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Abstract

We consider the general properties of the quasispecies dynamical system from the
standpoint of its evolution and stability. Vector field analysis as well as spectral
properties of such system have been studied. Mathematical modeling of the system
under consideration has been performed.

1 Introduction

This article is devoted to the theoretical study of a self-organization problem of an ensemble
of interacting species and to developing a model of a naturally fitted coevolving ecosystem.
It is well known since Eigen’s work on replicating molecules [1] that the quasispecies
approach is very fruitful for modeling the fundamental behavior of evolution (See, for
example [2, 4, 5, 6, 7]). Despite a huge amount of papers devoted to this problem, biological
evolution is so complex that we are still far from understanding real biological processes of
self-organization. The matter is that real experiments and obtained data on the evolution
of primitive systems need a comprehensive theoretical description that would allow one
to explain these data and put them into a proper context. In this case the central place
is given to the investigation of intrinsic properties of a nonlinear system which describes
the system evolution. We direct our attention to Eigen’s approach and will establish some
new but very important mathematical properties of the system which could be useful for
modeling many co-evolving ecosystems. In part we will use an approach devised in [8] for
describing similar systems evolution.

We start our analysis of quasispecies dynamics in molecular evolution with a discussion
of the background of modeling aspects which appear to be very important for further
study. The first principle of modeling such types of dynamics is based on a probability
consideration of molecular replicator processes, which are well described by the resulting
quasispecies concentration vector x ∈ [0, 1]n, where n ∈ Z+ is a number of species, being
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normalized by the full probability condition
n
∑

j=1
xj = 1. The latter condition is fundamental

to ensuring the full molecular number concentration and will play, in what follows, an
important role. Moreover, the set of such vectors x ∈ En in the Euclidean space En

forms the algebraic simplicial submanifold Sn−1 ⊂ En on which in reality the studied
dynamics holds. For it to be described analytically, it is natural to consider a representative
symmetric matrix P ∈EndEn, such that P = f ⊗ f, < f, f >= 1, for some vector f ∈ En

modeling the resulting replicator dynamics and simultaneously ensuring two constraints:
life on the simplex Sn−1 and conservation of the initial molecular system information
during its replicator evolution. In general, such a dynamics can be represented in the
following form:

P (t) = U(t)P (0)V −1(t),

with evolution parameter t ∈ R, for some invertible mappings V,U : R → GL(En), where
P (0) ∈EndEn is an initial molecular dynamics state. Below we consider the symmetric
replicator dynamics, whose inverse replicator process matrix V ∈ GL(En) has to coincide
with the forward replicator process matrix U ∈ GL(En), that is U ≡ V holds. As a result,
our dynamics is representable as

P (t) = U(t)P (0)U−1(t) (1.1)

for all moments of time t ∈ R. Assuming smooth dependence of (1.1) on t ∈ R, one easily
derives that the following Lax type dynamics

dP/dt = [Λ, P ] (1.2)

holds, where by definition, the matrix Λ = dU/dtU−1. For the matrix P ∈EndEn to
conserve its symmetry, the matrix Λ ∈EndEn must be evidently skew-symmetric, that is
Λ = −Λ∗ in En.

We return now to analyzing the intrinsic structure of our matrix P ∈EndEn, modeling
the replicator dynamics under consideration. From the general form (1.2) one sees that our
dynamics possesses a priori so called trace-invariants, namely, all quantities SpPm are such
for any m ∈ Z , where Sp :EndEn → R is the standard matrix trace operator. This fact
may be naturally used within our modeling approach. Consider a representative vector
f ∈ En in the following form: f = {√xi ∈ R : i = 1, n}. Then, the condition < f, f >=
n
∑

j=1
xj = 1 is satisfied due to the equality SpP =

n
∑

j=1
xj and the fact that the latter quantity

is conserved. Since P 2 = P , all of the other invariants are the same, introducing into the
dynamics no additional constraint. Thus, we have naturally imbedded our molecular
replicator dynamics initially in the space of concentration vectors x ∈ Sn−1 ⊂ En into the
matrix phase space P∋P of symmetric projector mappings of co-dimension one, that is
P = P ∗ and dim(ImP ) = 1. The latter phase space P is a Grassmann manifold possessing
many important intrinsic mathematical properties, which we shall use to obtain a deeper
analysis of the molecular replicator dynamics.

Consider an evolution equation modeling our molecule replicator dynamics in the gen-
eral matrix Lax type form (1.2), where Λ(x) = {Λjk : j, k = 1, n} is a certain matrix
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depending on variables x = {xi ∈ R+ : i = 1, n} and P = {√xjxk : j, k = 1, n}. In this
case as the matrix P symmetric, it is evident that the matrix Λ must be skew-symmetric.
Below we will focus on processes similar to quasispecies dynamics considered in [1, 2].
Since we will consider x ∈ [0, 1]n as a concentration vector of quasispecies, it has to be
nonnegative for all time, so the system (1.1) now is defined on the nonnegative orthant
R
n
+ = {x ∈ R

n : xi ≥ 0} .
Let us now suppose a system evolves due to the Eigen positive feedback associated with

the terms corresponding to the increase of concentrations xj, j = 1, n :

dxj/dt =

n
∑

k=1

ajkxkRk(x) − Fj(x), (1.3)

where an element ajk expresses the probability that a molecule k copies into a molecule j
and Fj(x) denotes the corresponding inverse sink term. In turn the element ajj gives the
probability that a molecule j replicates faithfully, Rk(x) is the fitness of the molecules of
k type and characterizes its replication rate.

We have to determine the sink term Fj(x), j = 1, n , in order to fulfill the governing
condition on the dynamics determined on the (n − 1) dimensional simplex

Sn−1 =

{

x ∈ R
n
+ :

n
∑

i=1

xi = 1

}

. (1.4)

In order to get the corresponding source term in the equation (1.3) let us determine
elements Λjk, j, k = 1, n of the skew symmetric matrix Λ in (1.1) as

Λjk =
1

2

[

ajk

√

xk/xjRk(x) − akj

√

xj/xkRj(x)

]

, (1.5)

It is easy to observe here that there exists the matrix Λ = {1
2ajk

√

xk/xjRk(x) : j, k =

1, n}, such that Λ = Λ − Λ
∗
. Substituting expression (1.5) into (1.1) we get that Fj(x) =

xjRj(x)
n
∑

k=1

akj, j = 1, n. As a result the governing equation for the quasispecies dynamics

takes the form:

dxj/dt =
n

∑

k=1

ajkxkRk(x) −
n

∑

k=1

√
xjxkakj

√

xj/xkRj(x)

=
n

∑

k=1

ajkxkRk(x) − xjRj(x)
n

∑

k=1

akj

=
n

∑

k 6=j

(ajkxkRk(x) − xjRj(x))akj (1.6)

It is easy to see after summing up equations (1.6) that

n
∑

j

dxj/dt = 0,
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meaning in this case that the evolution dynamics actually occurs on the simplex (1.4).
It should be mentioned that the system (1.6) is somewhat different from systems con-

sidered in a set of papers [2, 3, 4, 5, 6, 7] mainly by sink terms. But only such a form of

the sink term ensures the important simplex condition
n
∑

j

xj = 1 for all t ∈ R, without

additional constraints involved in the model.
Note here that, the system (1.6) is really representable in the evolution form (1.1)

that can be checked easily, and the matrix P ∈EndR
n is a one-dimensional symmetric

projector, that is P 2 = P, P ∗ = P for t ∈ R, which is important for our further study of
the structure of the vector field (1.1) on the corresponding projector matrix manifold P
[10, 11]. The component vector form of the system (1.6) can be also represented as

dx/dt = AR(x)x−BR(x)x. (1.7)

with A = {ajk : j, k = 1, n}, B = diag

{

n
∑

k=1

akj : j = 1, n

}

, and R(x), x ∈Sn−1 being

a fitness matrix expression. If the fitness matrix R(x), x ∈Sn−1 is diagonal, that is
R = R̄ = diag

{

R̄j : j = 1, n
}

and does not depend on x ∈Sn−1, the system (1.7) evidently
will be linear. Thereby the solution of such a system can be obviously represented as

x(t) = x(0) exp[(A − B)R̄]t,

where x(0)∈Sn−1 is an initial concentration of population of each type.

2 Vector field analysis: imbedding into gradient structure

Since our system dynamic flow (1.2) in reality lives on the projector matrix of the Grass-
mann manifold P∋P [12], all its properties can be naturally extracted from a deeper
analysis of its structure on this manifold. In particular, it is important to know where
the vector field (1.6) admits the structure of gradient type endowed with some Lyapunov
function, ensuring the existence of stable states on the compact Grassmann manifold P.
In order to study the gradient field structure of the flow (1.1) if any on the projector ma-
trix manifold P∋P let us consider a smooth functional Ψ : P →R, whose usual variation
is given as

δΨ(P ) := Sp(DδP ) (2.1)

with a symmetric matrix D ∈EndEn and Sp:EndEn→R
1 being as before the standard

matrix trace. Taking into account the natural metrics on P, we consider the projection
∇ϕΨ of the usual gradient vector field ∇Ψ upon the tangent space T (P) under the following
conditions:

ϕ(X;P ) := Sp(P 2 − P,X) = 0, Sp(∇ϕ,∇ϕΨ) |P= 0, (2.2)

holding on P for all X ∈EndR
n. The first condition is evidently equivalent to P 2 −P = 0,

that is P ∈ P. Thereby we can formulate the following result.
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Statement 1. The functional gradient ∇ϕΨ(P ), P ∈ P under the condition (2.2) admits
the following commutator Lax type representation:

∇ϕΨ(P ) = [Λ, P ]

with Λ ∈endEn being a skew-symmetric matrix satisfying the commutator equation

Λ = [D,P ],

where D is a symmetric matrix.

Consider the projection of the usual gradient ∇Ψ(P ) upon the tangent space T (P) of
the Grassmann manifold P with P ∈ P imbedded into EndEn:

∇ϕΨ(P ) = ∇Ψ(P ) −∇ϕ(Q;P ), (2.3)

where Q ∈EndEn is some still unknown matrix. Taking into account the conditions (2.2),
we find that

∇ϕΨ(P ) = D − Q − P (D − Q) − (D − Q)P + PD + DP

= PD + DP + 2PQP, (2.4)

where we made use of the relationships

∇ϕΨ(P ) = D − Q + PQ + QP

and

P (D − Q) + (D − Q)P + 2PQP = D − Q.

Now one can easily see from (2.4) and the second condition in (2.3), that

PQP = −PDP (2.5)

for all P ∈ P, giving rise to the final result

∇ϕΨ(P ) = PD + DP − 2PDP, (2.6)

coinciding exactly with the commutator [[D,P ], P ]. Since the matrix

Λ = Λ̄ − Λ̄∗ = DP − PD

one gets right away that

Λ̄ = DP + S (2.7)
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with S = S∗ ∈EndEn. If there exist matrices D and S ∈EndEn such that (2.7) is
satisfied, then our model will be evidently of gradient type. In particular, the matrix
D ∈EndEn found from (2.7) must satisfy the Volterra criteria D′(P ) = D′∗(P ) for any
P ∈ P imbedded into EndEn.

It should be noted here that the Grassmann manifold P is also a symplectic manifold
[10, 11] whose canonical symplectic structure is given by the expression:

ω(2)(P ) := Sp(PdP ∧ dPP ), (2.8)

where dω(2)(P ) = 0 for all P ∈ P, and the differential 2-form (2.8) is non-degenerate
[10, 12] upon the tangent space T (P).

Let us assume now that ξ : P →R is an arbitrary smooth function on P. Then the
Hamiltonian vector field Xξ : P →T (P) on P generated by this function subject to the
symplectic structure (2.8) is given as follows:

Xξ = [[Dξ, P ], P ] (2.9)

where Dξ ∈EndEn is a certain symmetric matrix. The vector field Xξ : P →T (P) gener-
ates on the compact manifold P the flow

dP/dt = Xξ(P ), (2.10)

which is defined globally for all t ∈ R. This flow by construction is evidently compatible
with the projector condition P 2 = P . This means in particular that the condition

−Xξ + PXξ + XξP = 0 (2.11)

holds on P. Thus, it is possible to formulate the following result. Dynamical system
(1.2) being considered on the Grassmann manifold P can be Hamiltonian that makes it
possible to formulate the following statement.

Statement 2. A gradient vector field of the form (2.9) on the Grassmann manifold P is
Hamiltonian with respect to the canonical symplectic structure (2.8) and a certain Hamil-
tonian function ξ : P ⊂endEn→R, satisfying conditions

∇ξ(P ) = [Dξ , P ] − Z + PZ + ZP,

∇ξ′(P ) = ∇ξ′∗(P ), Dξ = D

for some matrix Z ∈EndEn for all P ∈ P ⊂En.

Consider now the (n − 1)-dimensional simplex Sn−1 as a Riemannian space

Mn−1
g = {Sn−1}

with the metric
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ds2(x) := d2Ψ |P (x) =

n
∑

i,j=1

gij(x)dxidxj |P ,

where for i, j = 1, n, gij(x) = ∂2Ψ(x)
∂xi∂xj

,
n
∑

i=1
xi = 1.

Relative to the metrics on Mn−1
g we can calculate the gradient ∇gΨ of the function

Ψ : P →R and set on Mn−1
g the gradient vector field

dx/dt = ∇gΨ(x), (2.12)

with x∈Mn−1
g ; that is, the condition

n
∑

i=1
xi = 1 is satisfied a priori. Having calculated

(2.12), we can formulate the next statement.

Statement 3. The gradient vector fields ∇ϕΨ on P and ∇gΨ on Mn−1
g are equivalent,

or in another words, the vector fields

dx/dt = ∇gΨ(x) (2.13)

and

dP (x)/dt = [[D(x), P (x)] , P (x)] (2.14)

generate the same flow on Mn−1
g .

As a result from the Hamiltonian property of the vector field ∇ϕΨ on the Grassmann
manifold P we obtain result.

Statement 4. The gradient vector field ∇gΨ (2.12) on the metric space Mn−1
g where

n = 2m + 1 is Hamiltonian with respect to the non-degenerate symplectic structure

ω(2)
g (x) := ω(2)(P ) |

Mn−1
g

(2.15)

for all x∈M2m
g with a Hamiltonian function ξψ : M2m

g → R, where ξψ := ξ |
Mn−1

g
, ξ : P →R

is the Hamiltonian function of the vector field Xξ (2.9) on P. Otherwise, if n ∈ Z+ is
arbitrary our two flows (2.13) and (2.14) are only Poissonian on P.

3 Spectral properties

Consider the eigenvalue problem for a matrix P ∈ P, depending on the evolution parameter
t ∈ R:

P (t)f = λf, (3.1)
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where f ∈ R
n is an eigenfunction, and λ ∈ R is a real eigenvalue since P ∗ = P , i.e. matrix

P ∈ P is symmetric. It is seen from the expression P 2 = P that specP (t) = {0, 1} for
all t ∈ R. Moreover, taking into account the invariance of SpP = 1 we can conclude that
only one eigenvalue of the projector matrix P (t), t ∈ R, is equal to 1, all others being
equal to zero.

In general, the image ImP ⊂ R
n of the matrix P (t) ∈ P for all t ∈ R is k−dimensional,

k = rankP, and the kernel KerP ⊂ R
n is (n−k)-dimensional, where k ∈ Z+ is a constant,

not depending on t ∈ R. As a consequence we establish that at k = 1 there exists a
unique vector f0 ∈ R

n/(KerP ) for which

Pf0 = f0. (3.2)

Due to the statement above for a projector P ∈EndEn we can write down the following
expansion in the direct sum of mutually orthogonal subspaces: En =KerP⊕ImP.

Take now f0 ∈ R
n satisfying the condition (3.2). Then in accordance with (2.13) the

next statement holds.

Statement 5. The vector f0 ∈ En satisfies the following evolution equation:

df0/dt = [D(x), P (x)] f0 + C0(t)f0, (3.3)

where C0 : R→R is a certain function depending on the choice of the vector f0 ∈ImP .

At some value of the vector f0 ∈ImP we can evidently ensure the condition C0 ≡ 0
for all t ∈ R. Moreover one easily observes that for the matrix P (t) ∈ P one has
[11] the representation P (t) = f0 ⊗ f0, 〈f0, f0〉 = 1, giving rise to the system (1.6) if
f0 :=

{√
xj ∈ R+ : j = 1, n

}

∈ En.

4 Discussion of the quasispecies dynamics

Quasispecies dynamics is very interesting for researchers and there are a lot of papers
devoted to its computer simulation [2, 4, 5, 6, 7]. In order to single out the character-
istic features of the model stated above, let us write down the model typically used for
quasispecies dynamics. In vector form such a model can be written as

dx/dt = (AR− < R >)x (4.1)

where R = diag
{

R̄j : j = 1, n
}

is the diagonal matrix with the Malthusian fitness values,
< R >:=

∑n
i=1 R̄ixi. The diagonal elements ajj, j = 1, n, of the matrix A = {ajk : j, k =

1, n} correspond to the self-replication process, and nondiagonal - to mutation. In order to

fulfill the simplex condition we have to put [2, 4, 5] for each column ajj = 1−
n
∑

k=1

akj, j =

1, n, hence the column sum will give rise to unity. In contrast to (4.1) in our model (1.6)
we do not require such a constraint in order to satisfy the simplex condition.
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Figure 1. Quasispecies dynamics as a results of computer simulation of the equation (4.1) - a

and our model (1.6) - b. Initial conditions: x = (0.2; 0.45; 0.1; 0.25)T

The mutation matrix A in our model has to be nondiagonal. The choice of matrix A
specifies the generation and recombination rates among different molecules in chemical
process. A very interesting application of the model stated in the papers [2, 4, 5] is for
describing quasispecies evolution. In the framework of this approach the bio-molecules
are considered as a bitstrings of length L. In this case we have 2L different molecules. As
a result the mutation matrix A is of huge dimension. If we consider bio-molecules with
L >> 1 this approach is not practically feasible. In this case some simplification can be
achieved when certain macromolecules are grouped together in such a way that the number
of independent variables is reduced to L+1 [9]. In the framework of this approach a certain
sequence (master sequence) is chosen beforehand and all other sequences are grouped into
error classes, according to their Hamming distance from the chosen one. Sequences which
have the same Hamming distance from the master one comprise a one error class. Such
reduction of the dimensionality makes it possible to run computer simulations that reveal
some features inherent in a real biological process. In this case we can write down the
nondiagonal elements ajk of mutation matrix A as the probability of mutation at string k
to string j

ajk = qL−Hjk(1 − q)Hjk (4.2)

where q is the probability that a particular locus of the chain is copied correctly into the
next generation, i.e. the probability of replication, (1 − q is the probability of mutation),
L is a bit string length, and Hjk is the Hamming distance between string j and k and is
defined as the number of positions, in which the two sequences differ. In order to note the
difference between two models we simulate our model for simplest case L = 3. The plot of
computer simulation with matrix given by formulae (4.2) is presented in Fig.1 (a, b). We
can easily see that even with the same initial conditions and matrix replication mutation
matrix A the results of the evolution process for the two models is quite different.

Let us find a stationary frequency distribution in the framework of the derived model
(1.6). If we set the right hand side of the equation (1.6) to zero we get for constant fitnesses
the next expression
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xj =

n
∑

k 6=j

ajkxkR̄k

R̄j

n
∑

k 6=j

akj

. (4.3)

Analyzing the expression (4.3) one can see that the values of the frequencies do not depend
on diagonal elements ajj, j = 1, n, and the replicator process in this model is determined
only by the input given by nondiagonal elements akj, k 6= j = 1, n, which is natural from
the biological point of view. If the fitness value of some species R̄j is much greater than
all of the rest fitnesses, the values of xj will be chosen less than all the others. In this
case the results obtained, for example for a single peak model landscape in the framework
of (4.1), which lead to so called “phase transition” and vanishing of the corresponding
species, called master species if ajj < 1/R̄j may be interpreted in another way [2, 4, 5].

The equation (4.3) can be evidently written as a fixed point problem x = Ãx, where

Ã = {ajkR̄k/(R̄j

n
∑

k 6=j

akj) : k, j = 1, n} with diagonal elements ajj := 0, j = 1, n. So, its

solution exists if the matrix Ã possesses the eigenvalue λ = 1, or the determinant equation
det(1− Ã) = 0, where 1 is the identity matrix, is satisfied identically. But this is true for
any matrix A and arbitrary parameters R̄j ∈ R+, j = 1, n. If this equation is not satisfied,
the process of reducing some amount of species from the system happens, that is some
of frequencies will become exactly zero and the resulting system remains to live on a
simplex of lower dimension. The latter situation can be considered as a “phase reduction”
naturally related with some threshold values of frequencies found from the determinant
equation written above, linked with the notion of “phase transition” used in the above
cited articles. This behavior is of great interest for diverse applications since it can be
interpreted as a type of simplex reduction Sn−1 → Sn−l for 1 < l < n, taking place in
some kinds of replicator dynamics models. Taking into account this aspect of these models
and their importance in studying biological replicator and other models, we plan to study
them in more detail in the near future.
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