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Abstract

We give a complete description of differential operators generating a given bracket. In
particular we consider the case of Jacobi-type identities for odd operators and brackets.
This is related with homotopy algebras using the derived bracket construction.

1 Introduction

In this paper we give a survey of results of our works [1], [2], [3] (see also [4]). Their
original motivation was to give a clear geometric picture of the relation between an odd
bracket and its “generating operator” in the Batalin-Vilkovisky formalism.

In the pioneer paper [5], for the needs of the Lagrangian quantization of gauge theories,
Batalin and Vilkovisky constructed a remarkable second-order operator on the “phase
space” of fields and antifields. One of us (H.K.) suggested a mathematical framework in
which the Batalin-Vilkovisky operator is interpreted as an invariant operator acting on
functions on an odd Poisson manifold equipped with a volume form [6]. It is nothing but
an “odd Laplace operator” associated with an odd Poisson structure in the same way as
the usual Laplacian on a Riemannian manifold is associated with a Riemannian metric,
the main difference being in the fact that on a Riemannian manifold there is a natural
volume form, while for an odd Poisson case, even if the bracket is non-degenerate (i.e., for
odd symplectic manifolds), no natural volume form exists and a volume form should be
introduced as an extra piece of data. (In a similar situation in the even Poisson geometry
a vector field rather than a second-order operator arises [7].) As it has turned out, the
bracket of functions can be recovered from the odd Laplacian, as the failure of the Leibniz
property, so the odd Laplacian ‘generates’ the odd Poisson structure. Other constructions
of a generating operator, based on a connection, have been proposed [8]. On the other
hand, physical motivations require an operator acting on half-densities (semidensities)
rather than on functions. A canonical operator on half-densities on an odd symplectic
manifold was discovered in [9, 10]. It does not require any extra structure such as a
connection or volume form. As it has turned out, on general odd Poisson manifolds the
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situation is more complicated [1]. There is no longer a unique operator on half-densities,
though the construction of a Laplace operator using a volume form is still ‘more canonical’
for half-densities than for functions or densities of any other weight, since for half-densities
this operator, as was shown in [1], depends only on the orbit of a volume form under the
action of a certain groupoid. This groupoid (called the “master groupoid” in [1]) consists
of transformations of volume forms ρ 7→ ρ′ = efρ satisfying the “master equations”
∆ρ e

f/2 = 0, thusly revealing their composition property. (One should note preliminary
results in this direction in [11], which in a hindsight can be interpreted as pointing at
half-densities.)

The results of [1] quite unexpectedly showed a similarity between odd Poisson geometry
and the usual Riemannian geometry. Certain formal properties of the Laplacian on half-
densities or densities of other weight, happen to be the same regardless of parity of the
‘bracket’ (if one views a Riemannian metric as a bracket). Physically, this points at a
formal similarity between the BV master equation on half-densities and the Schroedinger
equation, the classical master equation being analogous to the eikonal or Hamilton-Jacobi
equation [1]. In fact, for the four theories (odd/even Poisson, odd/even Riemannian
structure) defined by a rank two tensor T ab on M , analogies come in pairs, see [1].

Such a viewpoint helps, in a way, to ‘trivialize’ the original problem of the relation
between a bracket and a generating operator, by seeing it as the problem of describing all
second-order operators with a given principal symbol. (No confusion should be with the
quantization problem: the question is about one individual symbol, not about a construc-
tion for all symbols.) In such form, a solution is immediate. One only has to formulate it
geometrically. For second-order operators on functions, a piece of information necessary
to recover an operator from its principal symbol is the so called subprincipal symbol. A
good way of looking on it is to view it as a sort of connection, more precisely, an “up-
per connection” or “contravariant derivative” on volume forms, i.e., an operator mapping
them to vector fields. In a ‘bracket setup’, it can also be viewed as an extension of the
‘bracket’ of functions to a ‘bracket’ between functions and volume forms, or, using the
Leibniz rule, between functions and densities of arbitrary weight. This gives a complete
description of generating operators acting on functions.

While complete, this solution is not entirely satisfying aesthetically, since it lacks sym-
metry: to describe operators just on functions one has to consider brackets involving
densities. Also, operators, say, on half-densities must have their part in the picture.

As we showed in [2], passing from the algebra of functions to the algebra of densities
V(M) on a (super)manifold M solves all problems. The reason for this is a natural
invariant scalar product in the algebra V(M). It is possible to establish a natural one-to-
one correspondence between ‘brackets’ in this algebra and second-order operators. From
the viewpoint of M , a second-order operator in V(M) is a quadratic pencil of operators
∆w acting on densities of weight w ∈ R. A bracket in V(M) is specified by a bracket of
functions, a corresponding to it upper connection on volume forms, and one extra piece
of data similar to the familiar to physicists Brans-Dicke field of the Kaluza-Klein type
models. These results contain all previous formulae, e.g. for functions and half-densities,
and explain them.

As we said, up to a certain point there is no difference whatsoever between the case of
even operators and even brackets (which can be considered on a usual manifold) and that
of odd operators and odd brackets, necessarily on a supermanifold. Parity of a bracket
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or of its generating operator becomes essential when one wants to obtain something like
a Lie algebra. One can show that there is no way of having a Jacobi-type identity for a
symmetric even bracket (‘brackets’ coming from operators are always symmetric, possibly
in a graded sense, because they are just polarizations of quadratic forms, the principal
symbols). Therefore to make a progress in this direction one should focus on the odd case,
thus bringing us back to ‘Batalin-Vilkovisky operators’. Our technique allows to give an
exhaustive answer to the questions about the possible “Jacobi identities” involving an odd
operator together with the corresponding bracket.

From the algebraic viewpoint, identities that arise here are a particular case of more
general identities. This prompts to investigate the situation further. The bracket generated
by a second-order operator is an example of ‘derived brackets’ (see [12]; for a recent survey
see [13]). Taken with the generating operator itself, it should be viewed as a part of a
sequence of n-ary ‘brackets’, which can be defined for any operator of order N , so that
n = 0, . . . , N . (This works for even and odd operators, and this sequence of higher brackets
has the property that the k+ 1 bracket is equal to the discrepancy of the Leibniz identity
for the k-th bracket, see [14].) If one asks for suitable Jacobi identities, it is natural do it
in an abstract setup. Such a setup, called “higher derived brackets”, has been suggested
in [3]. We have shown there how simple data such as a Lie superalgebra with a projector
on an Abelian subalgebra and an odd element ∆ can produce a strongly homotopy Lie
algebra; in fact, we show how the ‘higher Jacobi identities’ are controlled by ∆2. The
situation with differential operators and the corresponding brackets is just one particular
instance of that.

The algebraic constructions of [3] make the first step of generalizing the results of [2]
to higher order operators. This should be a subject of further studies.

This paper is organized as follows. In Section 2 we formulate the problem and give
examples. In particular we review the properties of the operator ∆ρ. In Section 3 we
introduce the algebra of densities V(M) and state the main theorem about the one-to-
one correspondence between operators and brackets. In Section 4 we consider the case
of odd operators and brackets. In Section 5 we give the main results concerning higher
derived brackets. Throughout the paper we use the supermathematical conventions about
commutators, derivations, etc.; tilde is used to denote parity.

2 Main problem: operators and brackets

2.1 Setup

Let M be a supermanifold and ∆ an arbitrary second-order differential operator acting
on C∞(M). In local coordinates:

∆ =
1

2
Sab ∂b∂a + T a ∂a +R. (2.1)

The principal symbol of ∆ is the symmetric tensor field Sab, or the quadratic function
S = 1

2 S
abpbpa on T ∗M . The principal symbol can be alternatively understood as a

symmetric bilinear operation on functions:

{f, g} := ∆(fg) − (∆f) g − (−1)εf̃f (∆g) + ∆(1) fg,
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where ε = ∆̃ is the parity of the operator ∆. In coordinates

{f, g} = Sab∂bf ∂ag(−1)ãf̃ .

That {f, g} is a bi-derivation can be formally deduced from the fact that ord ∆ 6 2. In
the following by a bracket in a commutative algebra we mean an arbitrary symmetric
bi-derivation. We say that ∆ is a generating operator for the bracket {f, g}. Notice also
that {f, g} = [[∆, f ], g], where [ , ] denotes the commutator of operators.

Problem: construct a generating operator for a given bracket, i.e., reconstruct ∆ for a
given symmetric tensor field Sab; describe all generating operators ∆.

2.2 Examples

Example 2.1. Let (Sab) = (gab) = (gab)
−1, where (gab) is a Riemannian metric. The

Laplace-Beltrami operator

∆f = div grad f =
1√
g

∂

∂xa

(√
ggab ∂f

∂xb

)

,

where g = det(gab), is a generating operator for the “bracket” {f, g} = ∇f ·∇g = gab∂af∂bg

(up to a factor of 1
2). An arbitrary generating operator for this bracket has the appearance

1
2∆ +X +R, where X is a vector field, R is a scalar function.

For a degenerate gab, one has to replace
√
g by some volume density ρ. In the following

example this is always the case, even for non-degenerate matrices.

Example 2.2. Suppose now (Sab) is odd and specifies an odd Poisson bracket. Take an
arbitrary volume form ρ = ρDx. Then the operator introduced in [6],

∆ρ f = divρXf =
1

ρ

∂

∂xa

(

ρSab ∂f

∂xb

)

, (2.2)

is, up to 1
2 , a generating operator for the bracket. (We denote by Xf the Hamiltonian

vector field corresponding to f .) ∆ρ mimics the Laplace-Beltrami operator.

Unlike the classical Laplace-Beltrami above, the operator (2.2) requires a choice of ρ.
We shall study ∆ρ in more detail below, as well as give a description of all generating
operators for a given odd Poisson bracket.

Example 2.3. Rather, a counterexample. If we try to apply the same construction to an
even Poisson bracket, specified by a Poisson tensor (bivector) (P ab), which is antisymmet-
ric, then the second-order terms cancel, and we get a first-order operator

∆ρ f = divρXf =
1

ρ

∂

∂xa

(

ρP ab
) ∂f

∂xb
, (2.3)

known as a modular vector field of an even Poisson bracket (see [7]). It does not generate
the bracket.
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2.3 Properties of ∆ρ

The operator ∆ρ acting on functions on an odd Poisson manifold and depending on a
choice of volume form was introduced in [6]. (In [6], everything was formulated for odd
symplectic manifolds, but the results hold for the general Poisson case. See also [8].) From
now on we redefine ∆ρ by inserting the factor 1

2 into formula (2.2). The properties of ∆ρ

are as follows. First,

∆ρ(fg) = (∆ρ f)g + (−1)f̃f(∆ρ g) + (−1)f̃+1{f, g} .
If we change ρ, ρ 7→ ρ′ = eσρ, then ∆ρ′ = ∆ρ +1

2 Xσ. (Similar properties hold for an
even Sab = gab.) The following two properties are peculiar for an odd bracket. Holds

∆ρ{f, g} = {∆ρ f, g} + (−1)f̃+1{f,∆ρ g}.
The operator ∆2

ρ
is a Poisson vector field, and ∆2

ρ′ = ∆2
ρ
−XH(ρ′,ρ), where H(ρ′,ρ) =

e−σ/2 ∆ρ(eσ/2). See [1]. It follows that ∆2
ρ

gives a well-defined cohomology class, which
we call the modular class for an odd Poisson bracket.

2.4 ∆ρ on half-densities and the master groupoid

The action of ∆ρ extends to densities of arbitrary weight by setting ∆ρψ := ρw ∆ρ(ρ−wψ)
on w-densities. As it turns out, the case of half-densities (w = 1

2 ) is distinguished. We
have

[∆ρ, f ] = Lf +
1

2
(1 − 2w) ∆ρ f

and

∆ρ′ = ∆ρ +
1

2
(1 − 2w)Lσ − w(1 − w)H(ρ′,ρ) ,

where H(ρ′,ρ) = e−σ/2 ∆ρ(eσ/2) as above and Lf denotes the Lie derivative along a
Hamiltonian vector field Xf . Clearly w = 0, 1, 1

2 are singular values. The case w = 1
2

is distinguished by a particularly simple transformation law. On half-densities ∆ρ′ =
∆ρ +1

4 H(ρ′,ρ). It follows that the solutions of the ‘master equations’ ∆ρ e
σ/2 = 0, for

various ρ, can be composed, making a groupoid, which we call the master groupoid of an
odd Poisson manifold. On an orbit of the master groupoid, the operator ∆ρ acting on
half-densities does not depend on a volume form ρ.

In the odd symplectic case, one can show that the coordinate volume forms correspond-
ing to all Darboux coordinate systems belong to the same orbit, giving a distinguished
orbit [10], [1]. We call this the ‘Batalin-Vilkovisky Lemma’ (compare [15]). It is a proper
replacement of the Liouville theorem, which is no longer valid in the odd case. There-
fore on odd symplectic manifolds, though there is no natural volume form (and no such
a form invariant under all canonical transformations can exist), there exists a canonical
∆-operator on half-densities independent of a choice of volume form.

For operators on functions, the square ∆2
ρ
, which is a Poisson vector field in general,

also does not change on an orbit of the master groupoid. In particular, if for some ρ it
happens that ∆2

ρ
= 0, then ∆2

ρ′ = 0 for all ρ′ = eσρ such that ∆ρ e
σ/2 = 0. In the

symplectic case, such is the “Darboux coordinate orbit”. In the general odd Poisson case,
the existence of such an orbit with ∆2

ρ
= 0 is an open question.
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3 Operators in the algebra of densities

3.1 Subprincipal symbol as upper connection

Come back to a general operator (2.1) acting on functions. We can set R = ∆1 to zero
without loss of generality. Thus a reconstruction of ∆ amounts to recovering the coeffi-
cients T a. Recall the notion of Hörmander’s subprincipal symbol; in our case sub ∆ =
(∂bS

ba(−1)b̃(ε+1) − 2T a)pa. Unlike the principal symbol, sub ∆ is coordinate-dependent.

Precisely, γa = ∂bS
ba(−1)b̃(ε+1)−2T a has the transformation law γa′

=
(

γa + Sab ∂b ln J
)

∂xa
′

∂xa ,

where J = Dx′

Dx is the Jacobian. Thus sub ∆ can be interpreted as an “upper connection”
in the bundle VolM , i.e., specifying a contravariant derivative ∇aρ = (Sab∂b + γa)ρ on
volume forms. The coordinate-dependent Hamiltonian γ = sub ∆ = γapa plays the role
of a local connection form. If the matrix Sab is invertible, then we can lower the index a
to get a usual connection. (Notice that ∆ acts on scalar functions, and no extra structure
is assumed on our manifold a priori. Geometry arises just from the operator ∆.) Thus,
a second-order operator ∆ on functions (normalized by ∆1 = 0) is equivalent to a set of
data: a bracket on functions and an associated upper connection in VolM .

Alternatively, such an upper connection in the bundle VolM can be viewed as an
extension of the bracket of functions {f, g} to a ‘long’ bracket {f,ψ} where the second

argument is a volume form: {f,ψ} =
(

Sab∂bf ∂aψ(−1)ãf̃ + γa∂af ψ
)

Dx. Thus, ∆ on

functions is equivalent to a bracket on functions equipped with an extension of it to
volume forms (for one argument). Now we want to make the situation more symmetric.

3.2 Interlude: the algebra of densities

For a (super)manifold M the algebra of densities V(M) consists of formal linear com-
binations of densities of arbitrary weights w ∈ R. It contains the algebra of functions.
The multiplication is the usual tensor product. We can specify elements ψ ∈ V(M) by
generating functions ψ(x, t), which are defined on the total space of a one-dimensional
bundle M̂ over M . The algebra V(M) possesses a unit 1 and a natural invariant scalar
product given by the formula: 〈ψ,χ〉 =

∫

M Res(t−2ψ(x, t)χ(x, t))Dx. It can be viewed

as a natural generalized volume form on the supermanifold M̂ . Hence there is a canonical
divergence operator for derivations of the R-graded algebra V(M). Using it, one can clas-
sify derivations by decomposing them into the divergence-free part and the “scalar” part
(see [2]).

3.3 Main theorem

Consider brackets in the algebra V(M), i.e., symmetric bi-derivations. A bracket of weight

zero in V(M) is given by a symmetric tensor (Ŝâb̂) =
( Sab tγa

tγa t2θ

)

on M̂ . From the viewpoint

of M , the blocks of this matrix have the following meaning: Sab specifies a bracket of
functions, γa gives an associated upper connection in VolM as above, and a new bit of
data θ allows to consider brackets between volume forms, so that {Dx,Dx} = θ(Dx)2. It
is a third-order geometric object (the transformation law involves the third derivatives of
coordinates, see [2], and depends on Sab and γa), in the same way as γa is a second-order
object with the transformation law depending on Sab. So we have something like a flag.
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The component θ is completely analogous to the Brans-Dicke field g55 in Kaluza-Klein
type models.

On the other hand, let us consider differential operators in the algebra V(M). This is
stronger than simply take operators acting on densities of various weights independently.
In particular, a second-order operator of weight zero in the algebra V(M) is a quadratic
pencil of operators on w-densities of the form ∆w = ∆0 + wA+ w2B where ∆0 is a well-
defined second-order operator on functions, A and B have orders one and zero, respectively
(they do not have invariant meaning separately from ∆0). Since the algebra V(M) has
a natural invariant scalar product, it makes sense to consider self-adjoint operators. A
pencil ∆w corresponds to a self-adjoint operator in V(M) if (∆w)∗ = ∆1−w.

Theorem 1. There is a one-to-one correspondence between operators and brackets in
V(M). Every second-order operator generates a bracket and, conversely, for a given
bracket a generating operator always exists and can be uniquely specified by the condi-
tions of normalization ∆1 = 0 and self-adjointness. An operator pencil ∆w canonically
corresponding to a bracket in V(M) is given by the formula

∆w =
1

2

(

Sab∂b∂a +
(

∂bS
ba(−1)b̃(ε+1) + (2w − 1)γa

)

∂a+ w∂aγ
a(−1)ã(ε+1) + w(w − 1) θ

)

.

The operator pencil defined in Theorem 1 will be shortly called the canonical pencil
(for a given bracket in V(M)).

Example 3.1. The pencil considered in Section 2 and defined using a volume form ρ, has
γa = Sabγb and θ = γaγa, where γa = ∂a log ρ. Let us call it the Laplace-Beltrami pencil.

The algebra V(M) allows to link results for functions (when there is a unit, but no
scalar product) and for half-densities (when there is a scalar product, but no unit). The
canonical pencil corresponding to a bracket in V(M) is nothing but the operator 1

2 div grad
in V(M), where grad is given by a bracket and div is the canonical divergence (see above).
Using this description, one can give the transformation law of the canonical pencil ∆w

under a change of γa and θ (see [2]), generalizing the formula for ∆ρ. Taking the Laplace-
Beltrami pencil as a convenient ‘origin’, one can get from there a useful parameterization
of all canonical pencils with a given Sab, see [2]. An interesting question is about the
specialization map ∆w 7→ ∆w0

from pencils to operators on w0-densities with a particular
w0. The values w0 = 0, 1, 1

2 are singular. For other w0, one can find a unique canonical
pencil such that ∆w0

coincides with a given second-order operator on w0-densities (no
restrictions). If w0 = 1

2 , the image of the specialization map consists of all self-adjoint
operators on half-densities and the kernel consists of pencils (2w − 1)LX , where X are
vector fields. If w0 = 0, the image of the specialization map consists of all operators
vanishing on constants and the kernel is the subspace {w(w − 1)f}.

4 Odd case: Jacobi identities

4.1 Algebraic statements

Suppose ∆ is an odd second-order differential operator in some algebra A, generating an
odd bracket in A, which we shall denote { , }. Set for simplicity ∆1 = 0 (we assume that
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there is a unit). Notice that automatically ord ∆2 6 3, because ∆2 = 1
2 [∆,∆]. It is not

difficult to check the following assertions:
ord ∆2 6 2 is equivalent to the Jacobi condition

∑±{{f, g}, h} = 0; we shall refer to
it as to Jacobi 3;

ord ∆2 6 1 is equivalent to the Jacobi 3 plus extra two conditions, which are equivalent:
∆2 is a derivation of the associative product, ∆ is a derivation of the bracket; we shall
refer to the latter as to Jacobi 2;

ord ∆2 6 0, finally, is equivalent to all above plus ∆2 = 0, to which we shall refer as to
Jacobi 1.

Hence, in the notation Jacobi n, the number n stands for the number of arguments.

4.2 Geometric meaning

We can apply this to operators and brackets in C∞(M) or V(M). In the latter case we
know that there is a canonical operator generating a given bracket (the canonical pencil).
Keeping the above notation, we have the following (parentheses stand for the canonical
Poisson bracket on T ∗M):

Theorem 2. For operators on functions:

ord ∆2
6 2 ⇔ Jacobi 3 ⇔ (S, S) = 0,

hence D = (S, ) is a differential;

ord ∆2
6 1 ⇔ Jacobi 3 + Jacobi 2 ⇔ (S, S) = 0, (S, γ) = 0,

i.e., γ is flat, Dγ = 0.

Notice that Dγ = (S, γ) plays the role of curvature for an upper connection γ; it only
makes sense with D2 = 0, i.e., when { , } is a genuine odd Poisson bracket.

A further condition that ∆2 = 0 might be seen as a version of a ‘Batalin-Vilkovisky
equation’ for a pair S, γ of an odd Poisson bracket and a flat upper connection, but we
prefer to relate ‘BV equations’ with changes of γ, like for ρ in Section 2.

Theorem 3. For a unique operator corresponding to a bracket in V(M): the conditions

ord ∆2
6 2 ⇔ Jacobi 3 in V(M)

automatically imply the conditions

ord ∆2
6 1 ⇔ Jacobi 3 + Jacobi 2 in V(M)

and are equivalent to the equations

(S, S) = 0, (S, γ) = 0

(S, θ) + (γ, γ) = 0

(γ, θ) = 0

We can get an interesting corollary from here. Suppose the bracket generated on
functions is non-degenerate (an odd symplectic structure). Then the equations for γ, θ
are solved uniquely (if we ignore constants) giving γa = Sabγb where γb = −∂b log A =
eA∂be

−A for some volume form ρ = e−ADx, where A can be interpreted as “action”, and
θ = γaγa. Thus in this case the Jacobi conditions in the algebra of densities bring us back
to the operator ∆ρ.
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5 Homotopy algebras

5.1 Brackets generated by operators of higher order

The following construction was essentially given by Koszul [14]. Let ∆ be an operator in
an arbitrary commutative Z2-graded algebra with a unit. Define

{a} = [∆, a]1,

{a, b} = [[∆, a], b]1,

{a, b, c} = [[[∆, a], b], c]1,

etc.;

the n-ary bracket is obtained by taking the n + 1 consequent commutators. One might
add an 0-ary bracket, which is simply the element ∆1. ∆ is a differential operator of order
6 N if all brackets with more than N arguments vanish. In such case the top nonzero
bracket is a multi-derivation. It is the polarization of the symbol of ∆. For N = 2 we
return to the situation considered above. One can check that all brackets obtained in this
way are symmetric and that the (k + 1)-fold bracket appears as the obstruction to the
Leibniz rule for the k-fold bracket. This holds for even and odd operators.

5.2 Case of odd operators

Suppose that ∆ is odd. Hence all the brackets generated by ∆ are also odd. Can we get,
in addition to those linked ‘Leibniz identities’ holding automatically, some sort of Jacobi
identities for these brackets?

Let a1, . . . , an be elements of A. We do not need multiplication here, so for a moment
one can think of A just as of a vector space. Define the n-th Jacobiator on a1, . . . , an by
the formula

Jn(a1, . . . , an) =
∑

k+l=n

∑

(k, l)-shuffles

(−1)α{{aσ(1), . . . , aσ(k)}, aσ(k+1), . . . , aσ(k+l)}.

Here (−1)α is the sign prescribed by the sign rule for a permutation of homogeneous
elements a1, . . . , an ∈ A. This definition assumes the existence in A of odd brackets of all
orders between 0 and n. The n-th Jacobi identity for a sequence of odd brackets in A is
the equality Jn = 0 identically for all arguments.

Up to sign conventions, this is essentially the definition used in Stasheff’s theory of
strongly homotopy algebras: a vector space endowed with a sequence of (super)symmetric
odd brackets such that all Jacobi identities hold, for all n = 0, 1, 2, 3, . . ., is a strongly
homotopy Lie algebra (an L∞-algebra). Very often it is assumed that the distinguished
element given by the 0-ary bracket and called a background vanishes. See, e.g., [16], [17],
where slightly different conventions are used.

Coming back to our situation when the brackets are generated by an odd operator ∆,
we have the following remarkable statement [3].

Theorem 4. The following conditions are equivalent:
(1) ord ∆2 6 r;
(2) all Jacobi identities with the number of arguments > r are satisfied.
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In particular, if ∆2 = 0, we get an L∞-algebra structure in A besides the associative
multiplication (compare also [18]). This is a particular example of “homotopy Batalin-
Vilkovisky algebras”.

Theorem 4 is a corollary of the general Theorem 5 below, valid in the following abstract
axiomatic setting suggested in [3]. Consider a Lie superalgebra g endowed with a projector
P such that ImP and KerP are subalgebras and ImP is Abelian. Let D ∈ g be an
arbitrary element. The n-th derived bracket of D is a symmetric multilinear operation on
the space V = ImP defined by the formula

{a1, . . . , an}∆ := P [. . . [[∆, a1], a2], . . . , an],

where ai ∈ V .

Theorem 5. Consider an odd element ∆ ∈ g. The n-th Jacobiator of the derived brackets
of ∆ is equal to the n-th derived bracket of the even element ∆2:

Jn
∆(a1, . . . , an) = {a1, . . . , an}∆2 .

In our example the Lie superalgebra g consists of all operators in a commutative asso-
ciative algebra with a unit A, the projector P is the evaluation on the unit element, ImP

being A. Theorem 4 immediately follows.
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