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Abstract
We investigate the Sundman symmetries of second-order and third-order nonlinear or-
dinary differential equations. These symmetries, which are in general nonlocal trans-
formations, arise from generalised Sundman transformations of autonomous equations.
We show that these transformations and symmetries can be calculated systematically
and can be used to find first integrals of the equations.

1 Introduction

In the general classification of linearisable third-order ordinary differential equations under
the generalised Sundman transformation

X = F (x, t), dT = G(x, t)dt, G
∂F

∂x
�= 0, (1.1)

we [5] observed that for every F and G in (1.1) that linearises a given third-order equation
to X ′′′ = 0 there exists another F and G which also results in the linearisation of the
equation, notably

F → 1
F
, G→ G

F 3/2
.

This means that every third-order equation
...
x = E(t, x, ẋ, ẍ)

which can be linearised to X ′′′ = 0 under (1.1) is invariant under the transformation

F (x̃, t̃) = F (x, t)−1 (1.2)

G(x̃, t̃)dt̃ = F (x, t)−3/2G(x, t)dt (1.3)
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for a given F and G that achieves this linearisation. We named the transformation (1.2)-
(1.3) the Sundman symmetry [5] of linearisable third-order equations.

Note that the generalised Sundman transformation (1.1) is a more general transforma-
tion than a point or contact transformation in the sense that (1.1) contains a nonlocal
term of the form

T =
∫
G(x(t), t) dt.

We refer to the book [10] for examples and methods relating to point transformations
of differential equations.

Remark: Throughout this article overdot and prime refer to ordinary derivatives of the
dependent variables and subscripts refer to partial derivatives.

We give a simple pedagogical example to demonstrate the generalised Sundman trans-
formation and the Sundman symmetry for a linearisable equation:

Introductory example: Consider the equation
...
x − x−1ẋẍ = 0, (1.4)

which can be linearised to X ′′′ = 0 by the generalised Sundman transformation

X = x2, dT = xdt (1.5)

and by (1.2)-(1.3) equation (1.4) admits the Sundman symmetry

x̃ = x−1, t̃ =
∫
x−1dt. (1.6)

We then use the generalised Sundman transformation (1.5) and transform the first integrals
of X ′′′ = 0,

I1 = X ′′, I2 = XX ′′ − 1
2
(X ′)2, (1.7)

to obtain the first integrals of (1.4), namely

Ĩ1 =
ẍ

x
, Ĩ2 = xẍ− ẋ2.

Note that the Sundman symmetry (1.6) transforms solutions of (1.4) to solutions of (1.4).
For example the solution x = t transforms to the solution x = c1 exp(−t), where c1 is
an arbitrary constant namely the constant of integration in (1.6b). We point out that
Corollary 4.2 of section 4.2 gives the most general Sundman symmetry which a third-
order linearisable ordinary differential equation may admit namely (4.27) and (4.28). In
Example 4.3 of section 4.2 we show that the Sundman symmetry (4.27) – (4.28) transforms
the particular solution x = t to the general solution of (1.4), namely

x = β2e
−β1t + β3e

β1t,

where βj are arbitrary constants.
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As part of this introductory example we show that the general solution of (1.4) can
also be obtained by transforming a particular solution of X ′′′ = 0 under the generalised
Sundman transformation (1.5). We use

X(T ) = c21T
2 + c3, c1, c3 : arbitrary constants.

By (1.5) we have x =
√
X (we use the positive sign), so that

T =
1
c1

(
x2 − c3

)1/2 (1.8)

and ∫ (
c21T

2 + c3
)−1/2

dT = t+
1
c1

ln |a|, (1.9)

where a is a constant of integration. We perform the integral (1.9) and use (1.8) to
eliminate T . We then obtain the general solution of (1.4), namely

x(t) =
a

2
exp(c1t)− c3

2a
exp(−c1t).

To end this example we mention that the Sundman symmetry (1.6) transforms first inte-
grals of (1.4) to first integrals of (1.4): Ĩ1 transforms to Ĩ2 and Ĩ2 to Ĩ1.

Our aim in the present article is to investigate the Sundman symmetry of second-order
and third-order nonlinearisable ordinary differential equations (although we also include
the linearisable cases), that is to calculate Sundman symmetries of equations which are
not necessarily linearisable by a generalised Sundman transformation. We show that
Sundman symmetries exist for a large class of nonlinear equations and can systematically
be calculated. We furthermore show that these symmetries can be used effectively to
obtain first integrals of the equations and transform solutions to more general solutions
(in some cases the general solutions). We point out that the first integrals can in some
cases be integrated (perhaps parametrically) to obtain the general (parametric) solutions.
It is not our aim to perform parameric calculations here, but we give one such example as
part of Example 3.1.

2 General considerations

In correspondence with [5] we define the generalised Sundman transformation and the
Sundman symmetry of an nth order ordinary differential equation

x(n) = E1(t, x, ẋ, ẍ,
...
x , . . . , x(n−1)), (2.1)

where x = x(t).

Definition 2.1 The generalised Sundman transformation of equation (2.1) is a
coordinate transformation of the form (1.1), that is

X(T ) = F (x(t), t), dT = G(x(t), t)dt,
∂F

∂x
�= 0, G �= 0,
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for which the differentiable functions F and G are determined such that (2.1) can be
transformed in the autonomous equation

X(n) = E0(X, X ′, X ′′, X ′′′, . . . , X(n−1)), (2.2)

where X = X(T ). If (2.2) is linear, then (2.1) is said to be linearisable.

Definition 2.2 A Sundman symmetry for equation (2.1) is a transformation of the
form

F (x̃, t̃) = P (F (x, t), G(x, t)), G(x̃, t̃)dt̃ = Q(F (x, t), G(x, t))dt (2.3)

which keeps (2.1) invariant for some differentiable functions P and Q, i.e. (2.1) is trans-
formed to

x̃(n) = E1(t̃, x̃, ˙̃x, ¨̃x,
...
x̃ , . . . , x̃(n−1)), (2.4)

whereby F and G are functions in (1.1) which transform (2.1) to (2.2) (see Diagram 1).
A Sundman symmetry (2.3) is called trivial if P (F,G) = F and Q(F,G) = G.

For a given autonomous equation (2.2) the generalised Sundman transformation (1.1)
leads to a set of differential conditions on F and G by which (2.1) can be transformed to
(2.2). We call these conditions the Sundman determining equations.

A Sundman symmetry (2.3) can then be obtained by choosing P and Q such that the
Sundman determining equations remain invariant. If

X = F (x̃, t̃), dT = G(x̃, t̃)dt̃

transforms (2.4) to (2.2) and

X = P
(
F (x, t), G(x, t)

)
, dT = Q

(
F (x, t), G(x, t)

)
dt

also transforms the same equation (2.1) to (2.2), then the composition of these two gen-
eralised Sundman transformations leads to the Sundman symmetry (2.3) for (2.1) (see
Diagram 1). The choice P = F and Q = G corresponds to the trivial Sundman symmetry.

If, for example,

F (x̃, t̃) = x̃, G(x̃, t̃) = 1, (2.5)

then the generalised Sundman transformation (1.1) is just the identity transformation
(X = x̃, T = t̃) and equation (2.4) has the exact same form as equation (2.2). The
Sundman symmetry of (2.1) then takes the form

x̃ = P (x), t̃ =
∫
Q(x) dt. (2.6)

In fact a Sundman symmetry constructed in this way (from the identity) plays an impor-
tant role in the calculation of first integrals as is discussed in Section 4. Instead of
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✛x̃(n) = E1

(
t̃, x̃, ˙̃x, . . . , x̃(n−1)

)

X(n) = E0

(
X, X ′, . . . , X(n−1)

)

X(T ) = F (x̃, t̃)

x(n) = E1

(
t, x, ẋ, . . . , x(n−1)

)

X(T ) = P
(
F (x, t), G(x, t)

)

Sundman Symmetry

G(x̃, t̃)dt̃ = Q
(
F (x, t), G(x, t)

)
dt

F (x̃, t̃) = P
(
F (x, t), G(x, t)

)

dT = G(x̃, t̃)dt̃ dT = Q
(
F (x, t), G(x, t)

)
dt

the identity one can also consider other forms of F and G that correspond to transforma-
tions which keep (2.2) invariant such as discrete transformations (see e.g. [6], [7] and [8]
for a method to find discrete symmetries of ordinary differential equations by the use of Lie
symmetry algebras). If the Sundman symmetry (2.3) is nontrivial, then every given (dis-
crete) transformation which keeps (2.2) invariant leads to a nontrivial Sundman symmetry
for (2.2) for corresponding F and G in (1.1).

3 Sundman symmetries for second-order equations

We consider the following class of second-order autonomous equations

X ′′ + a2(X)
(
X ′)2 + a1(X)X ′ + a0(X) = 0, (3.1)

where a2, a1 and a0 are differentiable functions which are to be determined such that
(3.1) leads to a class of equations with nontrivial Sundman symmetries. We distinguish
between three cases given respectively by Proposition 3.1, Proposition 3.2 and Proposition
3.3 below.

Proposition 3.1: Consider (3.1) with both a1 �= 0 and a2 �= 0, that is

X ′′ + a2(X)
(
X ′)2 + a1(X)X ′ + a0(X) = 0.

The equation

ẍ+ Λ2ẋ
2 + Λ1ẋ+ Λ0 = 0, (3.2)
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which can be transformed to (3.1) under (1.1), where

Λ2(F,G;x, t) =
Fxx

Fx
− Gx

G
+ a2(F )

Λ1(F,G;x, t) = 2
Fxt

Fx
− Gx

G

Ft

Fx
− Gt

G
+ a1(F )G+ 2a2(F )Ft (3.3)

Λ0(F,G;x, t) =
Ftt

Fx
− Gt

G

Ft

Fx
+ a1(F )

GFt

Fx
+ a2(F )

F 2
t

Fx
+ a0(F )

G2

Fx
,

admits a Sundman symmetry of the form (2.3) if and only if P and Q are given by

P = P (F ), Q = GΨ(F ), (3.4)

where P , Ψ, a2, a1 and a0 satisfy the following conditions:

a1(X) = a2(X) �= 0 (3.5)

a1

(
P

)
Ψ(F ) = a1(F ) (3.6)

a0

(
P

)
Ψ2(F ) = a0(F )

dP

dF
(3.7)

Ψ(F )
d2P

dF 2
− dΨ
dF

dP

dF
+ a2

(
P

)
Ψ(F )

(
dP

dF

)2

− a2(F )Ψ(F )
dP

dF
= 0. (3.8)

The Sundman symmetry of (3.2) is therefore of the form

F (x̃, t̃) = P
(
F (x, t)

)
(3.9)

G(x̃, t̃) dt̃ = G(x, t)Ψ
(
F (x, t)

)
dt, (3.10)

where conditions (3.5)-(3.8) must be satisfied.

On the proof: By the generalised Sundman transformation (1.1) the equation (3.1) takes
the form (3.2). The Sundman symmetry is then obtained by solving P and Q from the
condition

Λ2(F,G;x, t) = Λ2(F̂ , Ĝ;x, t)

Λ1(F,G;x, t) = Λ1(F̂ , Ĝ;x, t)

Λ0(F,G;x, t) = Λ0(F̂ , Ĝ;x, t),

where

F̂ (x, t) = P (F (x, t), G(x, t))

Ĝ(x, t) = Q(F (x, t), G(x, t)).

This leads to a set of differential conditions on P and Q which reduces to conditions
(3.5)-(3.8). ✷
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Example 3.1: We consider (3.1) with a0(X) = a1(X) = a2(X) = X, that is

X ′′ +X
(
X ′)2 +XX ′ +X = 0. (3.11)

By Proposition 3.1 we find that (3.11) results in a Sundman symmetry of the form (3.9)-
(3.10) with

P =
√
F 2 + 1, Ψ =

F√
F 2 + 1

.

Thus

F (x̃, t̃) =
√
F 2(x, t) + 1, G(x̃, t̃) dt̃ =

G(x, t)F (x, t)√
F 2(x, t) + 1

dt

is the Sundman Symmetry for the equation

ẍ+
(
Fxx

Fx
− Gx

G
+ F

)
ẋ2 +

(
2
Fxt

Fx
− Gx

G

Ft

Fx
− Gt

G
+ FG+ 2FFt

)
ẋ

+
Ftt

Fx
− Gt

G

Ft

Fx
+
GFFt

Fx
+
FF 2

t

Fx
+
FG2

Fx
= 0, (3.12)

where F and G are those functions in the generalised Sundman transformation (1.1) which
transforms (3.12) to (3.11). Let

F (x, t) = x, G(x, t) = 1,

i.e. the identity transformation (X = x, T = t). Then the the autonomous equation (3.11)
transforms to itself, i.e.

ẍ+ xẋ2 + xẋ+ x = 0, (3.13)

and the Sundman symmetry for (3.13) takes the form

x̃ =
√
x2 + 1, t̃ =

∫
x√
x2 + 1

dt.

Let, for example,

F (x, t) = x, G(x, t) = xt.

Then (3.12) takes the form

ẍ+
(
x2 − 1
x

)
ẋ2 +

(
x2t2 − 1

t

)
ẋ+ x3t2 = 0 (3.14)

for which the Sundman symmetry is then

x̃ =
√
x2 + 1, t̃ =

√
2

(∫
x2t

x2 + 1
dt

)1/2

.
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The first integral of (3.11) can easily be calculated by the method described in [4]. We
obtain

I1 =
1
2
X2 +

1
2
ln

((
X ′ +

1
2

)2

+
3
4

)
− 1√

3
tan−1

(
2√
3

(
X ′ +

1
2

))
. (3.15)

A t-dependent first integral of (3.14) is then obtained by transforming (3.15) by the gen-
eralised Sundman transformation

X = x, dT = xt dt. (3.16)

The first integral, (3.15), can be integrated parametrically by the following method.
Consider a first-order equation of the form

H

(
x(t),

dx

dt

)
= 0. (3.17)

Let x(t) = f(τ), dx/dt = g(τ), τ = τ(t), where f and g satisfy the algebraic relation

H (f(τ), g(τ)) = 0

and τ is a parameter. By

dx

dt
=
df

dτ

dτ

dt

it follows that

g(τ) =
df

dτ

dτ

dt
, i.e.

∫
dt =

∫
df(τ)
dτ

1
g(τ)

dτ + C,

where C is a constant of integration. The general parametric solution of (3.17) is then

x(τ) = f(τ)

t(τ) =
∫
df(τ)
dτ

1
g(τ)

dτ + C (3.18)

H (f(τ), g(τ)) = 0

By the method outlined above we integrate the first integral (3.15) parametrically to
obtain the general solution of (3.11) in the form

X(τ) =
[
2I1 − ln

(
τ2 +

3
4

)
+

2√
3
tan−1

(
2√
3
τ

)]1/2

(3.19)

T (τ) = C1 − 4√
3
tan−1

(
2√
3
τ

)
, (3.20)

where τ ∈ � is a parameter and I1, C1 are two arbitrary constants. The solution to (3.14)
is then obtained by the transformation (3.16) with

dT =
dT

dτ
dτ
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and by the parametric solution (3.19) and (3.20). We obtain the general solution of (3.14)
in parametric form as

x(τ) = X(τ)

t(τ)2 = −2
∫ (

8
[
2I1 − ln(τ2 + 3/4) + (2/

√
3) tan−1(2τ/

√
3)

]−1/2

4τ2 + 3

)
dτ + C2,

where τ ∈ � is a parameter and I1, C2 are two arbitrary constants.

We give the following two Propositions without further comments on their proofs:

Proposition 3.2: Consider (3.1) with a1 = 0, that is

X ′′ + a2(X)
(
X ′)2 + a0(X) = 0. (3.21)

The equation

ẍ+ Λ2ẋ
2 + Λ1ẋ+ Λ0 = 0, (3.22)

which can be transformed to (3.21) under (1.1), where

Λ2(F,G;x, t) =
Fxx

Fx
− Gx

G
+ a2(F )

Λ1(F,G;x, t) = 2
Fxt

Fx
− Gx

G

Ft

Fx
− Gt

G
+ 2a2(F )Ft (3.23)

Λ0(F,G;x, t) =
Ftt

Fx
− Gt

G

Ft

Fx
+ a2(F )

F 2
t

Fx
+ a0(F )

G2

Fx
,

admits a Sundman symmetry of the form (2.3) if and only if P and Q are given by

P = P (F ), Q = GΨ(F ) (3.24)

and P , Ψ, a2 and a0 satisfy the following conditions:

a0

(
P (F )

)
Ψ2(F ) = a0(F )

dP

dF
(3.25)

Ψ(F )
d2P

dF 2
− dΨ
dF

dP

dF
+ a2

(
P (F )

)
Ψ(F )

(
dP

dF

)2

− a2(F )Ψ(F )
dP

dF
= 0. (3.26)

The Sundman symmetry of (3.22) is therefore of the form

F (x̃, t̃) = P
(
F (x, t)

)
(3.27)

G(x̃, t̃) dt̃ = G(x, t)Ψ
(
F (x, t)

)
dt, (3.28)

where conditions (3.25) and (3.26) must be satisfied.
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Proposition 3.3: Consider (3.1) with a2 = 0, that is

X ′′ + a1(X)X ′ + a0(X) = 0. (3.29)

The equation

ẍ+ Λ2ẋ
2 + Λ1ẋ+ Λ0 = 0, (3.30)

which can be transformed to (3.29) under (1.1), where

Λ2(F,G;x, t) =
Fxx

Fx
− Gx

G

Λ1(F,G;x, t) = 2
Fxt

Fx
− Gx

G

Ft

Fx
− Gt

G
+ a1(F )G (3.31)

Λ0(F,G;x, t) =
Ftt

Fx
− Gt

G

Ft

Fx
+ a1(F )

GFt

Fx
+ a0(F )

G2

Fx

admits a Sundman symmetry of the form (2.3) if and only if

P = P (F ), Q = G
dP

dF
(3.32)

a0(F ) = λa1(F ) (3.33)

a1

(
P

)dP
dF

= a1(F ). (3.34)

Here λ is an arbitrary nonzero constant and P an arbitrary differentiable function of F .
The Sundman symmetry of (3.30) is therefore of the form

F (x̃, t̃) = P
(
F (x, t)

)
(3.35)

G(x̃, t̃) dt̃ = G(x, t)
dP

dF

(
F (x, t)

)
dt, (3.36)

where (3.33) and (3.34) must be satisfied.

Example 3.2: By Proposition 3.2 we find that

X ′′ −X−1
(
X ′)2 −X2 = 0

results in a Sundman symmetry of the form (3.27)-(3.28) with

P = c2(c2F + c1), Ψ =
F

c2F + c1
,

where c1 ∈ � and c2 ∈ �\0.

Example 3.3: By Proposition 3.3 we find that

X ′′ + λ1X
nX ′ + λ2X

n = 0
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results in a Sundman symmetry of the form (3.35)-(3.36) with

P (F ) = (Fn+1 + c1)1/(n+1)

where n ∈ Q\{−1}, λ1, λ2 ∈ �\0 and c1 ∈ �.

The second-order linearisable case: By Proposition 3.3 we have

Corollary 3.1: Every second-order ordinary differential equation which can be trans-
formed to

X ′′ = 0 (3.37)

under the generalised Sundman transformation (1.1) admits the Sundman symmetry (3.35)-
(3.36), that is

F (x̃, t̃) = P
(
F (x, t)

)

G(x̃, t̃) dt̃ = G(x, t)
dP

(
F (x, t)

)
dF

dt,

with no further conditions on the differentiable function P .

Example 3.4: Consider the second-order equation

ẍ− 2
x
ẋ2 +

2
t2
x = 0. (3.38)

Duarte et al [3] showed that (3.38) can be linearised to (3.37) by the generalised Sundman
transformation

X = t3x3/2, dT = tx5/2dt. (3.39)

By Proposition 3.3 the Sundman symmetry for (3.38) is of the form (3.35)-(3.36) with
F = t3x3/2 and G = tx5/2, which may be written as

t̃ =
(
c− 3

∫
dP

dF
P−5/3tx5/2dt

)−1/3

, x̃ = P 2/3

(
c− 3

∫
dP

dF
P−5/3tx5/2dt

)2/3

,

where P = P (F ) is an arbitrary function and c an arbitrary constant. Let, for example,
P (F ) = F−1. Then the Sundman symmetry takes the form

t̃ =
(
c− 3

∫
x2dt

)−1/3

, x̃ = t−2x−1

(
c− 3

∫
x2dt

)2/3

.

Finally we map the special solution of (3.37) to the general solution of (3.38) by (3.39).
Consider the following special solution of (3.37):

X(T ) = c1T. (3.40)

The generalised Sundman transformation (3.39) can be written in the form

X = t3x3/2, X−5/3 dT = t−4 dt
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which by invoking (3.40) the second part becomes

T =
1
c1
t3x3/2

∫
(c1T )−5/3 dT = −1

3
t−3 +

2c1
9
a,

where a is a constant of integration. The general solution of (3.38) follows, namely

x(t) =
9

2c1
t

at3 + 1
.

We mention that (3.38) can also be linearised to (3.37) by the point transformation [3]

X(T ) = xt2, T =
x

t
.

4 Sundman symmetries for third-order equations

We consider the following class of third-order autonomous equations

X ′′′ + a5(X)X ′′ + a4(X)X ′X ′′ + a3(X)
(
X ′)3 + a2(X)

(
X ′)2

+a1(X)X ′ + a0(X) = 0, (4.1)

where aj (j = 0, 1, . . . , 5) are differentiable functions which are to be determined such that
(4.1) admit nontrivial Sundman symmetries. For this purpose we have the following

Proposition 4.1: Equation

...
x + Λ5(x, t)ẍ+ Λ4(x, t)ẋẍ+ Λ3(x, t)ẋ3 + Λ2(x, t)ẋ2

+Λ1(x, t)ẋ+ Λ0(x, t) = 0, (4.2)

which can be transformed to (4.1) under (1.1), where

Λ5(x, t) = 3
Fxt

Fx
− 3

Gt

G
− Ft

Fx

Gx

G
+ a4(F )Ft + a5(F )G

Λ4(x, t) = −4
Gx

G
+ 3

Fxx

Fx
+ a4(F )Fx
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Λ3(x, t) =
Fxxx

Fx
+ 3

(
Gx

G

)2

− 3
Fxx

Fx

Gx

G
− Gxx

G
+ a4(F )Fxx − a4(F )

FxGx

G

+a3(F )F 2
x

Λ2(x, t) = 3
Fxxt

Fx
+ 3

Ft

Fx

(
Gx

G

)2

− 6
Fxt

Fx

Gx

G
− 3

Fxx

Fx

Gt

G
+ 6

Gx

G

Gt

G

−Ft

Fx

Gxx

G
− 2

Gxt

G
− 2a4(F )

FtGx

G
+ 3a3(F )FtFx − a4(F )

FxGt

G

+a2(F )FxG+ a5(F )
GFxx

Fx
+ a4(F )

FtFxx

Fx
+ 2a4(F )Fxt − a5(F )Gx (4.3)

Λ1(x, t) = 3
(
Gt

G

)2

+ 3
Fxtt

Fx
− 3

Ftt

Fx

Gx

G
− 6

Fxt

Fx

Gt

G
+ 6

Ft

Fx

Gx

G

Gt

G
− 2

Ft

Fx

Gxt

G

−Gtt

G
− 2a4(F )

FtGt

G
− a4(F )

F 2
t

Fx

Gx

G
+ 2a5(F )

GFxt

Fx
+ a4(F )Ftt

−a5(F )
GxFt

Fx
+ 2a2(F )FtG+ 3a3(F )F 2

t − a5(F )Gt + a1(F )G2

+2a4
FtFxt

Fx

Λ0(x, t) = −Ft

Fx

Gtt

G
− 3

Ftt

Fx

Gt

G
+
Fttt

Fx
+ 3

Ft

Fx

(
Gt

G

)2

+ a2(F )
GF 2

t

Fx
+ a3(F )

F 3
t

Fx

−a5(F )
GtFt

Fx
+ a1(F )

G2Ft

Fx
+ a5(F )

GFtt

Fx
+ a4(F )

FtFtt

Fx
+ a0(F )

G3

Fx

−a4(F )
F 2

t

Fx

Gt

G
,

admits a Sundman symmetry of the form (2.3) if and only if P and Q are given by

P = P (F ), Q = GΨ(F ) (4.4)
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and P , Ψ, a5, a4, a3, a2, a1 and a0 satisfy the following conditions:

a0(F )
dP

dF
− a0(P )Ψ3 = 0 (4.5)

a1(F ) − a1(P )Ψ2 = 0 (4.6)

a5(F ) − a5(P )Ψ = 0 (4.7)

1
3
a5(F )Ψ−1 dΨ

dF
+ a2(P )Ψ

dP

dF
− 1

3
a5(F )a4(P )

dP

dF

+
1
3
a4(F )a5(F ) − a2(F ) = 0 (4.8)

3Ψ
d2P

dF 2
− 4

dΨ
dF

dP

dF
+ a4(P )Ψ

(
dP

dF

)2

− a4(F )Ψ
dP

dF
= 0 (4.9)

Ψ−1 d
2Ψ
dF 2

− 5
3
Ψ−2

(
dΨ
dF

)2

− 1
3
a4(F )Ψ−1 dΨ

dF
− da4(P )

dP

(
dP

dF

)2

(4.10)

−1
3
a4(P )2

(
dP

dF

)2

+
da4(F )
dF

+
1
3
a4(F )2 − 3a3(F ) + 3a3(P )

(
dP

dF

)2

= 0.

The Sundman symmetry of (4.2) is therefore of the form

F (x̃, t̃) = P
(
F (x, t)

)
(4.11)

G(x̃, t̃) dt̃ = G(x, t)Ψ
(
F (x, t)

)
dt, (4.12)

where conditions (4.5)-(4.10) must be satisfied.

Example 4.1: Here we list some equations and the corresponding Sundman symmetries
which were obtained by solving conditions (4.5)-(4.10) in Proposition 4.1:
a) The equation

X ′′′ − 7X−1X ′X ′′ + λ1X
2X ′ = 0

leads to a Sundman symmetry of the form (4.11)-(4.12) with

P = F−1, Ψ = F 2,

where λ1 is an arbitrary constant.
b) The equation

X ′′′ + 5X−1X ′X ′′ + λ1X
2X ′ = 0

leads to a Sundman symmetry of the form (4.11)-(4.12) with

P = (c1 + c2F
4)1/4, Ψ = F (c1 + c2F

4)−1/4,
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where λ1 and c1 are arbitrary constants and c2 is an arbitrary nonzero constant.
c) The equation

X ′′′ −X−1X ′X ′′ + λ1X
2X ′ = 0

leads to a Sundman symmetry of the form (4.11)-(4.12) with

P = (c1 + c2F
2)1/2, Ψ = F (c1 + c2F

2)−1/2,

where λ1 and c1 are arbitrary constants and c2 is an arbitrary nonzero constant.
d) The equation

X ′′′ +XX ′′ − 7X−1X ′X ′′ + 8X−2
(
X ′)3 − 2

(
X ′)2 + λ1X

2X ′ + λ0(X8 − 1) = 0

leads to a Sundman symmetry of the form (4.11)-(4.12) with

P = F−1, Ψ = F 2 or P = −F−1, Ψ = −F 2,

where λ1 is an arbitrary constant and λ0 is an arbitrary nonzero constant.
e) The equation

X ′′′ +XX ′′ − 7X−1X ′X ′′ + 8X−2
(
X ′)3 − 2

(
X ′)2 + λ1X

2X ′ = 0

leads to a Sundman symmetry of the form (4.11)-(4.12) with

P = c−1
2 F 1−k, Ψ = c2F

k,

where λ1 is an arbitrary constant, c2 is an arbitrary nonzero constant and k is an arbitrary
constant but k �= 1.
f) The equation

X ′′′ +XX ′′ − 7X−1X ′X ′′ + 8X−2
(
X ′)3 − 2

(
X ′)2

+λ1

(
X4 + c−2

2

)
X ′ + λ0

(
X8 − c−4

2

)
= 0

leads to a Sundman symmetry of the form (4.11)-(4.12) with

P = c−1
2 F−1, Ψ = c2F

2,

where λ0 and λ1 are arbitrary constants and c2 is an arbitrary nonzero constant.

A special Case: We consider Proposition 4.1 with a3 = 0 and a4 = 0 with the aim to
find Sundman symmetries for this equation. Solving conditions (4.5)-(4.10) for this case
we are led to the following

Corollary 4.1 Equation (4.2) with a3 = a4 = 0, which can be transformed to

X ′′′ + a5(X)X ′′ + a2(X)
(
X ′)2 + a1(X)X ′ + a0(X) = 0 (4.13)

under the generalised Sundman transformation (1.1), admits a Sundman symmetry of the
form (2.3) if and only if

P (F ) = c2 [αF + β]−1 + c1 (4.14)

Q(F,G) = G [αF + β]−3/2 , (4.15)
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where c1, β are arbitrary constants, c2, α are arbitrary nonzero constants and a5, a2, a1

and a0 satisfy the following conditions:

a5

(
P (F )

)
= (αF + β)3/2 a5(F ) (4.16)

a2

(
P (F )

)
= − 1

c2α
(αF + β)7/2 a2(F ) − 1

2c2
(αF + β)5/2 a5(F ) (4.17)

a1

(
P (F )

)
= (αF + β)3 a1(F ) (4.18)

a0

(
P (F )

)
= −c2α (αF + β)5/2 a0(F ). (4.19)

The Sundman symmetry of (4.2) with a3 = a4 = 0 is therefore of the form

F (x̃, t̃) = c2 [αF (x, t) + β]−1 + c1 (4.20)

G(x̃, t̃) dt̃ = G(x, t) [αF (x, t) + β]−3/2 dt, (4.21)

where conditions (4.16)-(4.19) must be satisfied.

We give some examples of equations with Sundman symmetries for Corollary 4.1.

Example 4.2: Firstly we consider

X ′′′ + λX−3/2X ′ = 0. (4.22)

By Corollary 4.1 we find the corresponding Sundman symmetry

F (x̃, t̃) = F−1(x, t), G(x̃, t̃) dt̃ = G(x, t)F−3/2 dt. (4.23)

With the identity transformation

X = x, T = t,

that is F (x, t) = x and G = 1, we obtain a Sundman symmetry for
...
x + λx−3/2ẋ = 0, (4.24)

namely

x̃ = x−1, t̃ =
∫
x−3/2 dt.

We note that the first integral

I1 = ẍ− 2λx−1/2

of (4.24) may be transformed to the first integral

I2 =
1
2
ẋ2 − xẍ− 2λx1/2

of (4.24). We remark that (4.24) is not linearisable to X ′′′ = 0 under a generalised
Sundman transformation, as can easily be verified with the conditions given in [5].
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As part of this example we also consider the Ansatz

a5 = λ5X
m, a2 = λ2X

n, a1 = λ1X
p, m, n, p ∈ Q, λ1, λ2, λ3 ∈ � (4.25)

in equation (4.13). It follows by Corollary 4.1 that the corresponding equation (4.2) admits
the Sundman symmetry (4.23) if and only if

λ2 = −1
4
λ5, m = −3

4
, n = −7

4
, p = −3

2

that is (4.2) has the form

X ′′′ + λ5X
−3/4X ′′ − 1

4
λ5X

−7/4
(
X ′)2 + λ1X

−3/2X ′ = 0.

On the other hand

X ′′′ + λX−7/4
(
X ′)2 = 0, λ ∈ �,

results in a Sundman symmetry of the form

F (x̃, t̃) = F−1(x, t)

G(x̃, t̃) dt̃ = −G(x, t)F−3/2 dt

for the corresponding equation (4.2). Note the minus sign in the last term and compare
this Sundman symmetry with the Sundman symmetry (4.23)!

The third-order linearisable case: By Proposition 4.1 we have

Corollary 4.2: Every third-order ordinary differential equation which can be transformed
to

X ′′′ = 0 (4.26)

under the generalised Sundman transformation (1.1) admits the Sundman symmetry (4.20)-
(4.21), that is

F (x̃, t̃) = c2 [αF (x, t) + β]−1 + c1 (4.27)

G(x̃, t̃) dt̃ = G(x, t) [αF (x, t) + β]−3/2 dt, (4.28)

where c1, β are arbitrary constants and c2, α are arbitrary nonzero constants.

Note that Corollary 4.2 corresponds to the observation of the Sundman symmetry for
linearisable third-order equations in [5], where we now have a more general transformtion
with arbitrary constants c1, c2, α, β.

Example 4.3: We return to equation (1.4) discussed in the Introductory Example, namely

...
x − x−1ẋẍ = 0.
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Our aim is to find the general solution for this equation from the particular solution

x = t (4.29)

and the Sundman symmetry (4.27) – (4.28). For simplicity we let β = 0. With F = x2,
G = x and (4.29) the Sundman symmetry for (1.4), namely

x̃2 = c2α
−1x−2 + c1

x̃ dt̃ = α−3/2x−2 dt,

takes the form

x̃2 = c2α
−1t−2 + c1, x̃ dt̃ = α−3/2t−2 dt. (4.30)

We insert x̃ from (4.30a) in (4.30b) and integrate to obtain

t̃ = α−1c
−1/2
2

(
ln

∣∣∣∣∣c2 + c
1/2
2 (c2 + c1αt

2)1/2

t

∣∣∣∣∣ − ln |c3|
)

(4.31)

(ln |c3| is a constant of integration) or by (4.30a) we can express t in terms of t̃ and x̃,
namely

c2
t

= c3 exp
[
αc

1/2
2 t̃

]
− c

1/2
2 α1/2x̃. (4.32)

The transformation (4.30a) is equivalent to

c22
t2

= c2αx̃
2 − c1c2α, (4.33)

which we insert in (4.32) to obtain

x̃(t̃) =
1
2

(
c1c

1/2
2 c−1

3 α1/2
)
exp

[
−αc1/2

2 t̃
]
+

1
2

(
c
−1/2
2 c3α

−1/2
)
exp

[
αc

1/2
2 t̃

]
.

We now rename the constants as follows:

αc
1/2
2 ≡ β1,

1
2
c1c

1/2
2 c−1

3 α1/2 ≡ β2,
1
2
c
−1/2
2 c3α

−1/2 ≡ β3,

and obtain the general solution of (1.4) (we drop the tilda), namely

x(t) = β2e
−β1t + β3e

β1t.

Example 4.4: Consider
...
x = a1xẍ+ a2ẋ

2 + a3x
2ẋ+ a4x

4, (4.34)

where aj are constants. By the general conditions provided in [5] we find that the only
equation of this type which linearises to (4.26) under a generalised Sundman transforma-
tion (1.1) is

...
x = λxẍ+ 2λẋ2, (4.35)
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where λ is an arbitrary constant. In fact the generalised Sundman transformation that
linearises (4.34) to (4.26) is

X =
(2λα1t+ β1)x+ 3α1

(2λα2t+ β2)x+ 3α2
(4.36)

dT = 33/2 [(2λα2t+ β2)x+ 3α2]
−3/2 dt. (4.37)

Note that α1, α2, β1, β2 are arbitrary constants, subject to the constraint

β1α2 − α1β2 �= 0,

that is
(2λα1t+ β1)x+ 3α1

(2λα2t+ β2)x+ 3α2
�= constant.

We now use (4.36)-(4.37) to obtain two independent first integrals of (4.35). We transform
the two first integrals of (4.26) which provide one t-independent and one t-dependent first
integral for (4.35), namely

I1 = xẍ− 1
2
ẋ2 − λx2ẋ (4.38)

I2 = λtẋ2 + (5λx+ 2λ2x2t)ẋ− (2λtx+ 3)ẍ− 2
3
λ2x3. (4.39)

By Corollary 4.2 the Sundman symmetry of (4.35) is

F (x̃, t̃) = c2 [αF (x, t) + β]−1 + c1

G(x̃, t̃) dt̃ = G(x, t) [αF (x, t) + β]−3/2 dt,

where

F (x, t) =
(2λα1t+ β1)x+ 3α1

(2λα2t+ β2)x+ 3α2

G(x, t) = 33/2 [(2λα2t+ β2)x+ 3α2]
−3/2

with the conditions on the constants as given in Corollary 4.2 and above.
We further remark that equation (4.35) is not listed in Chazy’s paper [1]. This is

explained by the fact that (4.35) does not pass the Painlevé test. Besides the Fuchs
indices -1 and 4, (4.35) has a noninteger Fuchs index namely 3/2 [2]. It seems that the
linearisation of (4.35) cannot be accomplished by the use of other standard transformations
[9]. We also mention that we were not able to obtain the general solution of (4.35) from
the linearisation for the reason that the combination of the two integrals (4.38) and (4.39)
leads to a first order Abel’s equation of the second kind which can be reduced to an Abel’s
equation of the first kind, neither of which we were able to solve.

As part of this example we investigate the invariance of (4.34) under the generalised
Sundman transformation (1.1) with the following result: The Chazy class of equations
(4.34) remains invariant under the generalised Sundman transformation

x̃(t̃) = F (x, t), dt̃ = G(x, t)dt (4.40)
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if and only if (4.34) takes the form

...
x = a1xẍ+ a2ẋ

2 − a1

2

(a2

3
+
a1

2

)
x2ẋ+

a2
1

48

(a2

3
+
a1

2

)
x4 (4.41)

and (4.40) takes the form

x̃(t̃) = (αt+ β)2x+
12α
a1

(αt+ β)

dt̃ = (αt+ β)−2 dt,

where a1 and α are arbitrary nonzero constants, a2 and β are arbitrary constants and

a2

a1
�= 1

3
.

For example let α = 1 and β = 0. Then (4.41) admits the discrete symmetry

x̃ = t2x+
12
a1
t, t̃ = −1

t
. (4.42)

We remark that the discrete transformation (4.42) was also obtained in [6] for a1 = 2 and
a2 = 36λ− 3 (λ an arbitrary constant) by the use of the Lie point symmetry algebra. We
further remark that for arbitrary constants a1 and a2 the maximum Lie point symmetry
generators for (4.41) are

Z0 =
∂

∂t
, Z1 = −t∂

∂t
+ x

∂

∂x

Z2 = −a1t
2

12
∂

∂t
+

(
1 +

a1xt

6

)
∂

∂x
,

whereas the maximum Lie point symmetry generators for (4.34) are

Z0 =
∂

∂t
, Z1 = −t∂

∂t
+ x

∂

∂x

for arbitrary constants a1, a2, a3 and a4.

In the final example we consider an inverse problem: We start with a first integral of
the order two, write the third-order equation which admits this first integral, construct a
Sundman symmetry for the resulting equation and use this Sundman symmetry to find a
second independent first integral. We then introduce a generalised Sundman transforma-
tion to obtain a class of third-order equations all of which admit a Sundman symmetry
and two first integrals.

Example 4.5: Consider

I1 = X ′′ + λX−1
(
X ′)2

, (4.43)

where λ is an arbitrary constant with λ /∈ {−3/2, −1/2}. By differentiating (4.43) we
obtain the equation which admits (4.43) as a first integral, namely the equation

X ′′′ + 2λX−1X ′X ′′ − λX−2
(
X ′)3 = 0. (4.44)
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By Proposition 4.1 equation (4.44) leads to a Sundman Symmetry of the form (2.3) with

P = c1F
−1, Q = c2GF

−3/2−λ, (4.45)

where c1 and c2 are arbitrary nonzero constants. With the identity transformation

X = x, T = t,

that is F = x and G = 1, equation (4.44) transforms to itself, i.e.
...
x + 2λx−1ẋẍ− λx−2ẋ3 = 0. (4.46)

Thus corresponding to this identity transformation the Sundman symmetry of (4.44) (or
equivalently (4.46)) is

X̃ = X−1, dT̃ = X−3/2−λ dT. (4.47)

We transform the first integral (4.43) of (4.44) by (4.47) to obtain the second independent
first integral of (4.44), namely

I2 = X2λ+1

(
X ′′ − 1

2
X−1

(
X ′)2

)
.

We now consider the generalised Sundman transformation

X = xn, dT = xm dt, n ∈ Q\0, m ∈ Q
for (4.44) to obtain

...
x + px−1ẋẍ+ qx−2ẋ3 = 0, (4.48)

where p and q are constants which are related to m and n as follows:

n =

√
(p− 1)2 − 8q

2λ+ 1

m =
1
4

(
2λ+ 3
2λ+ 1

)√
(p− 1)2 − 8q − 1

4
(p+ 3) .

Equation (4.48) admits the two first integrals

I1 = xn−2m−1
[
ẍ+ (n−m+ λn− 1)x−1ẋ2

]

I2 = x2n(λ+1)−2m−1

[
ẍ− 1

2
(2m− n+ 2)x−1ẋ2

]

and the Sundman symmetry

x̃ = x−1, t̃ =
∫
x2m−λ−3n/2 dt.

For example let λ = 1/2, p = −1 and q = −3/2. Then

...
x − x−1ẋẍ− 3

2
x−2ẋ3 = 0
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is transformed to

X ′′′ +X−1X ′X ′′ − 1
2
X−2

(
X ′)3 = 0

by the generalised Sundman transformation

X = x2, dT = x3/2 dt

and admits the Sundman symmetry

x̃ = x−1, t̃ =
∫
x−1/2dt.

5 Concluding remarks

In this article we have shown that Sundman symmetries are admitted by a large class
of second-order and third-order ordinary differential equations, even where these equa-
tions are not linearisable by a generalised Sundman transformation. We presented several
Propositions by which one is able to construct Sundman symmetries of nonlinear ordi-
nary differential equations and we gave many examples of equations and their Sundman
symmetries which follow from these Propositions. The variety of equations which admit
Sundman symmetries is quite remarkable. In some cases there exist even infinitely many
nontrivial Sundman symmetries. It is currently not clear to us what the connections are,
if any, between the Sundman symmetries and the Lie (point or contact) symmetries of the
equations, especially due to the nonlocal structure of the Sundman symmetries.

We have shown that the Sundman symmetries can successfully be applied to trans-
form first integrals to new first integrals which may lead to the general solution of the
corresponding equations. We have also shown that generalised Sundman symmetries can
be used to map special solutions to general solutions. An interesting example is the lin-
earisation of the Chazy-type equation (4.35), which shows that the generalised Sundman
transformation does not preserve the Painlevé property nor does it preserve the Lie sym-
metry structure of the equations.

It would be useful to ‘invert’ the conditions on the Λ’s given in each Proposition, to
obtain necessary and sufficient conditions for a given second- or third-order ordinary dif-
ferential equation for which the equations are transformable under a generalised Sundman
transformation to the autonomous equations given in the Propositions and hence pro-
vide the equations with a Sundman symmetry. This was done for the case of linearisable
third-order ordinary differential equations in [5]. For a general classification of equations
and their Sundman symmetries it is necessary to obtain the analogue results for each
Proposition given here.
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