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Abstract

Every smooth second-order scalar ordinary differential equation (ODE) that is solved
for the highest derivative has an infinite-dimensional Lie group of contact symmetries.
However, symmetries other than point symmetries are generally difficult to find and
use. This paper deals with a class of one-parameter Lie groups of contact symmetries
that can be found and used. These symmetry groups have a characteristic function
that is invariant under the group action; for this reason, they are called ‘self-invariant.’
Once such symmetries have been found, they may be used for reduction of order; a
straightforward method to accomplish this is described. For some ODEs with a one-
parameter group of point symmetries, it is necessary to use self-invariant contact
symmetries before the point symmetries (in order to take advantage of the solvability
of the Lie algebra). The techniques presented here are suitable for use in computer
algebra packages. They are also applicable to higher-order ODEs

1 Introduction

A second-order scalar ordinary differential equation (ODE) of the form

y' =w(z,y,y) (1.1)
can be solved (that is, reduced to quadrature) if its Lie algebra £, of point symmetry
generators has dimension two or more. (The ways in which this can be done are described
in many texts [2, 4, 9, 12, 13, 17, 18, 20].) If the dimension of £, is less than two, there
is no guarantee that a reduction to quadrature can be found; however, the ODE may be
solved in any of the following circumstances.

1. A contact transformation is known that maps (1.1) to a solvable ODE. (At present,
there is no systematic way of finding such transformations.)

2. The ODE (1.1) has nonlocal potential symmetries relating it to a solvable ODE [2].
3. The ODE has a one-parameter Lie group of variational point symmetries.

4. The Lie algebra is one-dimensional, enabling (1.1) to be reduced to a first-order
ODE, and the reduced ODE can be solved by using new symmetries (which are
called Type II hidden symmetries [1]).
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Even if none of the above apply, the problem may still be tractable, because every
scalar ODE (1.1) has infinitely many independent one-parameter Lie groups of contact
symmetries [16]. If it is possible to find enough of these groups, they can be used to
construct the solution. Two such groups are sufficient, provided that differential invariants
and canonical coordinates can be constructed; this proviso is the chief obstacle to the use
of contact symmetries that are not point symmetries.

Contact symmetries of higher-order ODEs and scalar partial differential equations
(PDESs) can be found systematically, but it is not usually possible to find even one contact
symmetry of (1.1) by inspection. The problem is similar to that of finding point symme-
tries of first-order ODEs (as discussed in [5, 11]). The classification of all real Lie groups
of contact symmetries that act on the (x,y) plane has been completed recently [8]. This
classification holds up to equivalence under contact transformations; however, it does not
enable one to construct a contact transformation that reduces (1.1) to a simpler form.

The current paper outlines a method for testing a given ODE (1.1) for the presence of
Lie contact symmetries whose characteristic function is invariant under the group action.
These self-invariant contact symmetries and their differential invariants and canonical
coordinates may be constructed systematically.

Note that this paper deals only with scalar ODEs; contact symmetries of systems of
ODEs are discussed in [7] and the references therein.

2 Contact symmetries of second-order ODEs

Sophus Lie devoted much effort to investigating contact transformations [14], but much of
his work is not yet well-known.! Therefore we begin by stating some useful facts about Lie
contact symmetries of (1.1). A one-parameter (local) Lie group of contact transformations
of some domain in (z,y,1’) space is a set of smooth transformations

&=+ ek(z,y,y) + O(?),
j=y+en(z,y,y)+O0(),
7 =y +enV(z,y,y) +O(?),

defined for all € in some symmetric neighbourhood of zero, where the contact condition
requires that

wm_ dn_,d§

= . 2.1
dx ydx (2.1)

Note that 71 is independent of 3", and so (2.1) yields

Thy! — ylfy’ =0.

(Throughout this paper, variable subscripts denote partial derivatives with respect to that
variable.) Tt is helpful to use the characteristic function

Qz,y,y) =n—y'¢

!Some of Lie’s results are summarized in English in [3].
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in terms of which
E=—Qp. 1=Q-yQy, 1V=Q:+yQy
The action of the Lie group extends to higher derivatives:
7% =y W 4 en® (@, y, ...,y W) + 0,
where

k—1 k
g0 = gy de Qg
dz dz dzk Y

The infinitesimal generator of the Lie group is
X = €0, + 10y,

and the action of the group on derivatives of order k or less is generated by the k'
prolongation of the generator, namely

X® = €0, + 19y + Mo, +-- + n(k)c‘?y(m.

Transformations in the Lie group are contact symmetries of (1.1) if and only if
X (y —w(2,y,y)) =0 when y"=w(z,y,y),
which amounts to the following constraint on Q:

Quz + QQIsz + y/Qny + (QQa:y/ + 2y,ny’ + Qy)w + Qy’y’w2
= _Qy’wz + (Q - y,Qy’)wy + (Qw + y/Qy)wy“ (2'2)

For any given smooth w(z,y,y’), the symmetry condition (2.2) has infinitely many non-
trivial solutions, any one of which may be used (in principle) to reduce the ODE to one of
first order. There are two main difficulties, the first of which is to find a solution of (2.2).
Usually, attention is restricted to point symmetries, for which £ and 7 are independent of
y'. Then the ansatz

Qz,y,y') = n(z,y) — y'&(z,y)

is substituted into (2.2), and powers of y are equated to obtain an overdetermined system
of PDEs for ¢ and n; it is usually straightforward to solve this system. If the Lie point
symmetries of (1.1) are insufficient to solve the ODE, one can try an ansatz with Q
nonlinear in y’. To have a good chance of success the ansatz should not be too restrictive,
but (generally speaking) the more restrictive the ansatz, the easier it is to calculate @
from (2.2). The ansatz for point symmetries achieves a good balance between generality
and calculability.

The second difficulty lies in finding two independent first order differential invariants
r(z,y,y') and v(x,y,y") with which to reduce the ODE. These differential invariants satisfy

XWp =0, XMy =0, (2.3)
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where

XW = —Qyds +(Q — y'Qy)dy + (Qu +y'Qy)y. (2:4)

Although (2.3) can be solved in principle by the method of characteristics, the character-
istic equations

de dy dy/
_Qy’ Q — y,Qy’ Qz + y/Qy
are typically hard to solve. An advantage of using point symmetries is that the first
equation in (2.5) can be solved before the second one; this yields a differential invariant r
(that is independent of y’) which can assist in the calculation of v.

Writing the ODE (1.1) in terms of the differential invariants, we obtain a first-order
ODE of the form

(2.5)

= Q(r,v). (2.6)

The general solution of (2.6) is a first-order ODE
F (T(ZL',y, y/)>v($aya y/);Cl) = 07 c1 constant, (27)

that is invariant under the group generated by X. If this group consists of point symme-
tries, (2.7) is solved by introducing a canonical coordinate s(x,y) such that

Xs=1.

Then v(z,y,y’) is a function of r(x,y) and % only, and so (2.7) can be written (locally)
in the form

ds
E = f(T;Cl)7

and solved by quadrature. A similar approach works for (non-point) contact symmetries.
Here the canonical coordinate is of the form s(x,y,y’), and satisfies

XWg=1. (2.8)
Direct computation shows that
ds
2)=2 _
dr ’
and therefore there is some function ® such that

b _g ( @) | (2.9)

X

dr dr

If (2.7) is solvable for either r or v, then (2.6), (2.7) and (2.9) can be combined to determine
s by quadrature. Generally speaking, the solution to (1.1) will be given in parametric form;
in some cases, the parameters can be eliminated to obtain the general solution in the form

G(.T, Y; 1, 62) = O)

where ¢1, co are arbitrary constants (see [6] for details of parameter elimination algorithms).
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3 Self-Invariance

In view of the difficulty of finding differential invariants of non-point Lie contact sym-
metries, we restrict attention to symmetries whose characteristic function Q(z,y,y’) is
invariant under the group action. The idea is that having found one differential invariant,
r(z,y,y') = Q, it is easier to find v(z,y,y’) and s(x,y,y’). The characteristic function is
invariant if and only if

xWQ =QQ, =o0.

To be of any use, the symmetry group must be non-trivial, so we ignore the trivial solution
@ = 0 and describe Lie contact symmetries as self-invariant if Q, = 0. For self-invariant
contact symmetries, the condition (2.2) reduces to

Quz + Qwa’w + Qy’y’w2 = _Qy’wx + (Q - y/Qy’)wy + way’- (3-1)

This symmetry condition can be decomposed into an overdetermined system by equating
powers of y, provided that w, # 0. Subject to this proviso, the self-invariant contact
symmetries can be calculated explicitly. If w, = 0, the ODE is immediately reducible to
a first-order ODE for z = y/; henceforth, we assume that w, # 0.

Once @ has been found, v and s are determined from the following results. If Q,» # 0
then solve Q = Q(xz,y’) for ¢ and calculate

¥(r,Q) = /y’(x, Q) dz, (3.2)

treating () as a parameter. Even if a closed-form solution cannot be found, ¥ can be
determined as a power series if @ is locally analytic in y'.

Theorem 1. Given a self-invariant contact symmetry group with Q. # 0, define ¥
according to (3.2), and let

r=Q, v="U—-Q¥qg —v, s=—-Ugp, (3.3)
writing v and s in terms of (x,y,y’). Then

X(l)r:(J, X(1>v:0, XWg=1.
Proof. Apply X to each of r,v and s in turn, and use the chain rule. |

In some instances, it is easier to solve @ for x instead of 3y/. Then it is possible to construct
v and s by defining

oy, Q) = /fﬂ(y’, Q)dy’. (3.4)

Theorem 2. Given a self-invariant contact symmetry group with Q. # 0, define © ac-
cording to (3.4), and let

r=Q, v=0Q00+ YO, -0 —y, s = 0, (3.5)
writing v and s in terms of (x,y,y’). Then

X(l)'r’:0, X(l)v:O, XWg=1.
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Proof. The proof is the same as in the previous theorem. |

Note that in each theorem r and v are functionally independent differential invariants.
With either of the above choices of (7, v, s), a straightforward calculation shows that (2.9)
amounts to

ds 1dv
_—=—-—, (3.6)
dr rdr
and so (2.7) can be reduced to quadrature if it can be solved for r or v. For completeness,
note that the only remaining case is () = 1, which yields point symmetries with
_ds
o v
Having found generators of self-invariant contact symmetries (and possibly of a one-
parameter group of point symmetries as well), it is straightforward to determine the struc-
ture of the minimal Lie algebra, £, that contains the known generators. So far, we have
focused on characteristic functions, rather than on the generators which are determined
by (2.4). The structure of £ may be found directly from the characteristic functions, using
the following result:

(X1, Xo] = X3 & Q3= (Qiz+ Y Q1y)Q2y + Q1Q2y — (Q2z + Y Q2y) Q1y — Q2Q1y -

(Here characteristic functions and their corresponding generators are labelled by the same
suffix.) With a slight abuse of notation, define the commutator of @1 and Q3 to be

[Q1,Q2] = (Q1z + V' Qiy)Q2y + Q1Q2y — (Q2z + Y Q2y) Q1y — Q2Q1y - (3.7)

The set of characteristic functions of all infinitesimal generators in a given Lie algebra
inherit the structure of that Lie algebra, and so it is possible to examine solvability directly,
without having to construct the infinitesimal generators.

Suppose that @1 and Q2 both generate self-invariant contact symmetries (in (z,y,y’)
coordinates). Then (3.7) simplifies to

[le QQ] = leQ?y’ - QQJ}Qly’- (38)

The commutator of ()1 and ()5 is independent of y, and therefore the set of all Lie contact
symmetries that are self-invariant in a particular coordinate system forms a Lie algebra.
In particular, self-invariant contact symmetries commute if and only if their characteristic
functions are functionally dependent.

r=x, s =1, v

4 Example
To illustrate the method, consider the ODE
1 AN 2
"— ol 4 (In(y’) —2)y _ (4.1)

y—y

The only Lie point symmetries of (4.1) are those whose characteristic function is

Q=y—y.
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The differential invariants of the group whose characteristic function is @)1 are r; = e~ %y
and v; = y'/y. Writing (4.1) in terms of (r1,v1) yields the first order ODE
dUl _ ’U%{l — ln(rlvl)} _ ﬂ’ (4.2)

d—rl 7'1(1 — 01)2 (&

which seems to be intractable.

Having failed to solve (4.1) using its point symmetries, we now seek self-invariant
contact symmetries. Substituting the right-hand side of (4.1) for w in the symmetry
condition (3.1), then equating powers of (y — v'), yields the following overdetermined
system of PDEs:

Quz + Qy/Q:cy’ + y/QQy’y’ =Qq, (4.3)
y/2{1n(y/) - x} (wa’ + ley’y’) = y/ {ln(y/) — T — %} Qa: + %?/2 Qy’v (4-4)
yl2{1n(y/) - x}Qy’y/ = Qm + y/Qy’ - Q

Generally speaking, it is easiest to solve this type of system with the aid of computer
algebra. Reliable packages are available that will reduce overdetermined systems of PDEs
to a differential Grébner basis that is far easier to solve than the original system [15, 19].
However, our example is easily solved by hand, because (4.3) can be factorized into

o 1 0\2
(3 yaw) @=°

Therefore the general solution of (4.3) is
Q=yF (ln(y') — ;U) +G (ln(y') — ;r) , (4.6)

where F' and G are arbitrary functions. Substituting (4.6) into (4.4) and (4.5) yields the
results

Fz) =0, (4.7)
G'(2) - G'(2) + %G(z) ~0. (4.8)

Thus the Lie algebra of self-invariant characteristic functions is two-dimensional and is
spanned by

In(y')—=z
Qo =In(y') — =, Q3 = {In(y') — l‘}/ 2z 2e* dz.
Note that Q3 is a function of ()2, so Span(Q2, Q3) is abelian. Furthermore

[Q17Q2] = _Q27 [Q17Q3] = _Q3>

so L = Span(Q1,Q2,Q3) is a solvable non-abelian Lie algebra. The reduction of order
using the point symmetries generated by ()1 is non-normal, and it is common for non-
normal reductions of order to produce ODEs as apparently intractable as (4.2). To avoid
this problem, either Qs or Q3 should be used first; we use ()2, as it is in closed form.
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Differential invariants corresponding to self-invariant contact symmetries are found by
the method outlined earlier. Here ¥(x, Q) = exp(x + @), and therefore

r=In(y") —x, v={l+z—-In(y)}y —y, s=—y. (4.9)
Then (4.1) reduces to the first order ODE

dv

_— = 4.10

ar (4.10)

which inherits the symmetries generated by ()1 as scalings in v. The general solution of
(4.10) is

v=cre,

where ¢; is an arbitrary constant. Therefore, from (3.6), we obtain
T
5= 01/ 27 le* dz + o,

where ¢y is a second arbitrary constant. Substituting these results into (4.9) yields the
general solution of (4.1) in parametric form:

z=1In (—01 / 2l dr — 02> -, (4.11)

y=(r—1) (cl/ 2 lefdz + 62> —cre’. (4.12)

5 Conclusions

The method of finding and using self-invariant contact symmetries is easy to use, and can
yield solutions to ODEs that are not solvable by other means. It is capable of implemen-
tation as a computer algebra program; the development of such a program would enhance
existing symmetry-finding software (see [10] for a review).

The point of view taken in this paper is that the standard method of finding Lie
point symmetries amounts to substituting a good ansatz into the symmetry condition
(2.2). Here ‘good’ means that an appropriate balance is struck between generality and
calculability. The set of all possible Lie point symmetries is characterized by two functions
of two variables, £(x,y) and n(z,y), whereas the set of all possible self-invariant contact
symmetries is characterized by a single function of two variables, namely Q(x,y’). Thus
the self-invariant contact symmetries are less general than point symmetries. However,
in view of the difficulty of performing symmetry reduction with non-point Lie groups, it
is perhaps surprising that such a rich class of symmetries should be both calculable and
usable. We have focused on second-order ODEs, but the results of Theorems 1 and 2 can
also be used to solve higher-order ODEs that have self-invariant contact symmetries.
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