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Abstract

Solutions to basic non-linear limit spectral equation for matrices RT R of increasing di-
mension are investigated, where R are rectangular random matrices with independent
normal entries. The analytical properties of limiting normed trace for the resolvent
of RT R are investigated, boundaries of limit spectra found, and upper estimates of
spectral density are obtained.

Spectra of large random Gram matrices are of interest in “random matrix physics” (see [1]),
and in solution of systems of empiric linear algebraic equations.

First, we cite shortly some recent results stating the convergence of spectral functions
obtained earlier. The basic spectral equation (called “canonic equation” by V.I. Girko [2])
is established that connect limit spectral functions of random Gram matrices with limit
spectral function of non-random matrices. Then we suggest an original investigation of
solutions of this spectral equation and of the form of limit spectra with full proofs.

We consider a sequence P of matrices A and R of size N × n, ξ = R − A, and
square matrices Σ = AT A, S = RT R of size n × n as n → ∞, N → ∞, where ξ
are random vectors with independent components Denote by Amj , Rmj , ξmj entries of
A, R, ξ, m = 1, . . . , N, j = 1, . . . , n.

Assume the following.

1. For each n the inequality holds n ≤ N .

2. For each n the spectral norm ‖A‖2 ≤ c1, where c1 does not depend on n.

3. As n → ∞ the magnitudes κn = N/n − 1 → κ ≥ 0.

4. Entries ξmi of the matrix ξ are independent and normally distributed as N(0,d/n),
m = 1 . . . , N , i = 1, . . . , n. Let d be independent of n.

We apply methods developed in the spectral theory of random matrices of increasing
dimension [2, 3]. Let us study the resolvent

H = H(t) = (S + tI)−1, t ≥ 0,

and spectral functions depending on H(t).
To deduce the basic spectral equation, first, we need upper estimates of variance of

some spectral functions.
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Lemma 1. Under assumptions 1–4 for t ≥ c > 0 the variance

var
(

n−1tr H(t)
)

≤ kN/n3, where k = ad(c1 + d)[c2 + (c1 + d)2]/c8,

where k is a numeric coefficient.

Lemma 2. Under assumptions 1–4 for any non-random unit vectors e

and t ≥ c > 0 as n → ∞ uniformly

var (eT H(t)e) = O(n−1 ).

Denote hn = n−1tr H, sn = 1 + hnd, rn = tsn + κnd.
We also need following asymptotic relations.

Lemma 3. Under assumptions 1–4 for t ≥ c > 0 as n → ∞ uniformly

E HRT = E HAT /sn + Ω,
E HRT R = E HRT A + d(κn + hnt)E H + O(n−1).

where ‖Ω‖ = O(n−1).

Suppose additionally that the weak convergence holds

F0n(u)
def
= n−1

n
∑

i=1

ind (λ0i ≤ u) → F0(u), u ≥ 0, (1)

where λ0i are eigenvalues of matrices AT A, i = 1, . . . , n.
From Lemmas 1–3 the following theorem can be stated establishing asymptotic rela-

tions between spectra of random matrices RTR and spectra of non-random matrices AT A
(V.I.Serdobolskii and A.V.Serdobolskii, 1991).

Theorem 1. Under assumptions 1–4 and (1) the following is true.

1. For t ≥ c > 0 the convergence in the square mean holds

hn = hn(t)
def
= n−1tr H(t) → h(t), rn = rn(t)

def
= tsn(t) + κnd → r(t),

uniformly with respect to t ≥ c > 0, where s(t) = 1 + dh(t), and r(t) = ts(t) + κd.

2. For each t ≥ 0 the equation holds

h(t) = s(t)

∫

(u + r(t)s(t))−1 dF0(t). (2)

3. For n → ∞ the weak convergence in the square mean holds

Fn(u)
def
= n−1

n
∑

i=1

ind (λi ≤ u)
P→ F (u),

where λi are eigenvalues of RT R, i = 1, . . . , n.
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4. For each t > 0 the equation holds

h(t) =

∫

(u + t)−1dF (u). (3)

5. As n → ∞

EH(t) = s(t)
(

AT A + r(t)s(t)
)−1

+ Ωn,

where ‖Ωn‖ = O(n−1) uniformly with respect to t ≥ c > 0.

The limit equation (2) can be called basic spectral equation in the limit spectral theory
of random Gram matrices. In this paper we use this equation for studying properties of
limit spectra.

Limit spectra

Theorem 2. Under assumptions 1–4 and (1) the following is true.

1. The function h(t), defined by (1) for t ≥ c > 0, allows the analytical continuation for
complex arguments z; this function is regular everywhere except the half-axis z ≤ 0,
is uniformly bounded and has a uniformly bounded derivative inside of any compact
not containing points of z ≤ 0. If κ > 0, then h(z) is regular also around z = 0 and
c−1

2
≤ h(0) ≤ 1/(κd).

2. For any v = −Re z > 0 and ε = − Im z → +0 there exists the limit lim π−1 Imh(z) =
F ′(v).

3. For v > 0 F ′(v) ≤ π−1(vd)−1/2.
Consider the set S = {v > 0 : F ′(v) > 0} (“matrices S limit spectral region”).

4. If κ > 0, then the set S of real z = −v is located on the segment, on which
v ∈ [v1, v2], where

v1 =
κ2d

4(
√

1 + κ + 1)2
, v2 = max

[

9d, (1 +
κ

2
) d +

9

8
c2

]

;

the diameter of S is not less than πdκ/[4(1 +
√

1 + κ)].

5. If κ > 0, then for all v ≥ 0 the function F ′(v) satisfies the Lipschitz condition
with the exponent 1/3 and is differentiable everywhere, perhaps, except the boundary
points of the set S.

6. If κ > 0, then the function h(z) satisfies the Goelder condition on the whole plane
of complex z with the exponent 1/3.

Proof. Starting from (3) one can easily establish the possibility of analytical continuation
of h(z), its uniform boundedness, regularity and uniform boundedness of the derivative
outside any vicinity of S. From (3) one also can see that the derivative s′(z) exists and
is uniformly bounded there. If κ > 0 then v1 > 0 and the right boundary of S lays at



Limit Spectra of Random Gram Matrices 119

a finite distance from z = 0. Lower and upper boundaries for h(0) can be easily derived
from (3) and (2). The first statement of our theorem is proved.

To be concise, denote h = h(z), s = s(z) = 1 + hd, r = r(z) = zs + κd, z0 = Re z,
z1 = Im s, and let

µν =

∫

|v + rs|−2vνdF0(v), ν = 1, 2.

Let us fix some v = −Re z > 0 and tend z = −v − iε to −v, ε → +0.
If v ∈ S (“on the spectrum”), Im h(z) → πF ′(v) > 0. We divide both parts of (2) by

s, take imaginary parts, and obtain

1/µ0 = p|s|2d + O(ε), v ∈ S, (4)

where |s| ≥ d Imh → dπF ′(v) > 0. Taking imaginary parts both in the left-hand and in
the right-hand sides we find that 1/µ0 = dµ1/µ0 +d|s|2v+O(ε). From these two equations
it follows that

|s|2(p − v) = µ1/µ0 + O(ε), v ∈ S. (5)

Since |s| ≥ |s1| → πdF ′(v) > 0 and v > 0 we conclude that p > v + O(ε).
Further, using the Cauchy–Buniakovsky inequality from (2) we find that |h|2 ≤ µ0|s|2.

Substituting µ0 from (4) we obtain |h|2pd ≤ 1 + O(ε) and

|s − 1|2 ≤ d/p + O(ε) ≤ d/v + O(ε). (6)

In particular, it implies that the variable Imh ≤ 1/
√

vd + O(ε) for v ∈ S and F ′(v) ≤
π−1(vd)−1/2.

Let us estimate the boundaries of the support of F (u). From (5) it follows that (2s0 −
1)v ≥ κd + O(ε) and as ε → +0 we obtain v(1 + 2

√

d/v) ≥ κd + O(ε). Solving this
quadratic inequality with respect to

√
v we find that

v ≥ v1

def
=

κ2d

4(
√

1 + κ + 1)2
for v ∈ S.

Further, note that µ1 ≤ µ0c2, where c2 is an upper bound of the matrices AT A spectra.
Also from (5) it follows that

(2s0 − 1)v − κd = p − v ≤ c2|s|−2 + O(ε), v ∈ S.

We have s0 ≥ 1−
√

d/v + O(ε). Let v > 9d. Then s0 ≥ 2/3 + O(ε) and |s|2 ≥ 4/9 + O(ε).
Hence (2s0 − 1)v ≤ 9/4 c2 + κd + O(ε). We estimate s0 from below using (6). The
inequality follows v − 2

√
dv ≤ κd + 9/4 c2. Solving this inequality with respect to

√
v as

ε → +0 we find that

v ≤ (
√

1 + κd + 9/4 c2/d + 1)2d/4.

From this relation a (weaker) upper estimate follows that is presented in the theorem
formulation. Thus we have found the boundaries v1 and v2. Now let us integrate both
parts of the inequality F ′(v) ≤ π−1(vd)−1/2. We find that

√
πd ≤ √

v20 − √
v10, where
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v20 ≥ v10 ≥ 0 are utmost endpoints of the set S. The lower estimate for the diameter S

follows.

Let us establish the Goelder inequality for s(z). For Im z 6= 0 by (3) the function h(z)
is differentiable. Let v = − Re z ∈ S. Differentiating left-hand and right-hand sides of (1)
we obtain the expression of the derivative s′ = s′(z)

s′/(ds2) = −m0s
′(κd − 2vs) − m0s

2, m0 =

∫

(u + rs)−2dF0(u).

Let us rewrite this equation in the form s′(B − p) = −s2, where B = 1/(dm0s
2). Now we

estimate |s′| from below. By (5) we have p = 1/µ0d|s|2 + O(ε). If κ > 0 and z = −v,
where v ∈ S then |s(z)| is bounded both from below and from above. For sufficiently
small ε > 0 we have p > δ/2 and it follows that |m0s

2| ≤ µ0|s|2 = O(1). We find that
|s′| ≤ const /|ρ|, where

ρ = µ0|s|2 − m0s
2 =

∫

|u/s + r|−2dF0(u) −
∫

(u/s + r)−2dF0(u).

Denote A = u/s + r. It is easy to verify that

Re ρ = 2

∫

|A|−4(Im A)2dF0(u).

The value Im A = −|s|−2s1 − vs1 + O(ε). For sufficiently small ε → +0 we have | Im A| >
vs1/

√
2. Applying the Cauchy–Buniakovsky inequality and using (4) we find that if ε > 0

is sufficiently small, then

Re ρ ≥ v2s2

1

∫

|A|−4dF0(u) ≥ v2s2

1|s|4µ2

0 ≥ (vd)2p−2s2

1.

Here v ≥ δ > 0 and the values p are bounded from above. We conclude that |s′| ≤
const /s2

1
. Consequently, the function s3

1
has a derivative uniformly bounded in S. As

z → −v− iε, v < 0 and ε → +0 there exists that limit function s1(−v) = lim s1(z). The
difference s3

1
(z) − s3

1
(−v) = O(ε), and s1(z) ≤ s1(−v) + O(ε1/3).

In view of (3) one can conclude that s3
1

has a uniformly bounded derivative on any
compact outside of S. Thus, the function s1(z) satisfies the Goelder inequality with the
exponent 1/3 for all z

From (3) it follows that for v > 0 we have F ′(v) = π−1 Im h(−v). One can see that
F ′(v) also satisfies the Lipschitz inequality with the exponent 1/3. If κ > 0 then v1 > 0.
It follows that F ′(v) = 0 for positive v < v1. If F (v) has a jump at the point v = 0 then
the function h(z) must have a pole at the point z = 0 while it is not greater 1/(κd). One
can conclude that if κ > 0, then F ′(v) satisfies the Lipschitz inequality for all v ≥ 0. Set
F ′(v) = 0 for v < 0. Then F ′(v) satisfies the Lipschitz inequality for all real v.

Now consider Equation (2) as the Cauchy type integral. The integration contour can
be extended to the negative half-axis and closed by an infinitely remote circumference.
Applying the well-known theorem on integrals of the Cauchy type we can conclude that
the function h(z) defined by (2), satisfies the Goelder inequality with the exponent 1/3
on the whole plain of complex z. �
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Special cases

Now we study the characteristic features of the limit spectra of matrices S = RT R for a
specific case when F0(v) = ind (v ≥ a2). This is true if for each n the matrix Σ = AT A =
a2I. From (2) we obtain

ths2 + h(a2 − d) + κhds = 1, (7)

where s = 1 + hd. Let us introduce a “signal-to-noise” ratio T = a2/d.

1. If T = 0 the matrices RT R are the Wishart matrices, (s − 1)(κ − vs) = 1, and one
can find the density

F ′(v) = (2πv)−1
√

(v2 − v)(v − v1),

where v1 = (
√

1 + κ−1)2, v2 = (
√

1 + κ+1)2, v1 ≤ v ≤ v2. This is the well-known
Marchenko and Pastur spectral distribution that is characteristic of limit spectra of
sample covariance matrices. For κ > 0 the limit spectrum is separated from zero,
and for κ = 0 it is located on the segment [0, 4].

2. For κ = 0 and T > 0 for points of the spectrum S as ε → +0 we find that
2vs0 = |s − 1|−2d, where s0 = Re s. From Equation (7) one finds

F ′(v) =
1

π
Im h(v) =

1

π

(

x
3x − 2 − 2(T − 1)(1 − x)2

1 + 2x(T − 1)

)1/2

,

where the parameter x = Re s ≥ 1/2 is determined from the equation

v =
1 + 2x(T − 1)

2x(1 − 2x)2
.

For T ≤ 1 the left endpoint of the limit spectrum F (v) is v = 0.

Let T = 1. Then F ′(v) = π−1
√

x(3x − 2), where x can be calculated from the equation
2x(1 − 2x)2v = 1. In this case the limit spectrum is located on the segment [0, 27/4]. For
small v the function F ′(v) ≈ 2π−1

√
3v−1/3, F ′′(27/4) = −∞.

For T = 1 + ε, where ε > 0 is small, the lower spectrum boundary is near the point
4/27 ε3; The spectrum is located within boundaries increasing with the increase of T .
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