
Journal of Nonlinear Mathematical Physics Volume 11, Number 3 (2004), 376–398 Article

Normal Forms for Coupled Takens-Bogdanov

Systems

David Mumo MALONZA

Department of Mathematics, Iowa State University, Ames, Iowa, 50011
E-mail: dmalo@iastate.edu

Received February 24, 2004; Accepted April 27, 2004

Abstract

The set of systems of differential equations that are in normal form with respect to
a particular linear part has the structure of a module of equivariants, and is best
described by giving a Stanley decomposition of that module. In this paper Groebner
basis methods are used to determine a Groebner basis for the ideal of relations and a
Stanley decomposition for the ring of invariants that arise in normal forms for Takens-
Bogdanov systems. An algorithm developed by Murdock, is then used to produce a
Stanley decomposition for the (normal form module) module of the equivariants from
the Stanley decomposition for the ring of invariants.

1 Introduction

A coupled Takens-Bogdanov system has the form




ẋ1

ẏ1
...
ẋn
ẏn


 =




N2

N2

. . .
N2

N2







x1

y1
...
xn
yn


 + · · · .

That is,

ẋ = N22...2x+ · · · , (1.1)

where x ∈ R
2n, N22...2 =



N2

N2

. . .
N2


, N2 =

[
0 1
0 0

]

and the dots denote higher order terms. Such systems can arise from physical problems
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in various ways. For instance, Sri Namachchivaya et al. in [14] have studied a general-
ized Hopf bifurcation with nonsemisimple 1:1 resonance having an equilibrium point with
linear part governed by the matrix

A =



iω 1

iω
−iω 1

−iω


 .

The normal form for such a system contains only terms that belong to both the semisimple
part of A and the normal form of the nilpotent part, which is a coupled Takens-Bogdanov
system with N22. This example illustrates the physical significance of the study of normal
forms for systems with nilpotent linear part. In this paper we study coupled Takens-
Bogdanov systems with an arbitrary number of 2× 2 blocks.

The problem of finding Stanley decompositions for the equivariants of N22...2 was first
solved by Richard Cushman, Jan Sanders and Neil White [4] using a method called “co-
variants of special equivariants.” Their method begins by creating a scalar problem that
is larger than the vector problem and their procedures are derived from classical invariant
theory. The method presented here is considerably simpler since it begins by studying
a scalar problem (the problem of invariants) that is smaller and simpler than the vector
problem (of equivariants). When the scalar problem has been solved, our approach makes
it unnecessary to repeat the calculations of classical invariant theory at the level of equiv-
ariants. Instead an algorithm is given by Murdock [9] (through the construction of suffixes
and their prefix rings) that converts a Stanley decomposition of the invariant ring into
Stanley decomposition of the module, the normal form module.
Our method also relies on the application of methods from classical invariant theory

to a scalar problem. The entire scalar algebra that we use is relevant to the problem of
equivariants because it is just the ring over which the equivariants form a module. (The
algebra studied in [4] is too large since it contains many polynomials having nothing to do
with the equivariants.) Although our algebra does not seem to be isomorphic to a classical
bracket algebra, it is very close, and we have studied it “from scratch” by Groebner basis
methods rather than by borrowing classical results. It is hoped that these methods will
extend to other examples, such as N33···3 or N44···4. Even though the method of covariants
of special equivariants could be applied to these problems it does not lead to an algebra
that is recognizable in classical terms, so one cannot immediately carry out the program of
[4] for these problems. It would be necessary to study the algebra “from scratch,” which
would be more difficult than studying the algebra of invariants needed for our method.
Our results are based mainly on the work by Murdock in [9, 10], that is the application

of Murdock’s methods for computing Stanley decompositions for equivariants of nilpotent
systems. In section one we put together some background knowledge, without proofs, for
understanding the content of this paper. In section two which forms the central part of
this paper, we use Groebner basis methods to compute a Groebner basis for the ideal of
relations among the basic invariants and compute a Stanley decomposition for the ring of
invariants. The concept of partially ordered set ring is used to develop an easy method
to write down a Stanley decomposition when a Groebner basis for the ideal of relations is
large. In section three we apply Murdock’s algorithm to find the Stanley decomposition
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for the module of equivariants from the Stanley decomposition of the ring of invariants.
The basis for normal form theory, which is well known, can be found in [3] or [10].
I thank James Murdock and Alexander Burstein for their valuable suggestions and

comments.

2 Invariants and Equivariants

Let Pj(Rn,Rm) denote the vector space of homogeneous polynomials of degree j on R
n

with coefficients in R
m, where R denotes the set of real numbers. Let P(Rn,Rm) be the

vector space of all such polynomials of any degree and let P∗(Rn,Rm) be the vector space
of formal power series. If m = 1, P∗(Rn,R) becomes a ring of (scalar) formal power series
on R

n. If f ∈ Pi(Rn,R) and v ∈ Pj(Rn,Rm), then fv ∈ Pi+j(Rn,Rm), making P∗(Rn,Rm)
a module over P∗(Rn,R). In the same way P(Rn,Rm) is a module over P(Rn,R). From
the viewpoint of smooth vector fields it is most natural to work with formal power series,
but since in practice these must be truncated at some degree, it is sufficient to work with
polynomials.

For any nilpotent matrix, N, define the Lie operator

LN : Pj(Rn,Rn)→ Pj(Rn,Rn)

by

(LNv)x = v′(x)Nx−Nv(x) (2.1)

and define the differential operator

DNx : Pj(Rn,R)→ Pj(Rn,R)

by

(DNxf)(x) = f ′(x)Nx = (Nx.�)f(x). (2.2)

Then DN is a derivation of the ring P(Rn,R), meaning that

DN (fg) = (DNf)g + f(DNg). (2.3)

In addition

LN (fv) = (DNf)v + fLNv. (2.4)

Recall that, if v is a vector field and f is a scalar field, then Dv(x)f is a scalar field called
the derivation of f along (the flow of) v(x). We write DN for DNx to denote the derivation
along the linear vector field Nx.

A function f is called an invariant of (the flow of) Nx if
∂

∂t
f(eNtx)|t=0 = 0 or equiva-

lently f ∈ kerDN . Since

DN (f + g) = DNf +DNg (2.5)
DN (fg) = fDNg + gDNf, (2.6)
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it follows that, if f and g are invariants, then so are f+g and fg; that is, kerDN is both a
vector space over R and also a subring of P(Rn,R), known as the ring of invariants. Simi-
larly a vector field v is called an equivariant of (the flow of) Nx if ∂

∂t(e
−Ntv(eNtx))|t=0 = 0,

that is, v ∈ kerLN .

A vector space N ⊂ P(Rn,Rn) is called a normal form style if

P(Rn,Rn) = im LN ⊕N . (2.7)

There are two normal form styles in common use for nilpotent systems, the inner product
normal form and the sl(2) normal form. The inner product normal form is defined by
P(Rn,Rn) = im LN⊕ker LN∗ , where N∗ is the conjugate transpose of the nilpotent matrix
N . It follows from (2.4), applied to N∗, that ker LN∗ is a module over ker DN∗ . This is
the inner product normal form module.
To define the sl(2) normal form one firstly sets X = N and constructs matrices Y and

Z such that

[X,Y ] = Z, [Z,X] = 2X, [Z, Y ] = −2Y. (2.8)

An example of such an sl(2) triad {X,Y, Z} is

X =



0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 , Y =



0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0


 , Z =



1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


 . (2.9)

Having obtained the triad {X,Y, Z} one can create two additional triads {X,Y ,Z} and
{X,Y,Z} as follows:

X = DY , Y = DX , Z= DZ (2.10)

and

X = LY, Y = LX, Z = LZ. (2.11)

The first of these is a triad of differential operators and the second is a triad of Lie
operators. Both the operators {X,Y ,Z} and {X,Y,Z} inherit the triad properties (2.8);
that is,

[X,Y ] = Z, [Z,X] = 2X, [Z,Y ] = −2Y (2.12)

and

[X,Y] = Z, [Z,X] = 2X, [Z,Y] = −2Y. (2.13)

The name sl(2) normal form style results from the fact that {X,Y, Z} span a Lie algebra
of n×n matrices isomorphic to the Lie algebra sl(2). Observe that the operators {X,Y,Z}
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map each P(Rn,Rn) into itself. It then follows from Theorem 1 and the representation
theory of sl(2) in [5] that

P(Rn,Rn) = im Y ⊕ ker X = im X ⊕ ker Y. (2.14)

Clearly the ker X is a subring of P(Rn,R), the ring of invariants and it follows from (2.4)
that ker X is a module over this subring. This is the sl(2) normal form module. In this
paper we are concerned only with the sl(2) normal forms.

Let N : V → V be nilpotent. A lower Jordan chain for N of length � is an ordered
sequence of � nonzero vectors of the form {v,Nv,N2v, . . . , N �−1v} with N �v = 0 and
v /∈ im N . The vector v is called the chain top , N �−1v the chain bottom and the height
of the chain top equals the chain length �. The notions of top, bottom and height are
represented by listing the vectors from top to bottom with the map N pointing downwards.

Given a vector space V and a triad {X,Y,Z}, there exist two splittings that provide
complements to the images of X and Y, namely

V=imX⊕ ker Y = im Y⊕ kerX.

The existence of these splittings is established in the following theorem which is Theorem
2.5.2 in [10].

Theorem 1. Suppose that V is a finite dimensional vector space and {X,Y, Z} is an sl(2)
triad of linear operators on V. Then:

1. X and Y are nilpotent.

2. Z is diagonalizable and has integer eigenvalues (called weights).

3. ker X has basis consisting of weight vectors(eigenvectors of Z).

4. Any basis {v1, v2, ..., vs} of ker X consisting of weight vectors can be taken as a set
of chain tops for lower Jordan chains for Y ; that is, each sequence vj , Y vj , Y 2vj , ...
terminates with 0 and constitutes an (independent) lower Jordan chain for Y so that
the nonzero vectors of the form Y ivj form a basis for V. In particular it follows that

V = ker X ⊕ im Y.

5. The vectors Y ivj are also weight vectors with weights given by

wt(Y ivj) = wt(vj)− 2i.

6. The length of the chain headed by vj is wt(vj) + 1.

7. The action of X on the basis vectors is given by

X(Y ivj) = pr(Y ivj)(Y i−1vj),
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where pr(Y ivj) is the nonzero constant pr(Y ivj) = wt(vj)+wt(Y vj)+· · ·+wt(Y i−1vj).
The constant pr(Y ivj) is called the pressure on Y ivj because it is the sum of the
weights of the vectors above Y ivj in its Jordan chain.

8. The number of chain tops of weight w ≥ 0 equals m(w)−m(w + 2), where m(w) is
the multiplicity of w as an eigenvalue of Z.

This theorem may be used in the converse manner to construct sl(2) triads such as
(2.9). That is, given the nilpotent matrix X in upper Jordan form, Y must contain the
pressures and Z the weights. For each Jordan block of X the weights form a string of
integers differing by 2 and symmetrically arranged around zero. The pressures can then
be found by taking partial sums of the weights. Our major application of Theorem 1 is to
calculate ker X, the ring of invariants.

Let k[x1, · · · , xn] be a polynomial ring over the field k, let fi ∈ k[x1, · · · , xn], 1 ≤ i ≤ m
and let ϕ : k[y1, · · · , ym]→ k[x1, · · · , xn] be the ring homomorphism defined by

ϕ : yi �→ fi.

Let h ∈ k[y1, · · · , ym] so that h(y1, · · · , ym) =
∑

µCµy
µ1
1 · · · yµm

m with Cµ ∈ k, µ =
(µ1, · · · , µm) ∈ N

m, and only finitely many Cµs nonzero. Then

ϕ(h) = h(f1, · · · , fm) ∈ k[x1, · · · , xn].
The kernel of ϕ,

ker ϕ = {h ∈ k[y1, · · · , ym] : ϕ(h) = 0},
is called the ideal of relations among the polynomials f1, · · · , fm. This ideal plays an
important role in this paper.

The following theorem, the proof of which can be found in [1], provides an algorithm
for computing the kernel of ϕ or more precisely a Groebner basis for the kernel of ϕ.

Theorem 2. Let K =〈y1 − f1, · · · , ym − fm〉 ⊆ k[y1, · · · , ym, x1, · · · , xn]. Then ker ϕ =
K ∩ k[y1, · · · , ym].

Definition 1. Let R ⊂ R[x1, · · · , xn] be a subring of the ring of polynomials. Let
R1, · · · ,Rs be subrings of R and let f1, · · · , fs ∈ R[x1, · · · , xn]. If

R = R1f1 ⊕ R2f2 ⊕ · · · ⊕ Rsfs, (2.15)

then (2.15) is called a Stanley decomposition of R and every element of R can be written
uniquely as

∑s
i=1 gifi for gi ∈ Ri, i = 1, · · · , s.

Next we describe a procedure for obtaining a Stanley decomposition for ker X given a
Stanley decomposition for ker X, where X and X are defined as in equations (2.10) and
(2.11) respectively.
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Let Nr1,r2,...,rk be an n × n block diagonal nilpotent matrix with upper Jordan blocks
of sizes r1, r2, ..., rk with r1 + r2 + ...+ rk = n. Let Ri = r1 + r2 + · · · ri, i = 1, 2, ..., k, so
that R1, R2, · · · , Rk are the row numbers of the bottom rows of the Jordan blocks.
Define a map

ϕ̃ : P(Rn,Rn) −→ P(Rn,Rk)

by

ϕ̃(v1, ..., vn) = (vR1 , ..., vRk
).

Clearly ϕ̃ is a homomorphism of modules over P(Rn,R). Let ϕ be the restriction of ϕ̃ to
ker X. Hence we have the following theorem, which is Theorem 1 in [9].

Theorem 3. The image of ϕ is ker Xr1 ⊕ ker Xr2 ⊕ ...⊕ ker Xrk and the mapping
ϕ : ker X �−→ ker Xr1 ⊕ ker Xr2 ⊕ ...⊕ ker Xrk is an isomorphism of modules over the ring
ker X.

Proof. Observe that, if f ∈ ker X and g ∈ P(Rn,R), then X(fg) = fXg. It follows that,
if g ∈ ker Xr(for any r), then fg ∈ ker Xr: that is, ker Xr is a module over ker X. The
rest of the proof becomes clear after we consider the example

N222 =




0 1
0 0

0 1
0 0

0 1
0 0



.

In this case it follows that ϕ̃(v1 · · · , v6) = (v2, v4, v6) and, if v ∈ ker X, then Xv1 =
0, Xv2 = v1, Xv3 = 0, Xv4 = v3, Xv5 = 0, Xv6 = v5. These conditions imply that
X2v2 = 0,X2v4 = 0 and X2v6 = 0 so that ϕ(v) = (v2, v4, v6) ∈ ker X2 ⊕ ker X2 ⊕ ker X2

and also show that v ∈ ker X can be reconstructed from (v2, v4, v6) by the reconstruction
map

ϕ−1(v2, v4, v6) =




Xv2

v2

Xv4

v4

Xv6

v6



. (2.16)

Thus ϕ̃ is invertible. Since it is a module homomorphism, it is an isomorphism. �

The following Lemma, found in [10] on page 243, also plays a crucial role in determining
Stanley decompositions.
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Lemma 1. If h ∈ Pj(Rn,R) belong to the ker Drs
N and ei, i = 1, · · · , n is the standard

basis for R
n, then the vector polynomial v{s,h} defined by

v{s,h} =
rs−1∑
i=0

(Di
Nh)eRs−i (2.17)

belongs to ker LN .

Definition 2. Let J be a monomial ideal, the monomials belonging to J are called non-
standard monomials. The standard monomials with respect to this ideal are the monomials
that do not belong to it.

The following lemma, which is Lemma 1 in [9], forms the basis for obtaining the Stanley
decomposition of ker X.

Lemma 2. Let R be any subring of kerX generated by homogeneous polynomials I1, · · · , Is
in x = (x1, · · · , xn) that are weight vectors for the triad {X,Y ,Z} and let Rik be the vector
subspace of R consisting of polynomials homogeneous in x of degree i and weight k. Let a
Groebner basis for the relations of I1, · · · , Is be selected. Then:

1. The standard monomials in I1, · · · , Is (with respect to the given Groebner basis)
having degree i (in x) and weight k form a basis for Rik.

2. If R = ker X, the standard monomials of degree i form a set of chain tops for the
chains in P(Rn,R).

According to this Lemma the chain tops of P(Rn,R) under the triad {X,Y ,Z} may be
taken to be the standard monomials in the basic invariants I1, · · · , Is with respect to the
given Stanley decomposition of kerX. The chains under the chain tops can be obtained by
repeated application of Y . A vector space basis for kerXr can be obtained by computing
the iterates down to depth r.
Letf be a standard monomial of degree j (in x) and let Y if be a nonzero entry in the

chain under f . We define g ∈ Pi(Rn,R) to be a replacement for Y if if Xig is a nonzero
multiple of f . Hence we have the following lemma found in [9] on page 219 and also in
[10] on page 253.

Lemma 3. Let f be a standard monomial . A replacement for Y rf can be found by placing
r copies of Y arbitrarily in front of the various factors of f as long as the result is not zero.

Note that the maximum power of Y that can be applied to an invariant equals the weight
(length - 1) of the invariant. By Lemma 3 above, we think of each standard monomial as
being written without powers, so that I3

2I
2
3 appears as I2I2I2I3I3. Apply Y repeatedly to

the last factor until the power of Y equals its weight, then to the factor before that and
so on, stopping when the total number of factors of Y reaches r − 1 (for the construction
of replacements for the chain elements under a standard monomial to depth r). Each
replacement constructed in this manner contains two parts, a prefix, which is itself a
standard monomial and contains no Y , and a suffix, which begins with the first occurrence
of Y . It is clear that no basic invariant I of weight zero can appear in a suffix since Y I = 0.
We call a such basic invariant trivial.
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The next step is to describe the set of prefixes that can occur with any given suffix. Let
S be a suffix and let g be the standard monomial that results from deleting all occurrences
of Y in S. We call g a stripped suffix. Let f be any other standard monomial. Then
fS occurs as a replacement,that is, f is a prefix for S, precisely when the following two
conditions are satisfied:

1. fg is a standard monomial (so that fg occurs as a chain top);

2. The factors fg are correctly ordered, equivalently, the final factor of f either precedes
or equals the first factor of g.

Let m1, · · · ,mp be the leading monomials of the Groebner basis γ1, · · · , γp for the basic
invariants I1, · · · , It. Given g the condition (1) for fg to be standard is that f be not
divisible by any of the monomials m′

i = mi/gcd(mi, g). Let the first basic invariant
appearing in g (from the left) be Ii(g). Then the condition (2) for fg to be correctly
ordered is that f be not divisible by Ii(g)−1, · · · , It (ordering the basic invariants by Ii < Ij
if j < i). Therefore the prefix monomials f associated with the given stripped suffix g are
the standard monomials with respect to the (new) ideal JS = 〈m′

1, · · · ,m′
p, Ii(g)−1, · · · , It〉.

Now let f be a prefix monomial associated with a given suffix S. Then the collection of
polynomials which are linear combination of such prefix monomials for a given suffix S
is a ring, called the prefix ring for S, which has a Stanley decomposition (defined by its
standard prefix monomials). This Stanley decomposition denoted by P (S) is called the
Stanley decomposition of the prefix ring for the suffix S. We conclude this section with
the following theorem which is Theorem 3 in [9] and is useful for computing ker Xr.

Theorem 4. A Stanley decomposition for ker Xr is given by

ker Xr = SD(ker X)⊕ (
⊕
S

P (S)S)

or, equivalently by the above discussion,

ker Xr = SD(ker X)⊕ (
⊕
S

(ker X/JS)S),

where SD(ker X) is the Stanley decomposition of ker X and P (S) is the Stanley decompo-
sition of the prefix ring corresponding to suffix S.

3 The Ring of Invariants

In this section we find a Groebner basis and a Stanley decomposition for R = ker X, the
ring of invariants, for coupled Takens-Bogdanov systems;

ẋ = N22...2x+ · · · . (3.1)

According to Murdock [10] four steps are required to complete this calculation.

• Compute a finite set of invariants I1, I2, · · · , Is for ker X called basic invariants which
suffices to generate all invariants up to some chosen degree j.
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• Compute a Groebner basis for the ideal of relations among the basic invariants.
• From the Groebner basis determine a Stanley decomposition for the ring R of poly-
nomials in the basic invariants.

• From the Stanley decomposition set up a two-variable generating function called the
table function (Hilbert function, see [10], chapter 4) and use it to test that R is in
fact all of ker X. If it is not, then not all of the basic invariants have been found.
In that case return back to the first step and increase the value of j.

In step one the basic invariants can be found by methods outlined in [10] and are given
by the following lemma.

Lemma 4. Let αi = xi for 1 ≤ i ≤ n and let βij = xiyj − xjyi for 1 ≤ i < j ≤ n. Then
αi and βij are invariants, that is, elements of ker X.

Proof. Since X = x1
∂

∂y1
+x2

∂

∂y2
+ · · ·+xn

∂

∂yn
and γ is an element of ker X if X(γ) = 0,

it follows immediately that αi and βij are invariants of X. �

In step two to compute a Groebner basis for the ideal of relations among the basic
invariants we proceed as follows:

• Introduce slack variables, {zi; 1 ≤ i ≤ n} and {wij ; 1 ≤ i < j ≤ n}, and let
{x, y} = {x1, y1, x2, y2, · · · , xn, yn} and {z, w} = {zi; 1 ≤ i ≤ n, wij ; 1 ≤ i < j ≤ n}.

• Let Φ : R[z, w]→ R[x, y] be a map defined by

zi �→ αi
wij �→ βij .

Definition 3. A relation among the basic invariants is a function f(z, w) such that
f(α, β) = 0, that is, f ∈ ker Φ, the ideal of relations among the polynomial invariants.

We apply Groebner basis methods to find a Groebner basis for the kernel of Φ; see
[1]and [2] for more details. Let

gi = αi − zi, 1 ≤ i ≤ n

hij = βij − wij , 1 ≤ i < j ≤ n

and set F = {gi, hij}. By Theorem 2 we first compute a Groebner basis G for the poly-
nomial ideal K = 〈αi − zi, βij − wij〉 in R[x, y, z, w] generated by F . The polynomials in
G without x and y variables form a Groebner basis H for the kernel of Φ. We now state
one of the main theorems of the Groebner basis method found in [1], [2] and [6].

Definition 4. Fix a monomial order and let G = {g1, · · · , gt} ⊂ k[x1, · · · , xn]. Given
f ∈ k[x1, · · · , xn] we say that f reduces to zero modulo G, written f −→G 0, if f can be
written in the form f = a1g1 + · · · , atgt, ai ∈ k[x1, · · · , xn]. As usual S(f, g) denotes the
S-polynomial of f and g.



386 D M Malonza

Theorem 5. (Buchberger’s theorem) A basis G = {g1, · · · , gt} for an ideal I is a
Groebner basis if and only if S(gi, gj) −→G 0 for all i �= j, that is, if and only if for all
pairs i �= j the remainder on division of S(gi, gj) by G is zero.

Corollary 6. (Buchberger’s First Criterion) Given a finite set G ⊂ k[x1, · · · , xn],
suppose that we have f, g ∈ G such that gcd(lm(f), lm(g)) = 1. Then S(f, g) −→G 0.

With this criterion certain S-polynomials are guaranteed to reduce to zero without doing
any calculations.
The following theorem, which is Theorem 2.2.3 in [8], provides the required bases G and
H and forms the basis for the results in this paper.

Theorem 7. The set G =




gi = xi − zi, 1≤ i≤ n;
hij = xiyj − xjyi − wij , 1≤ i < j ≤ n;
rij = yizi − yjzi + wij , 1≤ i < j ≤ n;
rijk = yiwjk − yjwik + ykwij , 1 ≤ i < j < k ≤ n;
r′ijk = ziwjk − zjwik + wijzk, 1 ≤ i < j < k ≤ n;
rijkl = wilwjk − wikwjl + wijwkl, 1 ≤ i < j < k <≤ n,

is a Groebner basis for the polynomial ideal K = 〈F 〉.

The proof of this theorem is accomplished by the following 14 lemmas, the proofs of which
are based on checking that all S-polynomials reduce to zero upon division by G are found
in chapter 2 of [8]. For convenience we provide proofs to the first five lemmas.

Lemma 5. S(gi, gj) −→G 0 for i �= j.

Proof. This follows immediately from Buchberger’s first criterion, Corollary 6. �

Lemma 6. a. S(gi, hjk) −→G 0 for i �= j

b. S(gi, hjk) −→G 0 for i = j.

Proof. a. Follows from Buchberger’s first criterion, Corollary 6.

b. Let i = j. Since S(gj , hjk) = xkyj − ykzj + wjk = yigk + rjk, S(gj , hjk) −→G 0.
�

Lemma 7. a. S(hij , hkl) −→G 0 for i �= k, j �= l

b. S(hij , hkl) −→G 0 for i = k, j �= l

c. S(hij , hkl) −→G 0 for i �= k, j = l.

Proof. a. Follows from Buchberger’s first criterion, Corollary 6.

b. Suppose k = i. Then i < j < l and S(hij , hil) = −xjyiyl + xkyiyj − ylwij + yjwil =
−yihjl + rijl. Hence S(hij , hil) −→G 0.
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c. Suppose l = j. There are two analogous cases to consider, i < k < j and k < i <
j. Suppose i < k < j. Since S(hij , hkj) = xixjyk − xkxjyi + xiwjk − xkwij =
xjhik − wikgj + wkjgi − wijgk + rikj . The other case is treated similarly. Hence
S(hij , hkj) −→G 0.

�

Lemma 8. a. S(hij , rkl) −→G 0 for j �= k

b. S(hij , rkl) −→G 0 for k = j.

Proof. a. Follows from Buchberger’s first criterion, Corollary 6.

b. Suppose k = j. Then i < j < l and S(hij , rjl) = xiylzj − xjyizl − xiwjl − zlwij =
zjhil − xjril + xlrij − zihjl − wjlgi + wilgj − wijgl − 2rijl. Hence S(hij , rjl) −→G 0.

�

Lemma 9. a) S(hij , rkls) −→G 0 for j �= k

b) S(hij , rkls) −→G 0 for k = j

Proof. a) Follows from Buchberger’s first criterion, Corollary 6.

b) Suppose k = j. Since i < j < l < s and S(hij , rjls) = xiylwjs − xiyswjl − xjyiwls −
wijwls = wjshil − wjlhis − xjrils + xlrijs − xsrijl − wishjl + wilhjs − wijhls + 2rijls,
S(hij , rjls) −→G 0.

�

The rest of the proofs follow similarly.

Lemma 10. a. S(rij , rst) −→G 0 for s �= i and t �= j

b. S(rij , rst) −→G 0 for s = i, and t �= j

c. S(rij , rst) −→G 0 for r �= i, and t = j.

Lemma 11. a) S(rij , rkls) −→G 0 for i �= k

b) S(rij , rkls) −→G 0 for k = i.

Lemma 12. a) S(rij , r′lst) −→G 0 for l �= j

b) S(rij , rkls) −→G 0 for r = j.

Lemma 13. a. S(rijk, r′lst) −→G 0 for l �= i and s �= j or k �= t

b) S(rijk, r′lst) −→G 0 for l = i and t �= j

c). S(rijk, r′lst) −→G 0 for l �= i, s = j and t = k.

Lemma 14. a. S(rijk, r′lst) −→G 0, if s �= j or t �= k

b) S(rijk, rlst) −→G 0, if s = j and t = k.

Lemma 15. a. S(rijk, rlstu) −→G 0 for j �= l and j �= s or k �= u and k �= t
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b. S(rijk, rlstu) −→G 0 for l = j and u = k

c. S(rijk, rlstu) −→G 0 for j = s and t = k.

Lemma 16. a. S(r′ijk, r
′
lst) −→G 0 for l �= i and s �= j or k �= t

b. S(r′ijk, r
′
lst) −→G 0 for l = i, and t �= j or k �= t

c. S(r′ijk, r
′
lst) −→G 0 for l �= i, s = j and t = k.

Lemma 17. a. S(r′ijk, rlstu) −→G 0 for j �= l and j �= s or k �= u and k �= t

b. S(r′ijk, rlstu) −→G 0 for l = j and u = k

c. S(r′ijk, rlstu) −→G 0 for j = s and t = k.

Lemma 18. a. S(rijkl, rqstu) −→G 0 if, gcd(wjkil, wstqu) = 1

b. S(rijkl, rqstu) −→G 0, for q = i andu = l

c. S(rijkl, rqstu) −→G 0, for s = j and t = l

d. S(rijkl, rqstu) −→G 0, for q = j and u = k

e. S(rijkl, rqstu) −→G 0, for s = i and t = l.
By the above theorem and Theorem 2 the ideal of relations I is generated by H =

G ∩ R[w, z]. Thus I = 〈r′ijk, rijkl〉, where
r′ijk = ziwjk − zjwik + wijzk, 1 ≤ i < j < k ≤ n;
rijkl = wilwjk − wikwjl + wijwkl, 1 ≤ i < j < k <≤ n. (3.2)

In Step three from the Groebner basis for the ideal of relations I, we find a Stanley
decomposition for the ring of invariants.
Let Ĩ = 〈αiβjk, βilβjk〉 be the ideal generated by the leading terms of the Groebner basis

for I, which is a monomial ideal. It suffices to work with R[α, β]/Ĩ since it is a well known
fact that a Stanley decomposition of R[α, β]/I is the same as a Stanley decomposition of
R[α, β]/Ĩ. See [13] for more details.
As an example we consider a normal form with linear part N = N222. Then

X = x1
∂

∂y1
+ x2

∂

∂y2
+ x3

∂

∂y3

and the basic invariants are:

αi = xi ; 1 ≤ i ≤ 3;
βij = xiyj − yixj ; 1 ≤ i < j ≤ 3.

There is only one generator, which therefore forms a Groebner basis, for the ideal of
relations among the invariants, α1β23−α2β13+α3β12 = 0 with Ĩ = 〈α1β23〉. This relation
can be used to eliminate the combination α1β23 (the leading term of the relation) from
any polynomial in the invariants. A Stanley decomposition is therefore given by

R[β12, β13, β23, α1, α2, α3]
〈α1β23〉 = R[β12, β13, α1, α2, α3]⊕ R[β12, β13, β23, α2, α3]β23. (3.3)



Normal Forms for Coupled Takens-Bogdanov Systems 389

Writing down Stanley decompositions can sometime be difficult, especially when there
is more than one relation among the basic invariants. We describe an easier method of
writing down the Stanley decomposition when this be the case.

Definition 5. Let K be any field and let P = {x1, x2, · · · , xn} be a partially ordered set
(poset). Let R =K[x1, x2, · · · , xn] be a polynomial ring, in which the elements of P are
regarded as the independent indeterminates. Let IP be the ideal of R generated by all
products, xixj , such that xi and xj are incomparable as elements of P , that is, neither
xi ≤ xj nor xj ≤ xi. Setting RP = R/IP , we call RP the poset ring corresponding to the
poset P .
It is not hard to see that our ring R = R[αi, βij ]/Ĩ, 1 ≤ i ≤ n and 1 ≤ i < j ≤ n, is

a poset ring corresponding to the poset Pn = {αi, βij} with the ordering defined by the
relations


βij ≤ βkl, if i ≤ k and j ≤ l;
αi ≤ αj , if i ≤ j;
βij ≤ αi, for all i,

(3.4)

since the generators of Ĩ are products of incomparable elements of Pn. For example, n = 4
the poset Pn is diagrammatically

α4

↑
α3 ← β34

↑ ↑
α2 ← β24 ← β23

↑ ↑ ↑
α1 ← β14 ← β13 ← β12,

where s → t means s ≤ t. We define paths from β12 to α4 to be any moves in the direction
of the arrows, that is to be made up of moves left or moves up. Such paths are called
maximal monotone paths.
Every chain takes for example the form

↑
← ∗

↑
← ∗

↑
← .

Each of the points marked * is called a corner of a maximal monotone path. A Stanley
decomposition of the poset ring R is then given by:

R =
⊕

i R[variables on the ith path ](product of corners on the ith path).

The fact that this is indeed a Stanley decomposition follows from Lemma 2.4 in [13].
We revisit the example with linear part N222. Recall that, for n = 3, Ĩ = 〈α1β23〉 and the
poset P3 of the poset ring R[α, β]/Ĩ is therefore
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α3

↑
α2 ← β23

↑ ↑
α1 ← β13 ← β12

with two maximal monotone paths, (β12 → β13 → α1 → α2 → α3) with no corner and
(β12 → β13 → β23 → α2 → α3) with β23 as corner. Hence a Stanley decomposition is
easily written down as

R = R[β12, β13, α1, α2, α3]⊕ R[β12, β13, β23, α2, α3]β23,

which is same as before.

Next we write down a Stanley decomposition for a normal form with linear part N2222.
We have

X = x1
∂
∂y1

+ x2
∂
∂y2

+ x3
∂
∂y3

+ x4
∂
∂y4

and the basic invariants are:

αi = xi ; 1 ≤ i ≤ 4;
βij = xiyj − yixj ; 1 ≤ i < j ≤ 4.

A Groebner basis (generators) for the ideal of relations among the invariants is:

α1β23 − α2β13 + β12α3 = 0
α1β24 − α2β14 + β12α4 = 0
α1β34 − α2β14 + β13α4 = 0
α2β34 − α3β24 + β23α4 = 0
β14β23 − β13β24 + β12β34 = 0

with the monomial ideal Ĩ = 〈α1β23, α1β24, α1β34, α2β34, β14β23〉 of the leading terms of
I. These relations can be used to eliminate any of the leading terms from any polynomial
in the invariants, leading to a Stanley decomposition for the ring R = R[α, β]/Ĩ. The
Stanley decomposition is easily obtained from the poset P4 given by.

α4

↑
α3 ← β34

↑ ↑
α2 ← β24 ← β23

↑ ↑ ↑
α1 ← β14 ← β13 ← β12

with the following maximal monotone paths:
(β12 → β13 → β14 → α1 → α2 → α3 → α4), with no corners.
(β12 → β13 → β23 → β24 → α2 → α3 → α4), with β23 as corner.
(β12 → β13 → β14 → β24 → α2 → α3 → α4), with β24 as corner.
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(β12 → β13 → β14 → β24 → β34 → α3 → α4),with β34 as corner.
(β12 → β13 → β23 → β24 → β34 → α3 → α4), with β23 and β34 as corners.

Hence we obtain the following Stanley decomposition for R.

R = R[β12, β13, β14, α1, α2, α3, α4]⊕ R[β12, β13, β23, β24, α2, α3, α4]β23 (3.5)
⊕ R[β12, β13, β14, β24, α2, α3, α4]β24 ⊕ R[β12, β13, β14, β24, β34, α3, α4]β34

⊕ R[β12, β13, β23, β24, β34, α3, α4]β23β34.

Lastly in step four, given a Stanley decomposition for the ring R = R[α, β]/Ĩ, we de-
velop a table function denoted by T2n, where 2n is the dimension of the nilpotent matrix
N22···2. By Lemma 4.7.9 in [10], to prove that R = ker X, that is to show that we have

found all the basic invariants, it suffices to check that
∂

∂w
(wT2n)

∣∣∣∣
w=1

=
1

(1− d)2n
.

For example from the Stanley decomposition of N2222 above another way to say this is
that any polynomial f in R can be written uniquely as

f = f1(β12, β13, β14, α1, α2, α3, α4) + f2(β12, β13, β23, β24, α2, α3, α4)β23

+ f3(β12, β13, β14, β24, α2, α3, α4)β24 + f4(β12, β13, β14, β24, β34, α3, α4)β34

+ f5(β12, β13, β23, β24, β34, α3, α4)β23β34, (3.6)

where f1, f2, f3, f4 and f5 are polynomials in their respective variables. The Stanley de-
composition (3.6) can be abbreviated as f1.1 + f2.β23 + f3.β24 + f4.β34 + f5.β23β34. The
fs are referred to as coefficient functions and {1, β23, β24, β34, β23β34} as Stanley basis
elements. To generate the table function of a Stanley decomposition (for more details
see [10] and [9]) we replace each term in (3.6) by a rational function P/Q in d and w
(for “d=degree in x” and “w=weight”) constructed as follows. For each basic invariant
appearing in a coefficient function, the denominator contains a factor 1 − dpwq, where p
and q are the degree and weight of the invariant; the numerator is dpwq, where p and q are
the degree and weight of the Stanley basis element of that term. When the rational func-
tions P/Q from each term of the Stanley decomposition are summed we obtain the table
function T2n given by T2n =

∑
i Pi/Qi. Thus for the above example the table function is

T8 =
1

(1− dw)4(1− d2)3
+

2d2

(1− dw)3(1− d2)4
+

d2

(1− dw)2(1− d2)5
+

d24
(1− dw)2(1− d2)5

and it is easily verified that

d

dw
(wT8)|w=1 =

1
(1− d)8

.

This shows that all the basic invariants have been found for all sl(2) normal forms with
linear part N=N2222. Thus R = ker X.

We are now faced with the following question: Can we generalize these results to any
given linear part N222···2, that is, can we claim that we have found all the basic invariants
for any normal form with linear part N222···2? To answer this question we proceed as
follows: It is clear from the definition of a table function and from the above example that
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for each term of a table function the denominator corresponds to a maximal monotone
path and the numerator to the corners associated to that path. Consider a poset ring R

corresponding to the poset Pn = {αi, βij} with the ordering defined as before in equation
(3.4). The poset Pn then looks like

αn
↑
... ← · · ·
↑ ↑ . . .
αi ← · · · ← βij
↑ ↑
...

. . .
...

. . .
↑ ↑
α1 ← · · · ← β1j ← · · · ← β12.

Remark. In each case there is only one maximal monotone path with no corner, namely
the outermost path containing all the αs.
This brings us to our next question: How many paths starting from β12, exiting at αi and
ending at αn, for i = 2, 3, · · · , n − 1, have 1 corner, 2 corners, 3 corners, · · · , k corners?
This is a problem in combinatorics on the number of lattice paths that never go below the
line y = kx for a positive k. The result which we repeat here for convenience is known
and is given as Theorem 3.4.3 in [7].

Theorem 8. Let µ be a positive integer and n ≥ µm ≥ 0. The number of all lattice paths
from (0,0) to (m,n-1) with k up-right corners that never go below the line y = µx is(

m− 1
k − 1

)(
n

k

)
− µ

(
m

k

)(
n− 1
k − 1

)
.

Hence it follows (with µ =1) that the number of maximal monotone paths with k
corners starting at β12 and exiting at αi, denoted by Cnik, is

Cnik =
(
m− 1
k − 1

)(
n

k

)
−

(
m

k

)(
n− 1
k − 1

)
=

n− i

k

(
n− 2
k − 1

)(
i− 2
k − 1

)
. (3.7)

The following theorem shows that for n ≥ 2 all the basic invariants for coupled Takens-
Bogdanov systems have been found.

Theorem 9. (Ring of invariants) Let R = R[αi, βij ]/Ĩ, where Ĩ = 〈αiβjk, βilβjk〉 for
1 ≤ i ≤ n, 1 ≤ i < j ≤ n and for i < j < k, i < j < k < l. Then R = ker X, the ring of
invariants.

Proof. The table function for R is

T2n =
1

(1− d2)n−1(1− dw)n
+

n−1∑
k=1

n−1∑
i=k+1

Cnikd
2k

(1− d2)n+i−2(1− dw)n−i+1
, (3.8)
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where Cnik is as given in (3.7).
We need to verify that

∂

∂w
(wT2n)

∣∣∣∣
w=1

=
1

(1− d)2n
. (3.9)

Calculating the lhs of (3.9) we get

1
(1 + d)2n−3(1− d)2n

[(1 + (n− 1)d)(1 + d)n−2

+
n−1∑
k=1

n−1∑
i=k+1

Cnik(1 + (n− i)d)(1 + d)n−i−2d2k] =
1

(1− d)2n
.

(3.10)

After simplifying (3.10), it is enough to prove the identity,

(1+(n−1)d)(1+d)n−2+
n−1∑
k=1

n−1∑
i=k+1

Cnik(1+(n−i)d)(1+d)n−i−1d2k = (1+d)2n−3, (3.11)

or equivalently (after rearranging) the identity,

n−1∑
k=1

n−1∑
i=k+1

Cnik(1+(n−i)d)(1+d)n−i−1d2k = (1+d)2n−3−(1+(n−1)d)(1+d)n−2. (3.12)

Define F(n,k) =
∑n−1

r=k+1 Cnik(1 + (n− i)d)(1 + d)n−i−1d2k and let f(n) =
∑n−1

k=1 F (n, k).
Since f(n) is hypergeometric, see [12], and by Zeilberger’s algorithm found in [11], its
recurrence relation is

{−d(1 + d)2f(n) + df(n+ 1) = d3(1 + d)n−1(n− 1)}. (3.13)

Rearranging (3.13), we find that the lhs of (3.12) satisfies the recurrence,

f(n+ 1)− (1 + d)2f(n) = (n− 1)d2(1 + d)n−1. (3.14)

Next we show that the rhs of (3.12) satisfies the same recurrence relation. Since rhs =
f(n) = (1 + d)2n−3 − (1 + (n− 1)d)(1 + d)n−2,

(1 + d)2f(n) = (1 + d)2n−1 − (1 + (n− 1)d)(1 + d)n (3.15)

f(n+ 1) = (1 + d)2n−1 − (1 + nd)(1 + d)n−1. (3.16)

Subtracting (3.15) from (3.16) and simplifying we get

f(n+ 1)− (1 + d)2f(n) = (n− 1)d2(1 + d)n−1 = lhs.

Hence we have shown that both sides satisfy the same recurrence. Lastly, we check that
both sides satisfy the initial condition n = 2 since we have that n ≥ 2. Let L(n) = lhs and
R(n) = rhs of (3.12). Clearly L(2) = 0 and R(2) = 0. This establishes the identity and
hence proves the theorem. �
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4 Stanley Decomposition for ker Dr and for Normal Form
Module ker X

In this section we apply Murdock’s algorithm developed in [10], section 4.7, to obtain
the Stanley decomposition of the module ker Xr. Then using Theorem 3 we obtain a
Stanley decomposition of the normal form module of equivariants ker X from the Stanley
decomposition of ker Xr.
From Theorem 1 and Lemma 2 the chain tops of P(Rn,R) under the triad {X,Y ,Z}

can be taken to be the standard monomials in the basic invariants, say I1, I2, · · · , Is, with
respect to the Stanley decomposition of ker X. The chains under these chain tops are the
lower Jordan chains of Y and can be obtained by repeated application of Y . These chains
are also modified upper Jordan chains for X (regarded as a mapping upwards). Clearly a
vector space basis for ker Xr is obtained by computing the Y iterates to depth r.
Remark. By modified Jordan chains for X we mean that X operating on a given vector
in the chain gives a nonzero constant times the vector above it, or zero if the given vector
is at the top of a chain.

We now describe how to obtain a Stanley decomposition of ker Xr from any Stanley
decomposition of ker X.

Algorithm to find ker Xr

The following four steps apply:

1. Order the basic invariants putting the longest (with largest r) basic invariant last
(to the far right).

2. Determine the finite set of suffixes that can occur to depth r. All standard monomials
can be classified by their endings. These endings determine the suffixes that can
occur when the Y s are applied repeatedly from the last according to Lemma 3.

3. Determine the prefix ring (coefficient ring) for each suffix. The prefix ring for a
given suffix is the set of admissible prefixes (standard monomials not containing the
endings) that can appear with that suffix.

4. Write down a Stanley decomposition for ker Xr as given by Theorem 4, that is

ker Xr = SD(ker X)⊕ (
⊕
S

P (S)S),

where SD(ker X) is the Stanley decomposition of ker X and P (S) is the Stanley
decomposition of the prefix ring corresponding to suffix S.

By example N22···2 we mean a coupled Takens-Bogdanov system with linear part N22···2.

Example N222. The basic invariants for N222 are:

αi = xi ; 1 ≤ i ≤ 3;
βij = xiyj − yixj ; 1 ≤ i < j ≤ 3.
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These are related by the single relation α1β23 − α2β13 + α3β12 = 0, with α1β23 as the
leading monomial. To compute ker X2 it is necessary to apply Y to depth 2. Order
the basic invariants by β23 < β13 < β12 < α3 < α2 < α1, with length 1, 1, 1, 2, 2,
and 2 respectively. The standard monomials cannot contain both α1 and β23 and can
be classified into those ending in either α1, α2 or α3 and those ending in either of the
trivial basic invariants β12, β13 or β23. For those ending in α1 the suffix is Yα1 and the
prefix ring is R[α1, α2, α3, β12, β13], for those ending in α2 the suffix is Yα2 and the prefix
ring is R[α2, α3, β12, β13]⊕ R[α2, α3, β12, β13, β23]β23 and for those ending in α3 the suffix
is Yα3 and the prefix ring is R[α3, β12, β13] ⊕ R[α3, β12, β13, β23]β23. Since the standard
monomials ending in either of the trivial basic invariants have no suffixes, the suffix set is
{Yα1,Yα2,Yα3}. The Stanley decomposition for the module ker X2 according to Theorem
4 is therefore

kerX2 = R[α1, α2, α3, β12, β13]⊕ R[α2, α3, β12, β13, β23]β23

⊕ R[α1, α2, α3, β12, β13]Yα1

⊕ (R[α2, α3, β12, β13]⊕ R[α2, α3, β12, β13, β23]β23)Yα2 (4.1)
⊕ (R[α3, β12, β13]⊕ R[α3, β12, β13, β23]β23)Yα3.

After obtaining the Stanley decomposition for ker X2, the sl(2) normal form ker X, that
is, the module of equivariants follows easily from Theorem 3. Recall that
ker X ∼= ker Xr1 ⊕ ker Xr2 ⊕ · · · ⊕ ker Xrk . Hence For N222 we have
ker X ∼= ker X2 ⊕ ker X2 ⊕ ker X2. Explicitly by Lemma 1 the Stanley decomposition for
the sl(2) normal form is therefore

kerX = (R[α1, α2, α3, β12, β13]⊕ R[α2, α3, β12, β13, β23]β23)v{1,1}
⊕ R[α1, α2, α3, β12, β13]v{1,Yα1}
⊕ (R[α2, α3, β12, β13]⊕ R[α2, α3, β12, β13, β23]β23)v{1,Yα2}
⊕ (R[α3, β12, β13]⊕ R[α3, β12, β13, β23]β23)v{1,Yα3}
⊕ (R[α1, α2, α3, β12, β13]⊕ R[α2, α3, β12, β13, β23]β23)v{2,2}
⊕ R[α1, α2, α3, β12, β13]v{2,Yα1}
⊕ (R[α2, α3, β12, β13]⊕ R[α2, α3, β12, β13, β23]β23)v{2,Yα2} (4.2)

⊕ (R[α3, β12, β13]⊕ R[α3, β12, β13, β23]β23)v{2,Yα3}
⊕ (R[α1, α2, α3, β12, β13]⊕ R[α2, α3, β12, β13, β23]β23)v{3,3}
⊕ R[α1, α2, α3, β12, β13]v{3,Yα1}
⊕ (R[α2, α3, β12, β13]⊕ R[α2, α3, β12, β13, β23]β23)v{3,Yα2}
⊕ (R[α3, β12, β13]⊕ R[α3, β12, β13, β23]β23)v{3,Yα3}.

Here

v{1, 1} =




0
1
0
0
0
0



, v{1,Yα1} =




XYα1

Yα1

0
0
0
0



, v{1,Yα2} =




XYα2

Yα2

0
0
0
0



, v{1,Yα3} =




XYα3

Yα3

0
0
0
0



,
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v{2, 2} =




0
0
0
1
0
0



, v{2,Yα1} =




0
0

XYα1

Yα1

0
0



, v{2,Yα2} =




0
0

XYα2

Yα2

0
0



, v{2,Yα3} =




0
0

XYα3

Yα3

0
0



,

v{3, 3} =




0
0
0
0
0
1



, v{3,Yα1} =




0
0
0
0

XYα1

Yα1



, v{3,Yα2} =




0
0
0
0

XYα2

Yα2



, v{3,Yα3} =




0
0
0
0

XYα3

Yα3



.

Example N2222. The basic invariants for N2222 are:

αi = xi ; 1 ≤ i ≤ 4;
βij = xiyj − yixj ; 1 ≤ i < j ≤ 4.

A Groebner basis for the ideal of relations is:
α1β23 − α2β13 + β12α3 = 0
α1β24 − α2β14 + β12α4 = 0
α1β34 − α2β14 + β13α4 = 0
α2β34 − α3β24 + β23α4 = 0
β14β23 − β13β24 + β12β34 = 0

To compute ker X2 it is necessary to apply Y to depth 2. Order the basic invariants by
βjk < αi for all i and αj < αi for i < j. The ordering on the βij is not necessary in our
case since each βij is of length 1 and contributes no suffixes. The standard monomials can
be classified into those ending in one of the αis and those ending in either of the trivial
basic invariants. For those ending in αi the suffix is Yαi (since each αi is of length 2)
and those ending in either of the trivial basic invariants have no suffixes. So the suffix set
is {Yαi, for 1 ≤ i ≤ 4}. The Stanley decomposition for the module ker X2 according to
Theorem 4 is therefore

kerX2 = R[α1, α2, α3, α4, β12, β13, β14]⊕ R[α2, α3, α4, β12, β13, β23, β24]β23

⊕ R[α2, α3, α4, β12, β13, β14, β24]β24 ⊕ R[α3, α4, β12, β13, β14, β24, β34]β34

⊕ R[α3, α4, β12, β13, β23, β24, β34]β23β34

⊕ R[α1, α2, α3, α4, β12, β13, β14]Yα1 ⊕ (R[α2, α3, α4, β12, β13, β14]
⊕ R[α2, α3, α4, β12, β13, β23, β24]β23 ⊕ R[α2, α3, α4, β12, β13, β14, β24]β24)Yα2

⊕ (R[α3, α4, β12, β13, β14]⊕ R[α3, α4, β12, β13, β23, β24]β23 (4.3)
⊕ R[α2, α3, α4, β12, β13, β14, β24]β24 ⊕ R[α3, α4, β12, β13, β14, β24, β34]β34

⊕ R[α3, α4, β12, β13, β23, β24, β34]β23β34)Yα3

⊕ (R[α4, β12, β13, β14]⊕ R[α4, β12, β13, β23, β24]β23 ⊕ R[α4, β12, β13, β14, β24]β24

⊕ R[α4, β12, β13, β14, β24, β34]β34 ⊕ R[α4, β12, β13, β23, β24, β34]β23β34)Yα4
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After obtaining the Stanley decomposition for ker X2, the Stanley decomposition for the
sl(2) normal form ker X, the module of equivariants follows easily from Theorem 3. For
N2222 we have ker X ∼= kerX2⊕kerX2⊕kerX2⊕kerX2. The Stanley decomposition for the
sl(2) normal form is obtained by placing equation (4.3) into the second, fourth, sixth and
eighth positions in the vector fields and then applying the reconstruction map (2.16)
(0,Yα1, 0,Yα2, 0,Yα3, 0,Yα4) → (X(Yα1),Yα1,X(Yα2),Yα2,X(Yα3),Yα3,X(Yα4),Yα14)).
It is clear from the above examples that we can now find the Stanley decomposition for
the sl(2) module of equivariants for any coupled Takens-Bogdanov system. We generalize
the above results to any N222···2 with an arbitrary number of 2× 2 blocks.

Example N222···2. In this case the basic invariants are

αi = xi for 1 ≤ I ≤ n and
βij = xiyj − xjyi for 1 ≤ i < j ≤ n.

By Theorem 7 the Groebner basis for the ideal of relation is therefore

H =〈r′ijk, rijkl〉,
where

r′ijk = αiβjk − βjwik + βijzk, 1 ≤ i < j < k ≤ n;
rijkl = βilwjk − βikwjl + βijwkl, 1 ≤ i < j < k <≤ n,

with the monomial ideal Ĩ = 〈αiβjk, βilβjk〉. To compute ker X2 it is necessary to apply
Y to depth 2. Order the basic invariants by βjk < αi for all i and αj < αi for i < j. Each
βij is of length 1 and each αi is of length 2. The standard monomials can be classified into
those ending in one of the αis and those ending in one of the trivial basic invariants. For
those ending in αi the suffix is Yαi and those ending in either of the trivial basic invariants
have no suffixes. Therefore the suffix set is {Yαi, for 1 ≤ i ≤ n} and by Theorem 4 a
Stanley decomposition for the module ker X2 is

ker X2 = ker X ⊕ (
n⊕
i

(ker X/Ji)Yαi). (4.4)

Now the Stanley decomposition for the module of equivariants for N222···2 is obtained
by placing equation (4.4) into the second, fourth, · · · and (2n)th positions in the vector
fields and then applying the reconstruction map (2.16).

References

[1] Adams, William W. and Loustaunau, P. (1994). An Introduction to Groebner Bases.
American Mathematical Society, Providence.

[2] Cox, David., Little, John and O’Shea, Donal. (1997). Ideals, Varieties and Algorithm.
Springer, New York.



398 D M Malonza

[3] Cushman, R. and Sanders, J. A. (1990). A Survey of Invariant Theory Applied to
Normal Forms of Vectorfields with Nilpotent Linear Part, “Invariant Theory and
Tableaux” (D. Stanton, Ed.) Springer-Verlag, New York.

[4] Cushman, R. Sanders, J. A. and White, N. (1988). Normal Form for the (2;n) Nilpo-
tent Vectorfield, Using Invariant Theory. Physica D 30, 399-412.

[5] Fulton, W. and Harries, Joe.(1991). Representation Theory: A First Course. Springer,
New York.

[6] Gatermann, Karen (2000). Computer Algebra Methods for Equivariant Dynamical
Systems. Lecture Notes in Mathematics, volume 1728, Springer-Verlag, New York.

[7] Krattenthaler, C. (1997). The Enumeration of Lattice Paths with Respect to Thier
Number of Turns, in “Advances in Combinatorial Methods and Applications to Prob-
ability and Statistics”, N. Balakrishnan, Ed., Berkhäuser, Boston, p. 29-58.
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