′
n(p)ϕn(p) =

[
ϕ′

n(p) + i (1 + µn) ω
] [

ϕ′
n(p)− i (1− µn) ω

]
, n = 1, ..., N. (2.6b)

Each of these (decoupled) ODEs can be easily integrated once (after dividing out by the
right-hand side and by ϕn(p), and multiplying by ϕ′

n(p)), getting thereby

ϕn(p) =
[
ϕ′

n(p) + i (1 + µn) ω
] 1

2
(1+µn) [

ϕ′
n(p)− i (1− µn) ω

] 1
2
(1−µn)

,

n = 1, ..., N , (2.6c)

where, without significant loss of generality, we set to unity an a priori arbitrary multi-
plicative integration constant. This relation (2.6c) entails, via (2.6b) and again (2.6c), the
following (explicit) expression of ϕ′′

n(p) in terms of ϕ
′
n(p),

ϕ′′
n(p) =

[
ϕ′

n(p) + i (1 + µn) ω
] 1

2
(1+µn) [

ϕ′
n(p)− i (1− µn) ω

] 1
2
(1−µn)

,

n = 1, ..., N. (2.6d)
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And the insertion of (2.5), (2.6a) and (2.6d) in (2.3) yields, via (2.2a) with (2.5), precisely
(1.8), the Hamiltonian character of which is thereby demonstrated. Note that we managed
to do this without being generally able to provide an explicit expression of the functions
ϕn(p) (because the ODEs (2.6c) cannot be generally explicitly integrated).
Let us end this section by exhibiting two interesting instances of the Newtonian equa-

tions of motion (1.1) with (1.2) respectively (1.3) with (1.4).
The following choice of the function F (z) is consistent with the scaling property (1.2)

and it moreover entails that the right-hand side of the Newtonian equations of motion
(1.1) only feature two-body forces:

F (z) =
1
4

N∑
m,n=1,m�=n

K∑
k=1

g
(k)
nm

k (zn − zm)
2k

. (2.7a)

Indeed the corresponding Newtonian equations of motion (1.1) read

z̈n+ω2 zn =
[
ż2
n + ω2

(
cn + z2

n

)]1/2
N∑

m=1,m�=n

K∑
k=1

g
(k)
nm

(zn − zm)
2k+1

, n = 1, ..., N. (2.7b)

Here the “coupling constants” g(k)
nm are arbitrary (possibly complex ), except for the obvious

(see (2.7a)) symmetry property g(k)
nm = g

(k)
mn. The Hamiltonian that yields these Newtonian

equations of motion is of course given by (2.1) with (2.4) and (2.7a).
To provide a neat (and quite explicit, see below) example of (1.8), or rather of (1.3),

we note that, with the assignment µ = 1, the ODE (2.6c) can be solved to yield

ϕn(p) = 2 i ω + exp(p) , (2.8a)

where, without significant loss of generality, we set to unity the a priori arbitrary constant
multiplying the exponential in the right-hand side. Hence the corresponding Hamiltonian
(see (2.1) with (2.5)) can in this case be explicitly exhibited:

H(p, z) =
N∑

n=1

[2 i ω + exp(pn)] zn + F (z). (2.8b)

The corresponding Newtonian equations of motion read of course (see (1.3))

z̈n + 2 i ω żn = −żn
∂ F (z)
∂ zn

, n = 1, ..., N, (2.8c)

where the function F (z) must satisfy now the scaling property (1.4) with

ak = −k, k = 1, ...,K. (2.8d)

An assignment of F (z) that satisfies this condition and that moreover entails that the
right-hand side of these Newtonian equations of motion (2.8c) only feature two-body forces
reads

F (z) =
1
2

N∑
m,n=1,m�=n

K∑
k=1

g
(k)
nm

k (zn − zm)
k
. (2.9a)
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Indeed the corresponding Newtonian equations of motion (2.8c) then read

z̈n + 2 i ω żn = żn

N∑
m=1,m�=n

K∑
k=2

g
(k)
nm

(zn − zm)
k
, n = 1, ..., N. (2.9b)

Here the “coupling constants” g
(k)
nm are again arbitrary (possibly complex ), except for

the obvious (see (2.9a)) symmetry property g
(k)
nm = g

(k)
mn. Note that these Newtonian

equations of motion, (2.9b), are translation-invariant. They of course obtain from the
Hamiltonian (2.8b) with (2.9a). Note their similarity, as well as their difference, from the
(also Hamiltonian, and also isochronous) Newtonian equations of motion

z̈n− iΩ żn = żn

N∑
m=1, m�=n

żm

{
g
(0)
nm

zn − zm
+

L∑
�=1

g(�)
nm (zn − zm)

a�

}
, n = 1, ..., N, (2.9c)

where L is an arbitrary nonnegative integer (for L = 0 it is understood that the sum over
� be set to zero), the coupling constants g(j)

nm (j = 0, 1, ..., L; n,m = 1, ..., N) are arbitrary
(possibly complex ) except for the symmetry requirement g(j)

nm = g
(j)
mn, and also arbitrary

(possibly complex ) are the exponents a� (except for the obvious restriction a� �= −1): see
eq. (17b) of Ref. [12].

3 Isochronicity of the first class of dynamical systems

In this section we prove that the dynamical system characterized by the Newtonian equa-
tions of motion

z̈n + ω2 zn = − [
ż2
n + ω2

(
cn + z2

n

)]1/2
fn(z) , n = 1, ..., N (3.1)

is isochronous (in the sense defined above), provided the functions fn(z) are analytic in
their N arguments and satisfy the scaling property

fn(z) =
K∑

k=1

f (−2 k−1)
n (z) , n = 1, ..., N, (3.2a)

f (−2 k−1)
n (α z) = α−2 k−1 f (−2 k−1)

n (z) , n = 1, ..., N. (3.2b)

Clearly these Newtonian equations include as a subcase the Newtonian equations of motion
(1.1) with (1.2), to which they reduce if

f (−2 k−1)
n (z) =

∂ F (−2 k)(z)
∂ zn

, n = 1, ..., N. (3.3)

Note the consistency of these assignments with the scaling properties (1.2b) and (3.2b).
The starting point of the proof is the following change of (dependent and independent)

variables (“the trick”):

zn(t) = exp (−i ω t) ζn(τ) , n = 1, ..., N , (3.4a)
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τ =
exp(2 i ω t)− 1

2 i ω
, (3.4b)

which clearly implies the following relations among the “initial data” z(0), ż(0) and
ζ(0), ζ ′(0):

z(0) = ζ(0) , ż(0) = ζ ′(0)− i ω ζ(0) . (3.5)

We now note that the relation (3.4b) among t and τ implies that, as the real variable
t evolves over the half-period T

2 =
π
ω (see (1.6)), the complex variable τ travels in the

complex τ -plane counterclockwise full round over the circle C the diameter of which, of
length 1

ω , lies on the upper imaginary axis, with its lower end at the origin (τ = 0). Hence,
if the function ζn(τ) is a holomorphic function of the complex variable τ in the (closed)
disk D enclosed by that circle C, then (see (3.4)) the function zn(t) has the periodicity
(indeed, the isochronicity) properties (1.7a). We now obtain the evolution equations (see
(3.6) below) satisfied by the functions ζn(τ) that correspond via (3.4) to the Newtonian
equations of motion (1.1), and we then show that, under the hypotheses indicated above
(see in particular (3.2)), these evolution equations imply that there exists an open set of
initial data ζ(0), ζ ′(0) (corresponding via (3.5) to an open set of initial data z(0), ż(0))
such that the functions ζn(τ) are holomorphic in a circular disk of arbitrarily large radius
centered at the origin (τ = 0) in the complex τ -plane, hence a fortiori in the closed disk
D.
The evolution equations satisfied by the functions ζn(τ) are easily obtained from (1.1)

with (3.2) via (3.4):

ζ ′′n = −
[
ω2 cn − 2 i ω ζ ′n ζn + (1 + 2 i ω τ)

(
ζ ′n

)2
]1/2 ·

·
K∑

k=1

(1 + 2 i ω τ)k−1 f (−2 k−1)
n

(
ζ
)
, n = 1, ..., N. (3.6)

To make contact with the standard notation (see in particular Section 12.21 of [25]), we
now set

wn(τ) =
ζn(τ)− ζn(0)

α
, wN+n(τ) =

ζ ′n(τ)− ζ ′n(0)
β

, n = 1, ..., N , (3.7)

where α and β are two positive constants (that we shall conveniently assign below). Note
that this definition of the quantities w�(τ) entails that they vanish at the origin,

w�(0) = 0, � = 1, ..., 2N. (3.8)

Via this definition (3.7) the second-order (N -vector) ODE (3.6) gets reformulated as
the following first-order system of 2N coupled ODEs:

w′
n = ϕn , w′

N+n = ϕN+n , n = 1, ..., N , (3.9)

with

ϕn =
β

α
(vn + wN+n) , n = 1, ..., N , (3.10a)
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ϕN+n = −α− 5
2 β− 1

2

{
ω2 cn

αβ
− 2 i ω (rn + wn) +

β

α
(1 + 2 i ω τ) (vn + wN+n)

2

} 1/2

·

·
K∑

k=1

(1 + 2 i ω τ)k−1 α2 (1−k) f (−2 k−1)
n (rm + wm) , n = 1, ..., N , (3.10b)

where we did also conveniently set

ζn(0) = α rn , ζ ′n(0) = β vn , n = 1, ..., N , (3.11)

and we took advantage of the scaling relations (3.2b). Note that, for notational conve-
nience, in the right-hand side of (3.10b) we replaced the N -vector argument r + w of the
functions f

(−2 k−1)
n with its components rm+wm (on the understanding that the index m

always ranges from 1 to N).
We now use the Theorem [25] according to which the 2N functions wj(τ) are holomor-

phic in τ (at least) in a circular disk, centered in the complex τ -plane at the origin (τ = 0,
where the initial conditions (3.8) are assigned), the radius ρ of which is bounded below by
the formula

ρ ≥ ϑ

{
1− exp

[
− w

(2N + 1)ϑM(ϑ,w)

]}
, (3.12)

where the positive quantities ϑ and w are characterized by the requirement that the 2N
functions ϕ� ≡ ϕ�(τ ;w1, ..., w2N ), � = 1, ..., 2N (see (3.10)) be holomorphic in the 2N +1
variables τ and wj , j = 1, ..., 2N provided

|τ | ≤ ϑ; |wj | ≤ w, j = 1, ..., 2N, (3.13)

and the positive quantity M(ϑ,w) is defined by the formula

M(ϑ,w) = max
|τ |≤ϑ; |wj |≤w,j=1,...,2 N ; �=1,...,2 N

|ϕ�(τ ;w1, ..., w2N )| . (3.14)

Note that the lower bound (3.12) holds of course a fortiori if we overestimate the quantity
M(ϑ,w), as we shall indeed do in the following.
We now set (for instance)

α = ε−4, β = ε2, ϑ = ε−1, (3.15a)

and we hereafter treat the quantity ε as very small but finite,

ε ≈ 0; (3.15b)

we moreover assume the 2N quantities rn and wn, see (3.11), to be bounded (in modulus)
above and below as follows:

2w < |rn| < r, 2w < |vn| < v. (3.16)

It is then clear that the argument of the square root in the right-hand side of (3.10b)
is guaranteed not to vanish for |τ | ≤ ϑ (as required for the applicability of the The-
orem [25], namely for the validity of (3.12)), since, in the limit (3.15), it tends to the
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value −2 i ω (rn + wn) (vn+wN+n), that certainly does not vanish (see (3.16) and (3.13)).
Moreover, in the same limit (3.15) we clearly get (see (3.13) and (3.16))

M(ϑ,w) ≤ ε2 (v + w) . (3.17)

Note that, in order for (3.12) to be applicable [25], we must moreover be sure that the
functions f

(−2 k−1)
n (rm + wm) are holomorphic for |wm| ≤ w, m = 1, ..., N ; but this is

certainly the case for sufficiently small w, see (3.13), provided the initial data z(0) – as we
of course assume – are assigned where the Newtonian equations of motion (3.1) are not
singular (see (3.2), (3.5) and (3.11)).
Insertion of the third relation (3.15a), and of (3.17), in (3.12) implies that, in the limit

(3.15b),

ρ ≥ ε−1, (3.18)

namely that the functions wn(τ), hence as well the functions ζn(τ) (see (3.7)), are holo-
morphic in a circular disk centered at τ = 0, the radius of which can be made arbitrarily
large by an appropriate assignment (see (3.11) with (3.15) and (3.16)) of the initial data
ζ(0), ζ ′(0) (hence as well of the initial data z(0), ż(0); see (3.5)) in an appropriate open
domain. The result we set out to prove is thereby established.
Let us end this section by noting that the proof given herein entails (see (3.11) with

(3.15), and (3.5)) that the domain of initial data z(0), ż(0) that yield isochronous solutions
of the Newtonian equations of motion (3.1) with (3.2) is characterized by very large (in
modulus) values of the initial data z(0), ż(0), with

ż(0) ≈ −i ω z(0). (3.19)

4 Isochronicity of the second class of dynamical systems

In this section we prove that the dynamical system characterized by the Newtonian equa-
tions of motion

z̈n + 2 i µn ω żn + (1− µ2
n)ω

2 zn

= − [żn + i (1 + µn)ω zn]
1
2
(1−µn) [żn − i (1− µn)ω zn]

1
2
(1+µn) fn(z) ,

n = 1, ..., N, (4.1a)

where the N constants µn are rational numbers, is isochronous (in the sense defined
above), provided the functions fn(z) are analytic in their N arguments and satisfy the
scaling property

fn(z) =
K∑

k=1

f (a1k,...,ank−1,...,aNk)
n (z) , n = 1, ..., N, (4.1b)

f (a1k,...,ank−1,...,aNk)
n (α1 z1, ..., αN zN )

=

[
N∏

m=1

(αm)
amk

] 1
N

α−1
n f (a1k,...,ank−1,...,aNk)

n (z) ,

n = 1, ..., N, k = 1, ...,K , (4.1c)
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with the quantities ank satisfying of course the condition (1.9c). And the N K inequalities
(1.10) are moreover required to hold.
Clearly these Newtonian equations include as a subcase the (Hamiltonian: see Section

2) Newtonian equations of motion (1.8), to which they reduce if

fn(z) =
∂ F (z)
∂ zn

, n = 1, ..., N. (4.2)

Note the consistency of the scaling properties (4.1b), (4.1c) and (1.9a), (1.9b) with this
relation (4.2).
The proof is of course analogous to that given in the preceding section, yet sufficiently

different to deserve a separate presentation, which can however be quite terse, see below.
The change of variables we now use reads

zn(t) = exp [−i (1 + µn) ω t] ζn (τ) , n = 1, ..., N, (4.3)

with the relation among the independent variables t and τ given again by (3.4b). Hence
the relation among the initial data reads now as follows:

zn(0) = ζn(0), żn(0) = ζ ′n(0)− i (1 + µn) ω ζn (0) , (4.4)

and the ODEs satisfied by the functions ζn(τ) read

ζ ′′n = −
K∑

k=1

(1 + 2 i ω τ)k−1 [
ζ ′n

] 1
2
(1+µn) ·

· [−2 i ω ζn + (1 + 2 i ω τ) ζ ′n
] 1

2
(1−µn)

f (ank)
n

(
ζ
)
, (4.5)

where we took of course advantage of the scaling relations (4.1) with (1.9c), and of the
relation (3.4b) among t and τ .
We now proceed in close analogy to the treatment of the preceding section by setting

ζn(τ) = αn [rn + wn(τ)] , ζ ′n(τ) = βn [vn + wN+n(τ)] , (4.6)

where the quantities αn, βn are positive scaling constants the choice of which remains our
privilege, and we utilized again the assignments (3.11). We thereby conclude, via the
assignments

αn = εAn , βn = εBn , ϑ = ε−1, ε ≈ 0, (4.7)

that our result is proven provided a choice of the 2N arbitrary exponents An, Bn can be
made such that there hold the following N (K + 1) inequalities:

Bn ≥ An + 1, n = 1, ..., N, (4.8a)

1
2
An (1− µn)− 1

2
Bn (3− µn) + 1− k +

1
N

N∑
m=1

Am amk ≥ 0,

n = 1, ..., N, k = 1, ...,K. (4.8b)
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To simplify matters we then replace the inequality (4.8a) with an equality, namely we set

Bn = An + 1, n = 1, ..., N, (4.8c)

and we note that the inequalities (4.8b) become then the N K inequalities (1.10).
This concludes our outline of the proof of the isochronicity of the Newtonian equa-

tions of motion (4.1), confirming the findings reported in Section 1. The period of the
isochronous motions is of course an integer multiple (coinciding generally with the mini-
mum common multiple of the denominators of the rational numbers µn) of the basic period
T
2 =

π
ω (see (4.3) and (3.4b)). And note moreover that (4.8c) with (4.7), via (3.11) and

(4.4), imply that the domain of initial data out of which isochronous motions emerge is
characterized by the condition

żn(0) ≈ −i (1 + µn) ω zn (0) , (4.9)

with zn (0) very large (in modulus) if the corresponding An (see (1.10)) is negative, very
small (in modulus) if the corresponding An (see (1.10)) is positive.

5 Final remarks

In this section we reiterate some considerations analogous to those proffered in the last
section of [12].

The findings reported in this paper are mainly based on the simple trick (3.4). Although
some of the results reported in this paper might also be proven by standard “Poincaré-
Dulac” techniques (see for instance [22] [27] [23] [28] [24], as well as the discussion of
this issue in the last section of [16]), the effectiveness of this trick is demonstrated by the
generality of the results reported above, as well as by the ease with which they have been
proven – including moreover the possibility to obtain explicit bounds on the size of the
open domain of initial data that yield isochronous outcomes: see the proof given in the
preceding two sections (although we did not insist there on this aspect, being satisfied
with demonstrating the existence of such an open domain of initial data).

The main result of this paper is the demonstration of the Hamiltonian character of
the isochronous Newtonian equations of motion (1.1), (1.3) and (1.8). Let us recall that
Hamiltonian systems with N degrees of freedom are, loosely speaking, completely inte-
grable if they feature N functionally independent and globally defined constants of mo-
tion (including the Hamiltonian itself) that Poisson-commute among themselves; they are
superintegrable if they feature N − 1 additional functionally independent and globally de-
fined constants of motion. All the confined motions of such superintegrable Hamiltonian
systems (that, loosely speaking, can be likened to one-degree-of-freedom Hamiltonian sys-
tems) are completely periodic, although not necessarily isochronous, since the period may
depend on the initial data. Note that, for a many-degree-of-freedom system, the exis-
tence of completely periodic (rather than multiply periodic) motions is quite a nontrivial
phenomenon.
It is also useful to introduce the notion of partially integrable (and partially super-

integrable) Hamiltonian systems, to include the possibility that a system feature these
properties only in a “part” of its (natural) phase space. Of course for this notion to be
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reasonable it is required (at least as long as consideration is restricted to autonomous
Hamiltonian systems, as indeed done above) that this part of the phase space remain
invariant throughout the evolution, namely that all motions originating from it always
remain in it. Hence this distinction among integrable (or superintegrable) and partially
integrable (or partially superintegrable) Hamiltonian systems is moot if one includes in the
very definition of a Hamiltonian system the domain in phase space in which it is supposed
to live, rather than relying on the natural definition of the entire phase space.
As noted above, a superintegrable Hamiltonian system, as long as it only produces

confined motions, always yields completely periodic evolutions, which however need not be
isochronous. Hence superintegrability does not entail isochronicity ; while the converse, at
least loosely speaking, is clearly the case, namely isochronicity does entail superintegra-
bility. Therefore the Hamiltonian systems considered in this paper, characterized by the
Hamiltonian (2.1) with (2.4) respectively with (2.5) and (2.6), and by the Newtonian equa-
tions of motion (1.1) respectively (1.8), should be considered superintegrable, or at least
partially superintegrable to the extent these two notions are distinct. This underscores the
remarkable character of the findings reported above.
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